

Centre for Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

enquiries@ceh.ac.uk WWW.Ceh.ac.uk

INTRODUCTION

 \triangleright Recent studies of CINO₂, N₂O₅ PANs and trimethlyamines at background sites are important \geq The background EMEP supersite 'Auchencorth Moss' in South East Scotland routinely measures NO₂, NO, NH₃, HONO and HNO₃ in gas phase and particulate (PM₁₀ and PM₂₅) NH₄⁺ and NO₃⁻. >A study in spring 2014 aimed to:

- 1. Develop a better understanding of the N speciated budget at Auchencorth Moss (refer to reactive N cycle).
- 2. Identify potential artefacts in the routine N measurements

Location of Auchencorth Moss

Auchencorth Moss

OVERVIEW OF MEASUREMENT PERIOD

 \succ Changing air masses resulted in different N species composition.

>Periodic pollution events were observed during the study resulted in elevated N species

Example: 19 May 2014 where an observed increase in N species with the exception of NO as no data was available (highlighted on graph)

 \succ The reported average HNO₃ from TDLIF is around four times that reported by the MARGA (refer to table). Possible explanations:

- 1. MARGA suffers from loses at the inlet
- 2. TDLIF HNO₃ suffers artefacts from NO_3^- aerosol

INTERCOMPARISON STUDIES

 \geq Poor correlation between the MARGA and TDLIF for HNO₃ measurements. \succ The Thermo Scientific analyser reports higher NO₂ compared to the TDLIF most likely due to interferences at low NO₂ concentrations previously demonstrated by Steinbacher et al.(2007). NEXT STEPS OF STUDY:

Determine if the GC overestimates PANs

 \triangleright Assess the potential interference of particulate NO₃⁻ in the TDLIF measurements of HNO₃.

References: Di Carlo, P. et al. (2013) Aircraft based four-channel thermal dissociation laser induced fluorescence instrument for simultaneous measurements of NO₂, total peroxy nitrate, total alkyl nitrate, and HNO₃, Atmos. Meas. Tech., 6, 971. Jenkin and Clemitshaw (2000) Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment. 34, 2499-2527 McFadyen, G. G., Cape, J. N., 2005. Peroxyacetyl nitrate in eastern Scotland. Sci. Total Environ. 337, 213-222 Phillips, G. J. et al. (2013) The detection of nocturnal N₂O₅ as HNO₃ by alkali- and aqueous-denuder techniques, Atmos. Meas. Tech., 6, 231-237, Steinbacher, et al. (2007) Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques. Journal of Geophysical Research, 112(D11), D11307.

Deriving a speciated atmospheric nitrogen budget at Auchencorth Moss, a background site in South East Scotland

M. Twigg¹, E. Aruffo², J. Kentisbeer¹, C. Malley^{1,3}, S. Leeson¹, M. Jones¹, M. Coyle¹, E. Nemitz¹, P. Di Carlo², and C. Braban¹. ¹Centre for Ecology and Hydrology, Bush Estate, Penicuik, UK. ²Center of Excellence CETEMPS, Universita' degli studi di L'Aquila, Via Vetoio, 67010 Coppito, L'Aquila, Italy, ³School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom Corresponding author: sail@ceh.ac.uk

<u>S1</u>	tatistics fo	<u>r May 20</u>	14 using	hourly						
	averages from instrumentation									
		Average	σ	Max						
		(ppb)	(ppb)	(ppb)						
	TDLIF									
	HNO ₃	0.39	0.28	1.46						
	ΣANs	0.11	0.10	0.72						
	ΣPNs	0.24	0.22	2.71						
	NO ₂	0.94	0.80	7.55						
	MARGA									
	$PM_{2.5} NH_4^+$	0.99	1.12	7.88						
	$PM_{2.5} NO_3^-$	0.46	0.71	4.70						
	NH ₃	1.38	1.64	26.51						
	HNO ₃	0.09	0.08	0.55						
	HONO	0.04	0.03	0.25						
	Thermo Scientific analyser									
	NO	0.15	0.17	1.64						
	NO ₂	1.54	1.00	8.19						

>Phillips et al. (2013) provided evidence to suggest night time HNO₃ reported by MARGA may include N₂O₅, where:

 \succ This work suggests a relationship between the MARGA HNO₃ and Σ PNs measured by the TDLIF

by the MARGA

 \geq Night time HNO₃ measured by the MARGA correlates well with the additional measured HNO₃ derived from Σ PNs \succ This suggests that the HNO₃ reported by the MARGA at Auchencorth Moss may additionally contain N₂O₅, though further studies are required to confirm this

>Investigate the chemical transformations of N species at the site

Twigg, M. M., et al. (2015) Water soluble aerosols and gases at a UK background site – Part 1: Controls of PM2.5 and PM10 aerosol composition, Atmos. Chem. Phys. Discuss., 15, 3703-3743

Acknowledgements: The authors would like to thank the following for funding this work: the UK Department for Environment, Food and Rural Affairs (Defra) and the Devolved Administrations, through the projects "UK Eutrophying and Acidifying Atmospheric Pollutants (UKEAP) project" (AQ0647). Transnational access funding through the EU FP7 Infrastructure Project "ACTRIS" which also supports the site Auchencorth Moss.

Μετμορε	Routine and non-routine measurements during the campaign					
IVIE I HUUS	Species measured	Instrumentation	Measurement technique	Height	Reference to	
The table lists N species measured and the instrumentation used	$PM_{10} and PM_{2.5}$: Na ⁺ , NH ₄ ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ Gases: NH ₃ , HNO ₃ , HONO, HCl, SO ₂	Montior for AeRosols and Gases in Ambient air (MARGA, Metrohm Applikon, NL.)	Wet rotating annular denuder and steam jet aerosol collectors with online IC analysis	(m) 3.60	Twigg <i>, et al.</i> (2015)	
Due to issues with baseline drift in the ANNO _x the data hasn't been presented.						
PAN GC measured from 24 April 2014 to 06 May 2014	NO _{2,} total peroxy nitrate (Σ PNs), total alkyl nitrate (Σ ANs), HNO ₃	Thermal dissociation laser induced fluorescence (TDLIF)	Thermal dissociation with laser induced fluorescence detector	3.00	Di Carlo <i>, et al.</i> (2013)	
All other instrumentation operated for the length of the campaign.	NO/ NO ₂	ANNO _x analyser (CLD, 88 p, Eco Physics, AG. Switzerland)	Chemiluminesence analyser	3.00		
	NO/ NO ₂	Thermo Scientific Analyser (model 42CTL)	Chemiluminesence analyser (Molybdenum NO ₂ to NO converter)	2.02		
	PANs	GC-ECD	Online gas chromatography with electron capture detection	3.00	McFadyen and Cape (2005)	

$N_2 O_5 + H_2 O \rightarrow 2 HNO_3 = additional measured HNO_3$

- >5 consecutive nights were plotted (see LHS graph) assuming $\Sigma PNs = N_2O_5$
- \geq Molar N₂ O₅ was used to calculate the molar HNO₃, assuming a 100% capture efficiency and compared to the measured HNO₃

CONCLUSIONS:

DERIVING A SPECIATED N BUDGET

>MARGA HNO₃ may have an N₂O₅ artefact in the measurement at night NEXT STEPS OF THIS STUDY: > Determine the N species to be used to derive a N budget

>Examine the influence of long range transport of air masses on the speciated N composition at this background site

