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Abstract. There is limited availability of long-term, high

temporal resolution, chemically speciated aerosol measure-

ments which can provide further insight into the health and

environmental impacts of particulate matter. The Monitor for

AeRosols and Gases (MARGA, Applikon B.V., NL) allows

for the characterisation of the inorganic components of PM10

and PM2.5 (NH+4 , NO−3 , SO2−
4 , Cl−, Na+, K+, Ca2+, Mg2+)

and inorganic reactive gases (NH3, SO2, HCl, HONO and

HNO3) at hourly resolution. The following study presents 6.5

years (June 2006 to December 2012) of quasi-continuous ob-

servations of PM2.5 and PM10 using the MARGA at the UK

EMEP supersite, Auchencorth Moss, SE Scotland. Auchen-

corth Moss was found to be representative of a remote Eu-

ropean site with average total water soluble inorganic mass

of PM2.5 of 3.82 µg m−3. Anthropogenically derived sec-

ondary inorganic aerosols (sum of NH+4 , NO−3 and nss-

SO2−
4 ) were the dominating species (63 %) of PM2.5. In

terms of equivalent concentrations, NH+4 provided the sin-

gle largest contribution to PM2.5 fraction in all seasons. Sea

salt was the main component (73 %) of the PMcoarse fraction

(PM10-PM2.5), though NO−3 was also found to make a rel-

atively large contribution to the measured mass (17 %) pro-

viding evidence of considerable processing of sea salt in the

coarse mode. There was on occasions evidence of aerosol

from combustion events being transported to the site in 2012

as high K+ concentrations (deviating from the known ra-

tio in sea salt) coincided with increases in black carbon at

the site. Pollution events in PM10 (defined as concentrations

> 12 µg m−3)were on average dominated by NH+4 and NO−3 ,

where smaller loadings at the site tended to be dominated by

sea salt. As with other western European sites, the charge

balance of the inorganic components resolved were biased

towards cations, suggesting the aerosol was basic or more

likely that organic acids contributed to the charge balance.

This study demonstrates the UK background atmospheric

composition is primarily driven by meteorology with sea salt

dominating air masses from the Atlantic Ocean and the Arc-

tic, whereas secondary inorganic aerosols tended to dominate

air masses from continental Europe.

1 Introduction

Gravimetric methods have long been used to monitor the

long-term trends of the bulk aerosol mass contained in partic-

ulate matter (PM) with an aerodynamic diameter of less than

2.5 or 10 µm (i.e. PM2.5 and PM10); however, these gen-

erally provide no information on the chemical speciation of

the aerosol. Offline chemical analysis after capture of aerosol

on filters by high or low volume filter samplers (e.g. Parti-

sol Sampler; Thermo Fisher Scientific, Inc.) is quite widely

used but limited to daily or lower frequency measurements

and therefore poorly captures diurnal patterns caused, e.g. by

changes in emission and gas–aerosol partitioning. It is impor-

tant to understand the composition and the role of aerosols as

they can have a direct and indirect effect on climate. The cur-

rent level of scientific understanding for aerosol properties in

terms of their role in the climate system is low and recently

it has been suggested that the major component of the un-

certainty globally is with the biogenic fraction (Carslaw et
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al., 2013). As well as having an impact on climate, aerosols

affect both environment and human health. Recent epidemi-

ological research has suggested that health effects of aerosol

may be less closely linked to the total mass of PM2.5 or PM10

than to the physicochemical characteristic of the aerosol;

however, there is still much to be understood (Fuzzi and Gi-

lardoni, 2013). Establishment of epidemiological links to in-

dividual aerosol chemical compounds is hampered by a lack

of available measurements.

In addition, secondary aerosols and their precursor gases

are required to be monitored to understand atmospheric pro-

cesses and to validate chemical transport models, which are

used to inform policy such as the UNECE (United Nations

Economic Commission for Europe) Convention for Long-

range Transboundary Air Pollution (CLRTAP) and the re-

vised European Air Quality Framework Directive (Direc-

tive 2008/50/EC) where the measurement of aerosol chem-

ical composition is statutory. In addition, prior to 2008, EU

member countries were fined for exceeding the total PM2.5

and PM10 limits set in the directive, regardless whether the

exceedance was due to anthropogenic or natural sources. In

the current revised European Air Quality Framework Direc-

tive (Directive 2008/50/EC), countries are now allowed to

subtract significant “natural” contributions of aerosol from

the total mass, if their contribution can clearly be quantified.

This is important for large “natural” pollution events, such

as the long-range transport of Saharan dust which has been

observed across Southern Europe and on occasions North-

ern Europe (Ansmann et al., 2003; Karanasiou et al., 2012).

While many member countries have chosen to make daily

filter measurements at very few sites, the UK has opted for

a strategy to combine a large number of sites that make

monthly measurements (Tang et al., 2009) with a couple of

“supersites” that resolve hourly concentrations, as an opti-

mum strategy for capturing the spatial and temporal variabil-

ity.

Instrumentation has in the past decade become available

for online monitoring of aerosol chemical composition, at

varying levels of complexity. In particular, the wet chemistry

MARGA instrument (Measurement of Aerosols and Reac-

tive Gases Analyser, Metrohm Applikon B.V., NL) provides

hourly measurements of water-soluble nitrate, chloride, sul-

fate, sodium, ammonium, potassium, magnesium and cal-

cium (hereafter NO−3 , Cl−, SO2−
4 , Na+, NH+4 , K+, Mg2+

and Ca2+, respectively) in addition to the gas-phase basic

and acid gases: ammonia, nitric acid, nitrous acid, hydrochlo-

ric acid and sulfur dioxide (hereafter NH3, HNO3, HONO,

HCl, SO2, respectively) (Makkonen et al., 2012; Rumsey

et al., 2014; ten Brink et al., 2009), based on aerosol col-

lection via a steam-jet aerosol collector (SJAC; Khlystov et

al., 1995). Other similar IC (ion chromatography) based sys-

tems are available, including the Ambient Ion Monitor–Ion

Chromatograph system (AIM-IC, URG Corp. and Dionex

Inc.) (Markovic et al., 2012) as well as the Particle into Liq-

uid Sampler with Ion Chromatography (PILS-IC, Metrohm

AG, Herisau, Switzerland), and a range of custom-built wet-

chemistry instruments based on the Particle Into Liquid Sam-

pler (Weber et al., 2001).

In parallel, there has been progress in developing monitor-

ing instruments based on aerosol mass spectrometry. While

there are now some studies using the standard Aerosol Mass

Spectrometers (AMS; Aerodyne Research Inc, USA) for

long-term measurements, a simplified version, the Aerosol

Chemical Speciation Monitor (ACSM, Aerodyne Inc), is be-

ing installed at supersites globally (Ng et al., 2011). Both

AMS and ACSM currently measure an aerosol fraction that

is close to PM1 although work is in progress to extend this

to PM2.5. While SJAC- and PILS-based instruments measure

water soluble aerosol components, similar to the filter-pack

reference method, the mass spectrometer detects the aerosol

components that volatilise efficiently at ≈ 600 ◦C, which has

the advantage of also characterising the organic fraction of

the aerosol, whereas it does not efficiently quantify the re-

fractory chemical components such as sea salt and crustal

aerosol.

A dual MARGA system measuring both PM10 and PM2.5

has been in operation at Auchencorth Moss, south-east Scot-

land since June 2006 as part of measurements being made by

the UK Department for Environment, Food and Rural Affairs

(Defra) air quality monitoring network (http://uk-air.defra.

gov.uk/). To our knowledge the Auchencorth Moss MARGA

is the longest known quasi-continuous operation of a dual

MARGA system to date. Auchencorth Moss has been devel-

oped as a Level II/III “supersite” within the European Mon-

itoring and Evaluation Program (EMEP) (Aas et al., 2012).

EMEP monitoring sites feed into the EMEP database which

serves to underpin the organisation’s modelling and policy

role to provide governments information on the deposition

and concentration of air pollutants, and long-range transport

of air pollutants (Tørseth et al., 2012; UNECE, 2004).

he following study focuses on the first 6.5 years of data

(1 June 2006 to 1 January 2013) from Auchencorth Moss, in

conjunction with co-located measurements and air mass back

trajectories. Daily, seasonal and annual variation of inorganic

aerosol species and the influences of long-range transport for

this remote rural site are discussed. The trace gases measured

concurrently with the aerosol composition and gas/aerosol

partitioning are described in a companion paper (Twigg et

al., 2015).

2 Methodology

2.1 Field site description

Auchencorth Moss, south-east Scotland (55◦47′36′′ N, 3◦

14′41′′W), is an ombrotrophic mire with an extensive fetch

at an elevation of 270 m, lying 18 km SSW of Edinburgh,

and can be categorised as a transitional lowland raised bog.

Atmos. Chem. Phys., 15, 8131–8145, 2015 www.atmos-chem-phys.net/15/8131/2015/
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Figure 1. Frequency plots of wind direction and wind speed

(m s−1) averaged over an hour at Auchencorth Moss for the years

2007–2012. Wind speed scale is limited to 30 m s−1. (Graphs pro-

duced using OpeAir; Carslaw and Ropkins, 2012).

The moss is extensively grazed by sheep all year round with

< 1 sheep ha−1. Under the European Environment Agency

classification scheme, the site is classed as a rural back-

ground site (Larssen et al., 1999). This has recently been

confirmed by Malley et al. (2014), who demonstrated that the

site was remote in the context of O3 measurements at EMEP

stations.

The meteorology is typical of a temperate system in the

north of the UK. A summary of the meteorological condi-

tions from June 2006 to the end of December 2012 can be

found in Table 1. During 2010 atypical low rainfall was ob-

served; however, an additional 588 mm of precipitation fell

as snow. Annual windroses for 2006–2012 (Fig. 1) show that

the field site is dominated by a SW wind with a secondary

NE flow occurring also.

Auchencorth Moss has been a long-term monitoring site

for a number of trace gases including NH3, SO2 and CO2

(Famulari et al., 2010; Drewer et al., 2010; Flechard and

Fowler, 1998). The site belongs to a number of UK na-

tional networks including the UK Defra Automatic urban and

rural network (AURN), UK Acid gas and aerosol network

(AGANet), UK National Ammonia Monitoring Network

(NAMN), UK Precip-Net (bi-weekly bulk composition), UK

PAH Network, UK Automatic Hydrocarbon Monitoring Net-

work, UK Black Carbon Network and UK Toxic Organic

MicroPollutants (TOMPS) network. Details of the networks

can be found on the Defra website (http://uk-air.defra.gov.uk/

networks/site-info?site_id=ACTH). The site is also a Euro-

pean supersite within the Co-operative Programme for Mon-

itoring and Evaluation of the Long-range Transmission of

Air Pollutants in Europe (EMEP) (Tørseth et al., 2012), as

well as one of nine sites within the EU FP7 ÉCLAIRE

project (http://www.eclaire-fp7.eu/) and a TransNational Ac-

cess (TNA) site within the European FP7 Infrastructure Net-

work ACTRIS (Aerosol, Clouds, and Trace gases Research

InfraStructure Network). It was a Level 3 site within the

EU FP6 NitroEurope IP (Sutton et al., 2007). In 2014, it

became a World Meteorological Organisation Global Atmo-

sphere Watch (WMO GAW) regional site.

2.2 MARGA instrument

The MARGA 2S system (Metrohm Applikon B.V.

Schiedam, NL) consists of two sampling boxes and

utilises ion chromatography to analyse for a range of water

soluble trace gases and aerosols. The MARGA 2S was set

up to measure both PM10 and PM2.5 aerosol. Air is first

drawn through a common PM10 Teflon-coated inlet (URG

Corporation, Chapel Hill, NC, USA) at 3.55 m a.g.l. into a

0.89 m long polyethylene (PE) 14 mm ID (inner diameter)

inlet line, which is housed in the centre of an 11 cm OD

(outer diameter) polyvinyl chloride (PVC) conduit. The

conduit has an extractor fan at the base to draw air through

based on the design used by Trebs et al. (2004) aimed at

keeping the sample at the temperature of the measurement

height for as long as possible. The PE tubing entering the

air conditioned cabin (21 ◦C) is split into two 1/4 in. PE

sample lines (0.4 m). The first line feeds directly into the first

sampling box and the second sampling line goes through

a further PM2.5 cyclone (URG Corporation, Chapel Hill,

NC, USA) before the second sampling box. The flow rate

in each sampling box is regulated to a volumetric flow of

1 m3 h−1 using a mass flow controller downstream of the

sampling box. In the sampling box, air passes through a

horizontal annular wet rotating denuder (WRD) (Keuken

et al., 1988). The WRD is continuously coated with a thin

film of solution which strips water soluble gases from the

laminar air stream; the addition of 10 ppm H2O2 acts as a

biocide and also promotes oxidation of SO2 initially trapped

as HSO−3 through to SO2−
4 . Water soluble aerosols do not

diffuse into the stripping solution due to their lower diffu-

sion velocity. The air flow then enters a steam-jet aerosol

collector (SJAC). The steam in the SJAC promotes rapid

growth of water soluble aerosols which are then separated

out from the air flow mechanically in a cyclone. Details

of the principles of the SJAC are described by Khlystov et

al. (1995). The sampling solutions are continuously drawn

from the WRDs and SJACs to the analyser box at a rate of

25 mL h−1 using syringe pumps. Samples are then analysed

online by anion and cation chromatography (Metrohm

AG, Herisau, Switzerland). The system is continuously

calibrated by mixing the sample with a 325 mg L−1 internal

standard of LiBr, prior to injection into the IC columns.

Anions are concentrated on a Metrosep A PCC 1 HC IC

preconcentration column (2.29 mL) and then separated using

a Metrosep A Supp 10–75 column (75 mm× 4.0 mm) using

a 7 mmol L−1 Na2CO3/8 mmol L1 NaHCO3 eluent. Cations

are concentrated on a Metrosep C PCC1 HC IC preconcen-

tration column (3.21 mL) and separated using a Metrosep

C4 (100 mm× 4.0 mm) cation column. A 3.5 mmol L−1

methanesulfonic acid (MSA) eluent was used for the cation

www.atmos-chem-phys.net/15/8131/2015/ Atmos. Chem. Phys., 15, 8131–8145, 2015
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Table 1. Summary of metrological conditions for the period June 2006–December 2012.

Year Total Air temperature Wind speed at 1 m RH St

Rainfall (mm) (◦C) (m s−1 ) (%) (W m−2)

Median Min Max Median Max Mean Mean

2006∗ 740 11.2 −5.4 28.5 2.8 13.3 88.6 99.52

2007 1124 7.8 −9.7 22.1 3.0 24.8 83.0 88.67

2008 1212 7.3 −8.4 23.2 2.9 24.3 84.4 84.91

2009 989 7.6 −9.0 27.5 3.0 12.2 84.8 92.92

2010 649 6.7 −12.0 24.6 2.7 11.6 83.9 92.39

2011 1101 8.4 −8.9 24.6 3.1 13.5 86.1 88.38

2012 1322 6.6 −8.3 23.3 2.8 16.8 88.1 83.63

∗ 2006 only includes data from 1 June 2006 onwards. Key: RH – relative humidity, St – total solar radiation.

column, rather than the recommended 3.2 mmol L−1 HNO3

eluent used in other similar systems. This was in order

to eliminate a potential NO−3 artefact, which has been

reported (ten Brink et al., 2009; Makkonen et al., 2012).

For the anion column a 1 M H3PO4 solution was used

for chemical suppression. Detection was by conductivity,

where concentrations were calculated based on their specific

conductivities relative to the internal standard ions (Li+ and

Br−). These standard set-up conditions and all significant

operational changes over the 6.5 years, which could be

considered to have affected performance or data capture,

are summarised in Table 2. The increase in diameter of

the SJACs described in Table 2 reduced the restriction in

maintaining a flow rate, which was mass flow controlled at

1 m3 h−1 at standard temperature and pressure (STP) until

November 2011, whereas thereafter it was controlled to keep

the volumetric flow rate at ambient temperature and pressure

through the size cuts constant.

The performance of the MARGA has been further dis-

cussed by Rumsey et al. (2014), Makkonen et al. (2012), ten

Brink et al. (2009), and Cowen et al. (2011). The deploy-

ment of pre-concentration columns sets our MARGA instru-

ment aside from the others, with the exception of Makkonen

et al. (2014), allowing quantitative detection of the low con-

centrations encountered at this clean Scottish site.

Quality analysis and quality assurance

As discussed previously, the MARGA used in this work was

one of the first to be field deployed. Processes were devel-

oped over the first several years which could be used to

identify potential sources of error or contamination in the

MARGA data. Firstly, periodic field blanks were carried

out until 2011 by installing Whatman HEPA (high-efficiency

particulate air) filters placed in front of the denuders and left

on for ∼ 24 h. The filters removed aerosols but not the gas-

phase components from the air stream. The resultant change

in PM concentrations allowed a blank value for the PM ana-

lytes to be assessed. Following the upgrade of the instrument

in November 2011 (Table 2), automated monthly blanks were

implemented in 2012, where the air pump and SJAC water

supply and heaters were turned off, allowing for blanks for

both aerosol and gas phase to be carried out. The blanks were

not used to correct the data as they were usually below the

detection limit (DL) of the instrument. Instead blanks were

used to provide evidence of contamination in the system and

to identify periods to be removed in the data ratification pro-

cess. Prior to 2012 verification and instrument maintenance

protocols were experimental and the authors are in the pro-

cess of finalising the protocols including calibration, which

will be published separately. There was procedural change

in 2012, when the initial developmental protocols for main-

tenance were replaced by final protocols. The protocols in-

clude quarterly replacement of inlets, cleaning of PM10 head

and PM2.5 cyclone, though the frequency increases if there

is evidence of pollution events or visual dirt in the denuder

or SJAC, resulting in cleaning of the glassware too. Monthly

calibrations of mass flow controllers (MFCs) have been im-

plemented, following the upgrade, by carrying out a three-

point calibration using a NIST (National Institute of Stan-

dards and Technology) traceable air flow calibrator (Chal-

lenger, Sensidyne, LP. USA). The MFC flows were found

to compare well on average with an independent flowmeter

(< 5 % difference on average to the expected 1 m3 h−1 flow

rate). Only on occasions did the flows differ, after denud-

ers or SJACs had been either moved or cleaned, or as the

result of a faulty air pump or MFC. As a result it is now

procedure to recalibrate flows following any change in the

sample boxes. In addition due to the frequency of the audits,

air concentration data are only corrected when there is ev-

idence of drift of the MFCs calibration. As part of a more

stringent protocol, independent analyses of the internal stan-

dard (LiBr) by a UKAS (United Kingdom Accreditation Ser-

vice) accredited laboratory (CEH Lancaster) have been car-

ried out since 2012. The measured LiBr concentrations are on

average 10.5 % (Li) and 6.5 % (Br) lower than the theoretical

concentration, when independently analysed by the UKAS

accredited laboratory. The difference between the laboratory

Atmos. Chem. Phys., 15, 8131–8145, 2015 www.atmos-chem-phys.net/15/8131/2015/



M. M. Twigg et al.: Water soluble aerosols and gases at a UK background site – Part 1 8135

Table 2. Summary of major operational changes which have potentially affected the MARGA performance or data capture from June 2006

to December 2012.

Date Operation change Change to performance

03 Dec 2008 Changed from Metrohm C2 column with 4 mM MSA

eluent to Metrohm C4 column with a 3.5 mM MSA.

Better separation of NH+
4

and Na+ peaks.

17 Feb 2009 SJACs were replaced with an increased internal diame-

ter.

Syringe valves increased from 0.6 mm to 0.8 mm ID.

Improved accuracy in maintaining the cutoff for PM2.5

and PM10.

Reduction in downtime due to blockages.

28 Jul 2009 Replaced glass fibre filters to PTFE Whatman ReZist

30 mm filter.

Glass fibre filters had a high Na+ and SO2−
4

back-

ground and required rinsing prior to use.

29 Jul 2009 100 ppm H2O2 added to H2O stripping solution. Prevents loss of NH+
4

from bacteria by acting as a bio-

cide.

Converts HSO−
3

to SO2−
4

, resulting in better SO2 re-

covery in the denuder.

09 Feb 2011 Reduced to 10 ppm H2O2 in stripping solution. Optimum concentration as a biocide, whilst preserving

lifetime of the column.

17 Nov 2011 MARGA hardware and software upgrade. Calibration of mass flow controllers can now be carried

out in situ.

Blanks and external standards can be set up remotely.

and the MARGA measured values were −0.4± 3.4 % and

−2.2±3.8 % for Li and Br, respectively, over 2013 based on

monthly measurements. Only on a few occasions were ex-

ternal solutions analysed by the MARGA as it was not until

2012, following the instrument upgrade, that external stan-

dards could be successfully run. External standards however

have occasionally been used to confirm peak identification

on chromatograms.

In the data ratification process values reported as 0 µg m−3

were replaced with half the DL. The method to determine

the DL has changed over the 6-year period. From 2002 to

2011, the DL was taken as the average of the reported values

below the manufacturer’s published DL. From 2012, the DL

was calculated by the analysis of the logarithmic distribution

of the measurements previously described by Kentisbeer et

al. (2014), presented in Table 3. The calculated DLs have

been reported to UKAir (http://uk-air.defra.gov.uk/data/) on

a monthly basis since 2012; only 1.4 % of potential data

were filled with one-half DL in 2012. The methodology for

analysing the DL and calibrating this type of on-line IC in-

strument is an area of research in of itself and we plan to

publish separately on this aspect of the MARGA operation.

2.3 Back trajectories and associated analysis

To relate the aerosol species to air masses, back trajectory

analysis was carried out. Four-day back trajectories at 3 h in-

tervals for Auchencorth Moss were obtained for the years

2007–2012 through the OpenAir software package (Carslaw,

2013), which calculates back trajectories with the HYS-

PLIT trajectory model (Hybrid Single Model Lagrangian In-

Table 3. Annual average detection limits calculated using a loga-

rithmic profile for 2012.

Component DL

µg m−3

PM10

NH+
4

0.062

Na+ 0.123

K+ 0.019

Ca2+ 0.016

Mg2+ 0.015

Cl− 0.086

NO−
3

0.105

SO2−
4

0.349

PM2.5

NH+
4

0.069

Na+ 0.106

K+ 0.014

Ca2+ 0.015

Mg2+ 0.007

Cl− 0.053

NO−
3

0.091

SO2−
4

0.242

tegrated Trajectory Model, (Draxler and Hess, 1997) using

Global NOAA-NCEP/NCAR reanalysis data. A cluster anal-

ysis was then carried out using a routine in the OpenAir soft-

ware, where data were clustered using a distance matrix, in

www.atmos-chem-phys.net/15/8131/2015/ Atmos. Chem. Phys., 15, 8131–8145, 2015
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this case according to the similarity of the angle from their

origin. Further details of the calculations of the cluster anal-

ysis can be found in Carslaw (2013).

3 Results and discussion

3.1 Overview

Table 4 summarises the annual data capture statistics for

each compound. The Auchencorth MARGA was one of the

first long-term field deployments of the MARGA instrument.

Through troubleshooting and instrument improvements the

data capture improved over the period reported with a high-

est data capture of 64 % (average overall) in 2012. Though

not reported here, data capture for 2013 is on average 83 %

for ratified data (http://uk-air.defra.gov.uk/). As seen in Ta-

ble 4, Auchencorth Moss being a rural to remote site, the

aerosol concentrations were low as there are no large local

point pollution sources in the dominant SW wind direction.

3.2 Concentration trends from June 2006 to

December 2012

The annual average concentrations from June 2006 to De-

cember 2012 are summarised in Table 4. Overall, the

concentrations of individual species were generally low

(< 1.5 µg m−3). When compared with speciated PM2.5 mea-

surements from a background site in the Midlands, UK (Har-

rison and Yin, 2010), Cl− concentrations were higher at

Auchencorth Moss based on annual averages (Table 4) but

are in a similar range to other UK sites (Abdalmogith and

Harrison, 2006). The average annual concentrations of NO−3
and SO2−

4 in the PM10, on the other hand, were larger in other

parts of the UK including the other rural EMEP supersite at

Harwell (Harrison and Yin, 2010; Abdalmogith and Harri-

son, 2006). The maximum concentrations of the aerosol com-

ponents, however, show that there were periods where large

PM pollution events took place, which are hypothesised to

have taken place due to long-range transport of polluted air

masses. In both PM2.5 and PM10, the largest concentrations

of NH+4 and NO−3 were recorded during 2012, SO2−
4 maxi-

mum concentrations were observed in 2007 and other species

varied (Table 4). It is interesting that specific local events can

be picked out from the data record, for example the maxi-

mum K+ concentration in 2012 of 2.61 µg m−3 occurred at

00:00 GMT on 6 November 2012 – Guy Fawkes or “fire-

works“ night in the UK. The meteorological conditions that

night were cool, with an average temperature of −0.1 ◦C at

midnight and the wind direction was from the dominant wind

sector (SW). An increase of K+ is not unexpected as such an

increase is reported to occur following firework events (Vec-

chi et al., 2008; Drewnick et al., 2006). This example illus-

trates the utility of the hourly composition measurements to

understand specific atmospheric events.
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Figure 2. (a) Median monthly mass concentrations of PM2.5 species measured by the MARGA and median wind speed from June 2006 to

December 2012. (b) Median monthly mass concentrations of PM10 species measured by the MARGA and median wind speed from June

2006 to December 2012.

The monthly median concentrations for all 6.5 years are

presented in Fig. 2. There is a clear seasonal variation for

Na+ and Cl− for all years, with the exception of 2009, with

lower concentrations in the summer and higher concentra-

tions in winter. This seasonality reflects higher average wind

speeds in winter leading to more marine aerosol in the atmo-

sphere, as previously observed at other sites in the UK, but

for Cl− it is also consistent with increased NaCl reaction with

HNO3, which also peaks in summer. Of the secondary inor-

ganic pollutants, NO−3 shows individual peak concentrations

only during the colder months, however not consistently,

whereas SO2−
4 and NH+4 do not have particularly strong an-

nual variation. The largest monthly median concentration for

NH+4 and NO−3 was observed in March 2012. SO2−
4 on the

other hand does not show the same feature; the maximum

monthly concentrations were observed in July 2012.

Comparing the average diurnal cycles for 2007–2012

(Fig. 3), it is apparent that the contribution of PMcoarse is

small compared with PM2.5, where

PMcoarse = PM10−PM2.5. (1)

PMcoarse is dominated by sea salt (Na+ and Cl−). In the

fine fraction (PM2.5) NH+4 aerosol dominates, as it is the ma-

jor base in secondary inorganic aerosol (refer to Sect. 3.4).

In PM2.5 there is a decrease of NO−3 during the afternoon in

all seasons, though this feature is strongest in winter. This be-

haviour is consistent with that previously reported from other

north European sites (Nemitz et al., 2015) including Harwell

(UK) (Revuelta et al., 2012), Cabauw (Netherlands) (Mensah

et al., 2012), Melpitz (Germany) (Poulain et al., 2011) and

SMEAR II (Finland) (Makkonen et al., 2012). It is assumed

that the majority of fine NO−3 will be in the form of NH4NO3

and that the relationship between the gas precursors, temper-

ature, RH and chemical composition explain the observed

cycle (see the discussion on gas concentrations at this site;

Twigg et al., 2015). Timonen et al. (2011), who had also re-

ported a decrease of daytime NO−3 in Helsinki, explained the

decrease to be the result of increased boundary layer mix-

ing as the same feature was observed in black carbon. At

Auchencorth Moss this behaviour of black carbon is not ob-

served, instead the annual diurnal average shows an increase

of black carbon during the day (Cape et al., 2012). It is there-

fore probable that diurnal variation in temperature and rela-

tive humidity exert a stronger influence on the PM2.5 NO−3
at this site than the depth of the mixing layer. PM2.5 SO2−

4

at Auchencorth Moss, on the other hand, shows an increase

in concentration during the day, with the feature strongest in

summer. The increase in SO2−
4 is interpreted to be the effect

of stronger insolation in summer, which drives the oxidation

www.atmos-chem-phys.net/15/8131/2015/ Atmos. Chem. Phys., 15, 8131–8145, 2015
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Figure 3. Median seasonal diurnal cycles of molar concentrations of PM2.5 and PMcoarse, NH+
4

, NO−
3

, SO2−
4

, Na+ and Cl− using data

from January 2007 to December 2012, with the shading showing the 95 % confidence level of the median. (Graphs produced using Open air;

Carslaw and Ropkins, 2012).

of SO2 to form sulfuric acid and finally SO2−
4 , due to the

increase in OH radicals.

3.3 Ion balance

The ion balance was calculated for PM2.5 and PMcoarse for

the year 2012. Figure 4a and b show the ion balance of the

secondary inorganic species, while Fig. 4c and d show the

full ion balance of the measured species. In both PM2.5 and

PMcoarse it is clear that though there is good correlation, there

appears to be an excess of NH+4 . This is not the first time ex-

cess NH+4 has been observed in aerosol measurements (Men-

sah et al., 2012). It is thought that water soluble organic acids

such as oxalate may be the missing species to close the ion

balance. Some of the Cl− measured by the MARGA is likely

to represent NH4Cl, which would affect the partial ion bal-

ance of Fig. 4a but not the full ion balance of Fig. 4b. How-

ever, Aerosol Mass Spectrometer (AMS) measurements sug-

gest that this contribution is negligible in S Scotland (Nemitz

et al., 2015). On the other hand, some of the NO−3 in the

partial ion balance is expected to represent NaNO3, even in

PM2.5, and the excess NH+4 may be even larger than sug-

gested by Fig. 4a. Makkonen et al. (2012) observed that in

Finland the ion balance was seasonal, with acidic aerosol in

winter and a basic ion balance in spring. This seasonal trend

was not observed at Auchencorth Moss, with the average sea-

sonal ion balance always basic (i.e. excess NH+4 ) in charac-

ter, which is consistent with AMS measurements that have

demonstrated that acidic aerosol is only found in the NE, E

and S of Europe, while there is always excess ammonia in the

NW and west-central Europe (Nemitz et al., 2015; Morgan et

al., 2010).
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Figure 4. Measured ion balance for the year 2012 in microequiva-

lents per cubic metre. (a) Neutralisation of PM2.5 NH+
4

by PM2.5

nss-SO2−
4

and PM2.5 NO−
3

, (b) ion balance of measured PM2.5 an-

ions (Cl−, NO−
3

and SO2−
4
) and measured PM2.5 cations (NH+

4
,

Na+, K+, Ca2+and Mg2+), (c) neutralisation of PMcoarse NH+
4

by PMcoarse nss-SO2−
4

and PMcoarse NO−
3

, (d) ion balance of

measured PMcoarse anions (Cl−, NO−
3

and SO2−
4
) and measured

PMcoarse cations (NH+
4

, Na+, K+, Ca2+and Mg2+).
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Figure 5. Average composition by mass of the water soluble inor-

ganic aerosol fraction measured by the MARGA from January 2007

to December 2012 in both PM2.5 and PMcoarse. Sea salt chloride,

sulfate, magnesium, calcium and potassium were derived based on

the known mass ratios to Na+ in sea water, refer to Eqs. (2)–(5).

Key: nd – not detected.

3.4 Sea salt and sea salt processing

An overview of the average inorganic PM2.5 and PMcoarse

composition based on mass is presented in Fig. 5. Sea salt

is presented as the individual species of measured Na+, sea

salt Cl− (ssCl−), sea salt SO2−
4 (ssSO2−

4 ) sea salt Mg2+

(ssMg2+), sea salt Ca2+ (ssCa2+) and sea salt K+ (ssK+),

which were calculated based on the known mass ratio to Na+

in sea water (Seinfeld and Pandis, 2006):

[ssCl−] = 1.8×[Na+], (2)

[ssSO2−
4 ] = 0.252×[Na+], (3)

[ssMg2+
] = 0.12×[Na+], (4)

[ssCa2+
] or [ssK+] = 0.04×[Na+]. (5)

As would be expected, the dominant fraction of the coarse

aerosol at this site is from sea salt (73 %); this is larger than

reported at other European sites such as SMEAR III, near

Helsinki (Makkonen et al., 2012), probably because of prox-

imity to the ocean in all wind directions. There is also a large

contribution from NO−3 in the coarse fraction. This is not the
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Figure 6. Demonstration of the depletion of Cl− for the year 2012

as a result of Cl−–NO−
3

interactions during long-range transport

for coarse aerosol. The black line is the known ratio of Cl− to Na+

in seawater (Seinfeld and Pandis, 2006). Colour scale is set to 0–

> 0.2 µeq m−3 NO−
3

to focus in on the depletion of Cl− at high

NO−
3

concentrations.

first time that a large proportion of NO−3 has been reported

in the coarse mode; the same was observed in Melpitz, Ger-

many, and has been explained to be the result of chloride–

nitrate exchange that takes place on coarse aerosol during

long-range transport of sea salt (Spindler et al., 2012; Das-

gupta et al., 2007). This was further evident as the aver-

age non-sea salt Cl− mass was −0.17 and −0.08 µg m−3 for

PM2.5 and PMcoarse, respectively, where

Non-sea salt Cl− = [Cl−]measured− [ssCl−]calculated . (6)

To investigate the process of sea salt substitution by re-

action with HNO3 further, the ratios of Na+ and Cl− were

compared with NO−3 in the coarse mode for the year 2012.

In general, larger NO−3 concentrations tended to be observed

on occasions where a depletion of Cl− was observed, though

this was not true for all cases (Fig. 6). It should be noted,

however, that the concentrations of PMcoarse are calculated

as differences (Eq. 1) and therefore subject to considerable

uncertainty.

PM2.5 on the other hand is dominated by the secondary in-

organic aerosol (SIA) (NH+4 , NO−3 and SO2−
4 ) (Fig. 5), with

a total contribution of 63 % to the total measured mass by the

MARGA, which is to be anticipated. NO−3 is the dominant

mass of the SIA at Auchencorth Moss, accounting for 26 %

of the total water soluble species detected by the MARGA.

A similar comparison has been carried out by a MARGA op-

erated at SMEAR III (near Helsinki, Finland) where SO2−
4

www.atmos-chem-phys.net/15/8131/2015/ Atmos. Chem. Phys., 15, 8131–8145, 2015



8140 M. M. Twigg et al.: Water soluble aerosols and gases at a UK background site – Part 1

30

25

20

15

10

5

0

W
in

ds
pe

ed
 (

m
 s

-1
)

360270180900
Wind direction (°)

1.00.80.60.40.20.0

PM2.5 Na
+
 (µg m

-3
)

>

Figure 7. The influence of wind direction and wind speed on the

concentration of PM2.5 Na+ at Auchencorth Moss from 1 January

2007 to 1 January 2013.

was the dominating mass responsible for 50.4 % of the total

inorganic PM2.5 mass reported by the MARGA (Makkonen

et al., 2012). This is not surprising as it has also been shown

by Nemitz et al. (2015), from AMS studies, that in Finland

PM1 is dominated by SO2−
4 , whereas in the UK and the rest

of NW Europe, NO−3 is the dominant SIA. Sea salt, however,

still makes a considerable contribution (35 %) to the aver-

age measured PM2.5 by the MARGA, bearing in mind that

the cutoff might have been somewhat larger than 2.5 µm un-

til November 2011 (see above). In 2012, sea salt still made

a major contribution to the total mass of the PM2.5 (30 %),

where there is the greatest confidence in the cutoff of the cy-

clone. There was a clear increase of PM2.5 Na+ with wind

speed for 2012 (Fig. 7) in the dominant wind sector (refer to

Fig. 1), suggesting that PM2.5 Na+ was related to sea salt and

its presence at the site is driven by meteorology.

Potassium (K+) is present in sea salt and when the avail-

able 2012 PM2.5 data was compared to the concentration

of Na+ it tended to follow the known ratio in sea water

(Seinfeld and Pandis, 2006); Fig. 8. The greatest deviation

from this curve appears to be in periods of high black car-

bon (BC) concentrations. PMcoarse however had much scat-

ter. High concentrations of black carbon are often associated

with combustion processes, though K+ can also occur as a

product of other anthropogenic sources. There was clear ev-

idence in the PM2.5 that high concentrations of K+ were as-

sociated with increased BC pointing to a contribution from

combustion sources or biomass burning (Fig. 8). The mea-

sured Mg2+ /Na+ ratio in PM2.5 followed the known ratio

in sea water (Seinfeld and Pandis, 2006). The same compar-

ison was done for PMcoarse; however, there was much more

scatter in the data.

3.5 Comparison of total inorganic aerosol with

TEOM-FDMS measurements

The total average water-soluble inorganic aerosol mass mea-

sured by the MARGA for the period January 2007 to De-
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Figure 8. Relationship of K+ (left hand figures) and of Mg2+ (right

hand figures) to Na+ for PM2.5 and PMcoarse from 21 March 2012

to 1 January 2013. Black lines show the sea water ratios of

K+ and Mg2+ to Na+ taken from Seinfeld and Pandis (2006).

Black carbon data are provisional data downloaded from the DE-

FRA UK-Air database archive (http://uk-air.defra.gov.uk/data/) on

17 March 2014.

cember 2012 was 3.82 µg m−3 for PM2.5 and 5.04 µg m−3

for PM10,. The measured mass by the MARGA was com-

pared to the tapered element oscillating microbalance fil-

ter dynamic measurement system (TEOM-FDMS) which

measures the total aerosol mass; total mass data were ob-

tained from the AURN network (http://uk-air.defra.gov.uk/

networks/network-info?view=aurn) for the 6 years of inter-

est (2007–2012). It was found that the PM10 mass measured

by the MARGA accounted for 78 % of total PM10 measured

by the TEOM-FDMS, on average. It is not the first time that

inorganic water soluble aerosols have been found to be major

contributors to the total mass in Europe (Putaud et al., 2010).

Aerosol components not resolved by the MARGA include

organic aerosols, BC, water and crustal elements such as sil-

icate. Organic aerosol often accounts for a larger fraction of

the PM10 mass at central European background sites than the

missing mass at Auchencorth allows for. This is consistent

with AMS measurements in S Scotland that also indicate rel-

atively low contributions from organic aerosol (Nemitz et al.,

2015).

Table 5 summarises the annual mass fraction that is ac-

counted for by the MARGA instrument when compared with

Atmos. Chem. Phys., 15, 8131–8145, 2015 www.atmos-chem-phys.net/15/8131/2015/
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Table 5. Measured MARGA mass vs. TEOM-FDMS mass and the percentage of time the TEOM FDMS reported values ≤ 0 µg m−3 for the

years 2007–2012.

Year PM10 unaccounted PM2.5 unaccounted PM10 measured by PM2.5 measured by

(%) (%) TEOM-FDMS TEOM-FDMS

– reported values≤ 0 µg m−3 (%) – reported values≤ 0 µg m−3 (%)

2007 21 −15 14 25

2008 23 −38 10 25

2009 29 −48 7 28

2010 28 −27 6 17

2011 32 −20 9 26

2012 18 −9 3 20

the TEOM-FDMS for both PM10 and PM2.5. It is very clear

that there are discrepancies between the measured PM2.5 by

the MARGA and that by TEOM-FDMS. Mass closure im-

proved in 2012, probably in response to the improved flow

control implemented in November 2011 on the MARGA (see

above). An alternative explanation is that the PM concen-

trations at Auchencorth are close to the detection limits of

the TEOM-FDMS, which is indicated by the large percent-

age of negative values reported by the instrument over the

period January 2007–December 2012 (26 and 10 %, respec-

tively, for PM2.5 and PM10), the annual variation of which

can be found in Table 5. During the 6 years presented, the

fraction of negative values for PM10 declined, while it stayed

constant for PM2.5. It therefore can be concluded that the

PM2.5 TEOM-FDMS at Auchencorth Moss has an offset, as

has previously been commented by Laxen et al. (2012). It is

therefore not possible to comment on what the true contribu-

tion of the measured water soluble inorganic mass measured

by the MARGA is to the total PM2.5.

3.6 Influence of air mass on aerosol composition

Due to the remote location of the site, the origin of air masses

at the site influences the aerosol composition. Back trajecto-

ries, run over a 96 h period, were obtained at 3 h intervals for

the years 2007–2012, which were then clustered (details can

be found in Sect. 2.3). Figure 9 displays the mean trajectory

for each of the six clusters assigned. The average concentra-

tion over the 6-year period for each cluster and the percent

of species contribution to the total measured concentration

by the MARGA are summarised in Fig. 10. When calculat-

ing the average associated with each cluster, data were only

used when all species were available. As would be expected,

the air masses from the Atlantic Ocean and the Arctic (clus-

ters 1, 2 and 4) are dominated by Na+ and Cl− aerosol in

PMcoarse. In PM2.5, the same clusters show a large contribu-

tion from Na+ and Cl−, with the largest contribution in the

Atlantic air mass (Cluster 1). Air masses which go over land

tend to have the greatest contribution from secondary inor-

ganic aerosols, as seen in clusters 5 and 6. Air masses, in par-

ticular from continental Europe (Cluster 6), have the largest

Figure 9. Mean trajectory associated with each cluster following

clustering of 96 h back trajectories at 3 h intervals calculated for

Auchencorth Moss covering the years 2007–2012 (17 370 back tra-

jectories) (Graphs produced using Open air; Carslaw and Ropkins,

2012).

average molar concentrations of NH+4 and NO−3 , even in the

coarse fraction. The dominance of NO−3 compared to SO2−
4

from air trajectories from continental Europe has previously

been highlighted by Abdalmogith and Harrison (2005), who

explained this to be the result of high NOx /SO2 emission

ratios in western Europe.

3.7 Aerosol composition during high pollution events

In order to optimise emission controls for the protection of

human health against high concentration episodes, it is im-

portant to know which chemical components dominate when

www.atmos-chem-phys.net/15/8131/2015/ Atmos. Chem. Phys., 15, 8131–8145, 2015
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Figure 10. Average molar concentrations and average contribu-

tion of the species to the total molar concentration of PM2.5 and

PMcoarse for each back trajectory cluster (refer to Fig. 9) from Jan-

uary 2007 to December 2012. Key: N – number of back trajectories

used to calculate average concentration and percent of contribution

for each trajectory.

air concentrations are large. Figure 11 shows the average rel-

ative aerosol contribution as a function of total aerosol con-

centration for 2012 as an example, together with the his-

togram of the frequency with which different aerosol con-

centrations occur. The period with the highest concentrations

recorded at the site by the MARGA are dominated by sec-

ondary inorganic aerosols, in particular by NH+4 and NO−3 ,

with a smaller contribution from SO2−
4 . This is not the first
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Figure 11. Average relative contribution of inorganic water soluble

species to the total PM10 mass measured by the MARGA during

2012 as a function of total mass concentration. The black line is the

number of events at each mass concentration. Graph produced using

the plotting routine of Crippa et al. (2014).

time that NO−3 has been found to be a dominating species

during pollution events in the UK. Vieno et al. (2014) re-

ported NO−3 as a dominating fraction during pollution events

at a site (Bush) approximately 10 km NE from the Auchen-

corth Moss field site. They show that the NO−3 during pollu-

tion events at this site arise from a combination of emissions

from the UK and continental Europe but that the relative im-

portance depends on synoptic conditions and differs greatly

between episodes with the UK contribution ranging from 35

and 80 % (Vieno et al., 2014). The Auchencorth measure-

ments demonstrate the importance of controlling the emis-

sions of NH4NO3 precursor gas concentrations (NH3 and

NOx) in both the UK and the rest of Europe for controlling

the high pollution episodes.

The concentration dependence of the relative aerosol

composition (Fig. 11) also shows that sea salt dominates

the aerosol composition at moderate aerosol loading (2–

12 µg m−3) while the relative contributions of K+ and Ca2+

increase at very low concentrations (< 2 µg m−3). Even un-

der very clean conditions there is a basic concentration of

crustal material.

4 Summary and conclusions

The first 6.5 years of chemically speciated PM2.5 and PM10

measurements from the MARGA at Auchencorth Moss have

been analysed. This study has provided greater detail in the

long-term temporal variations of inorganic species in the UK

background atmosphere and confirmed the status of the field

site as a background site in the European context, where

concentrations of the inorganic species were low over the

6.5 years. The dynamic changes between air masses dom-

inated by anthropogenic and natural sources is clearly ob-

servable on an interannual scale and continuation of these

long-term measurements will be a valuable resource to un-
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derstand long-term trends in PM composition in response to

climate and policy drivers.

The average ion balance at this site was biased towards

cations, some of which would probably have been neutralised

by organic acids such as oxalic acid. Additional studies to

identify the missing water soluble species would therefore

be beneficial at this site to close the ion balance. Compari-

son with the TEOM-FDMS bulk mass method found that the

compounds resolved by the MARGA instrument accounted

on average for 78 % of the PM10 mass measured at Auchen-

corth Moss, with considerable uncertainty due to changes in

the MARGA configuration over the period and the detection

limits of the TEOM-FDMS and possible difference in the

characteristics of the PM10 inlets. One recommendation is to

add a continuous measurement of the organic aerosol mass at

Auchencorth Moss to determine its contribution to the total

mass, due to the regional importance of this site.

Based on monthly median concentration, Na+ and Cl−

generally were found to vary seasonally due to the meteo-

rology of the site, with the highest concentrations in win-

ter when the average wind speed was greatest. As expected,

NH+4 dominated the finer PM2.5 aerosol in terms of micro-

moles per cubic metre, as it is the major base for aerosol in

the atmosphere and free ammonia is always available in NW

Europe. The influence of long-range transport at this site is

evident, with sea salt dominating air masses originating from

the Arctic and Atlantic Ocean, whereas SIA dominates air

masses that originate over land, with the largest contributions

from continental Europe. It therefore supports the impor-

tance of a transboundary co-operation in controlling precur-

sor gases such as NOx and NH3 as highlighted in this long-

term study, where NH+4 and NO−3 tended to be the drivers of

the (regional) pollution events observed at this background

site. The dominance of NO−3 compared to SO2−
4 was evident

too in the diurnal cycles, with the exception of summer, and

provides evidence of a shift in recent decades from sulfur

to nitrogen driven chemical climate. The air quality implica-

tions of the NH+4 and NO−3 predominance during high PM

loading events provide insight for future mitigation of PM

impacts. Additional studies of gas-to-particle conversions at

this field site will help to understand the sulfur–nitrogen bud-

get and atmospheric chemical processing to form PM (Twigg

et al., 2015).
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