Hydrological Summary for Great Britain

SEPTEMBER 1992

Rainfall

GB rainfall, around 130%, was above average for the third successive month. September rainfall greatly favoured the drought affected areas - the storm of 22 nd/23rd producing notable rainfall totals in many catchments. The drought has moderated considerably, in rainfall terms, over the last six months.

River flows

Lowland flooding was common late in the month, impervious catchments in E. Anglia and the London area being worst affected. Modest spate conditions typified many Scottish rivers. Monthly mean flows were above, to well above, average in most regions. Important exceptions include permeable catchments in eastern England where flows remain depressed - some long term accumulated totals are unprecedented.

Groundwater

Early October groundwater levels indicate that the 1992 recovery has begun in most regions. Upturns are very modest as yet but the benefit of the september rainfall is evident only in shallow wells or fissured aquifers. In much of the lowlands the recovery has started from an exceptionally low base - the lowest this century in some areas.

General

Healthy reservoir stocks, wet soils and a brisk increase in runoff together with the relaxation, in some areas, in restrictions on water-use provide clear evidence of a greatly improved water resources outlook. Nonetheless, above average winter rainfall is still needed to bring groundwater levels in eastern England (and some other areas) into the normal range by the spring of 1993.

British
Geological

Institute of Hydrology / British Geological Survey
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX10 8BB

Data for this report have been provided principally by the regional divisions of the National Rivers Authority in England and Wales, the River Purification Boards in Scotland and by the Meteorological Office. Reservoir contents information has been supplied by the Water Services Companies, the NRA or, in Scotland, the Lothians Regional Council. The most recent areal rainfall figures are derived from a restricted network of raingauges (particularly in Scotland) and a proportion of the river flow data is of a provisional nature.

A map (Figure 6) is provided to assist in the location of the principal monitoring sites.

Rainfall

September was a cool, cloudy and, in most areas, a wet month. The weather was typically autumnal and continued in the unsettled vein which characterised much of July and August. In western areas, rainfall was distributed throughout the month but in parts of eastern and central England a large proportion of the monthly total was attributable to a notable event on the night of the 22nd/23rd. A slow moving frontal system with associated thunder cells, produced 6 to 12 -hour falls exceeding 60 mm over much of Buckinghamshire, Northamptonshire, Cambridgeshire and Bedfordshire; Bedford itself registered 90 mm for the rainfall-day. Around the periphery of this zone rainfall was also heavy and persistent. At the Institute of Hydrology's meteorological station a 52.3 mm rainfall total was recorded, the fourth largest storm event in 30 -year record. Localised, and more extensive flooding, was common throughout much of the English lowlands.

Prolonged droughts are not terminated by a single rainfall event but the September storm certainly changed the complexion of the lowland drought and substantially improved the water resources outlook over large areas. The greatest rainfall totals on the 22 nd/23rd - typically one and a half times the monthly average - broadly coincided with the zone of maximum drought intensity. With evaporation rates declining and soils already wetting-up as a result of antecedent rainfall, the intense rainfall (and subsequent wet spells) triggered a rapid increase in runoff rates and, more importantly, created the conditions for a relatively early start to the 1991 recovery in groundwater levels in eastern England.

September rainfall totals were around twice the 1941-70 average in parts of East Anglia and the North-East but below average, albeit only modestly, in some western and northern regions - also in a few drought affected areas (e.g. the Itchen catchment) - see Figure 2a. Rainfall over the last three months is well above average in all regions. The July-September period was the wettest for 18 years in the Thames Valley and, in percentage terms, rainfall over East Anglia was even more notable. Relatively wet conditions have characterised most of Britain since the end of March (see Figure 2b) and the particularly unsettled weather since June has pushed rainfall totals close to, or above, average for the year thus far for all regions except the South-West; western Scotland is, once again, very wet in this timeframe. For the first time in 20 years, the summer half-year (Apr - Sept) rainfall for England and Wales exceeded that for the preceding winter six months; a marked contrast to the 198791 period when, on average, 60% of the annual rainfall was attributable to the winter half-year.

Accumulated rainfall deficiencies are generally much diminished relative to the end of February but remain notable in the east and south; particularly over the periods commencing in August 1988 and March 1990. In the four-year timeframe deficiencies in parts of East Anglia are still equivalent to around eight month's average rainfall. These deficiencies do not require to be fully satisfied before, in all practical terms, the drought is terminated but a wet winter is still needed to generate a sustained recovery in runoff and recharge rates.

Evaporation and Soil Moisture Deficit (SMDs)

September potential evaporation (PE) and actual evaporation (AE) totals - for grass - were well within the normal range in most areas. The moist soils (see below) encouraged relatively high transpiration losses in the lowlands - a notable contrast to the last four years. Considering 1992 as a whole, PE losses are substantially above average but still appreciably below the record totals computed for 1989 and 1990. AE losses are exceptionally high over wide areas - the highest in the MORECS series in parts of eastern England.

Away from the English lowlands soils are at, or very close to, field capacity (Figure 3a). Soils in parts of eastern and southern England are not yet saturated but SMD decreases of more than 40 mm through September were common. As a consequence October soils in the lowlands are generally considerably wetter than average (Figure 3b) and markedly wetter than mid-autumn soils in the last four years. Significant deficits are now largely confined to the lower Thames Valley and parts of Norfolk. The relative wetness of the soils increases the likelihood that the 1992/93 recharge season will be considerably longer than in any of the previous four winters in eastern England.

Runoff

With soils at field capacity in most of Scotland, the above average rainfall produced high flows and some notable monthly runoff totals, especially in rivers draining the Highlands. In eastern England, the storm of September 22nd/23rd, augmented by further rain later in the week, generated some very steep runoff recoveries but river flow responses varied greatly between impermeable and permeable catchments; antecedent soil conditions also had some effect in tempering lowland flooding.

Over the period 23-26 September, floodplain inundation was widespread in East Anglia especially in the Ouse and Nene systems. Flows on the Ouse at Bedford peaked at $120 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, comparable with the highest flow since 1979. Upstream, at Newport Pagnell levels rose to within six centimetres of the major 1947 flood peak. The Kym and other rivers draining predominantly clay catchments were also in spate. In north London, new record peak flows were established on the Silk Stream, River Brent and Dollis Brook - each event may be broadly categorised as around a one in 50 -year event - and flooding was extensive, in Edgware especially. Whilst, for a time, the intensity of the convectional rainfall on the 22nd/23rd certainly exceeded the infiltration capacity of the soils, it is important to stress that apart from in some urban catchments, the majority of the September rainfall in the lowlands did not runoff directly. Over the Bedford Ouse catchment, for instance, provisional estimates suggest almost 60 per cent of the total September rainfall was available to decrease SMDs and, in a few localities, percolate down to replenish aquifer stocks.

Apart from a number of western catchments, September runoff totals testified to a brisk recovery relative to the early summer flow rates. With some important exceptions, September mean flows were around or above (some notably so) the monthly average. Catchments registering new record or near-record September runoff totals showed a wide distribution, examples include the Clyde, Soar and Teme as well as the Bedford Ouse. In the region most severely afflicted by the drought, monthly runoff from impervious catchments was typically the highest since February 1990. However, in many catchments where surface runoff contributes little to discharge, the recovery in flow rates was very modest and mean flows were well below the early autumn average. Flows remain depressed in, for example, the Lud, Mimram and the Little Ouse - in each catchment September rainfall approached twice the average - and in the Itchen which was relatively dry. In each of these rivers runoff has been depressed since late-1988 and the 30-month runoff total, to September, is the lowest on record (for ANY start month). Healthy flows in such rivers can be expected only when a baseflow recovery has been sustained over several months.

Unusually for September, certainly in the lowlands, reservoir replenishment was considerable; stocks in Rutland Water, for instance, increased by around seven per cent. Autumn recoveries were
generally less marked in the South-West but stocks, on a regional basis, are very healthy and greatly improved relative to the early autumn of 1991 and 1990; in the east the contrast with current groundwater levels is stark.

Groundwater

The unusually heavy rainfall in parts of southern England had little immediate effect on depressed groundwater levels. Although the rate of fall has clearly slowed at some sites, levels continue to fall gently in others. In assessing the significance of the recent groundwater level behaviour illustrated on Figure 5, it is important to note the corresponding date of the latest level reading (see Table 5). Many of the featured hydrographs show, as yet, a response only to the late-summer rainfall. Limited data for early October show small upturns in, for example, the eastern Chilterns and the Chalk outcrop north of London; some further improvement following the later September rainfall may be anticipated.

At the Dalton Holme borehole in the Yorkshire Chalk the end-of-September level is the lowest for any September in a 103 -year record. At the Washpit Farm and Redlands Hall sites, the end-of-month levels are the lowest on record, irrespective of month, in 42 -year and 28 -year records respectively. At the Wetwang, Little Brocklesby and Little Bucket Farm sites, groundwater levels are near to the seasonal minimum and were still falling in September. A similar picture emerges across the Midland belt, levels at Llanfair DC and Stone were still falling and are only a little above the seasonal minimum. The Weeford Flats well is still dry. At the New Red Lion site, the groundwater level appears to have ceased falling but remains well below the seasonal mean. Rising water-tables are shown by the traces at West Woodyates, Rockley and Ampney Crucis, (at the latter site, the fissured nature of the aquifer encourages a more rapid response to rainfall than at most observation wells), the rise has been quite substantial to a point above the seasonal mean, the only site to be so in September.

At the Redbank site in south-western Scotland the groundwater level is rising and seems to be near to mean seasonal values (the record is from 1981 only). In Northern Ireland, water-tables appear to be near or above the seasonal mean, although at Killyglen the levels are rising while at Dunmurry they are falling.

The situation in eastern England and in the Midland belt remains fragile. Taking the Chalk and Permo-Triassic sandstones (in southern Britain) aquifers as a whole, it appears - on the basis of limited data - that the water-table depression in mid-September was without recorded precedent. Over large parts of the eastern Chalk groundwater levels were probably at their lowest level since the turn of the century (and even more notable where groundwater abstraction is an aggravating factor). Something approaching double the mean annual recharge will be required to bring groundwater resources to anything approaching a comfortable level by the start of the 1993 recession. Significant infiltration will have occurred over the last month or so and, with SMDs modest in most areas, the outlook for substantial autumn percolation is encouraging. However, in order for this early onset of the 1992 recovery to translate into the required sustained rise in groundwater levels a wet winter extending through into the spring of 1993 is still required.

Institute of Hydrology/British Geological Survey 13 October 1992

TABLE 1 1991/92 RAINFALL AS A PERCENTAGE OF THE 1941-70 AVERAGE

		Sept	Oct	Nov	$\begin{array}{r} \text { Dec } \\ 1991 \end{array}$	$\begin{gathered} \text { Jan } \\ 1992 \end{gathered}$	Feb	Mar	Apr	May	June	July	Aug	Sept
England and	mm	62	77	95	49	48	47	85	75	49	45	87	126	103
Wales	\%	75	93	98	54	56	72	144	129	73	74	119	140	124
NRA REGIONS														
North West	mm	69	125	169	119	57	100	142	89	62	31	72	137	114
	\%	56	106	140	99	51	123	197	116	76	37	70	110	93
Northumbria	mm	42	75	109	78	33	45	107	103	31	19	61	104	108
	\%	53	100	116	104	41	68	206	187	48	31	79	103	137
Severn-Trent	mm	54	55	68	39	59	31	67	50	59	55	87	117	72
	\%	81	85	86	56	86	58	129	96	92	98	134	144	107
Yorkshire	mm	40	63	94	62	47	42	96	66	34	33	81	94	98
	\%	56	91	106	84	61	66	170	118	56	57	116	104	136
Anglian	mm	63	26	54	24	45	17	63	43	48	34	89	82	92
	\%	121	50	87	45	87	40	158	108	102	69	156	128	176
Thames	mm	52	36	66	16	28	25	52	65	60	39	77	107	89
	\%	84	56	90	24	45	53	113	141	107	75	128	153	144
Southern	mm	51	51	81	23	18	33	59	84	30	26	75	105	73
	\%	72	65	86	28	24	58	113	175	55	52	127	144	102
Wessex	mm	71	83	72	30	36	39	57	81	24	49	64	127	94
	\%	90	101	74	33	43	66	98	150	35	91	103	155	119
South West	mm	85	123	112	52	44	69	75	100	31	23	83	171	100
	\%	82	109	84	39	34	77	89	141	37	35	99	169	96
Welsh	mm	85	154	142	65	76	80	129	91	80	48	93	212	112
	\%	68	119	99	45	56	83	148	107	88	59	98	178	89
Scotland	mm	131	165	227	141	139	167	208	123	80	52	103	217	187
	\%	96	111	160	90	101	161	226	137	88	57	92	168	136
RIVER PURIFICATION BOARDS														
Highland	mm	182	193	305	166	197	229	248	138	105	46	97	250	177
	\%	115	104	180	85	120	172	218	121	102	42	76	169	112
North-East	mm	58	120	133	53	67	52	113	68	57	50	48	128	113
	\%	67	124	129	52	74	70	182	111	74	71	52	120	130
Tay	mm	111	155	154	97	117	111	172	90	57	30	78	197	152
	\%	97	127	12.9	72	99	121	210	120	60	36	76	167	132
Forth	mm	103	111	12.4	108	110	111	164	76	45	25	67	174	156
	\%	95	105	115	99	111	144	238	112	54	33	68	150	144
Tweed	mm	67	101	127	92	63	70	138	98	52	27	60	151	126
	\%	71	115	122	102	68	101	238	161	68	40	67	132	135
Solway	mm	81	172	203	162	91	140	206	144	66	30	99	214	166
	\%	54	119	140	107	65	151	226	164	72	33	90	165	110
Clyde	mm	157	193	274	208	170	231	267	144	93	41	123	270	195
	\%	90	105	164	112	106	204	254	140	96	40	95	190	111

Note: The most recent monthly rainfall figures correspond to the MORECS areal assessments derived by the Meteorological Office. The regional areal rainfall figures are regularly updated (normally one or two months in arrears) using figures derived from a far denser raingauge network.

TABLE 2 RAINFALL RETURN PERIOD ESTIMATES

		Nlar - Sep92 13st Return Period, years		Oct91-Sep92 Est Return Period, years		Mar90-Sep92 Est Return Period, years		Aug88-Sep92 Est Return Period, years	
England and	mm	569		790		2017		3439	
Wales	\% LTA	116	5-10	104	≤ 5	87	10-20	90	10-20
NRA REGIONS									
North West	mm	647		1060		2781		4807	
	\% LTA	97	<5	104	≤ 5	90	5-10	94	5
Northumbria	mm	533		795		2035		3251	
	\% LTA	109	≤ 5	109	≤ 5	91	5-10	88	20-35
Severn Trent	mm	507		669		1714		2903	
	\% LTA	116	$\underline{5}$	103	≤ 5	86	10-20	90	10-20
Yorkshire	mm	4.96		715		1805		3032	
	\% LTA	108	≤ 5	103	≤ 5	85	20-35	87	25-45
Anglian	mm	451		555		1328		2185	
	\% LTA	1.29	10-20	107	≤ 5	85	15-25	85	50-90
Thames	mm	489		607		1491		2551	
	\% LTA	1.25	5-10	102	≤ 5	83	20-35	87	15-25
Southern	mm	452		607		1648		2799	
	\% LTA	1.11	≤ 5	92	<5	83	20-35	84	30-70
Wessex	mm	496		681		1797		3174	
	\% LTA	1.08	≤ 5	94	<5	82	25-45	87	10-20
South West	mm	583		870		2530		4535	
	\% LTA	98	<5	89	<5	85	15-25	91	5-10
Welsh	mm	765		1126		2986		5243	
	\% LTA	112	<5	102	<5	89	5-15	94	5
Scotland	mm	970		1503		4119		6899	
	\% LTA	130	30-70	126	70-130	114	30-70	115	>200
RIVER PURIFICATION BOARDS									
Highland	mm	1061		1725		5070		8606	
	\% LTA	121	10-20	121	20-35	117	60-120	120	≥ 200
North-East	mm	577		883		2429		3880	
	\% LTA	104	≤ 5	103	≤ 5	93	5	91	10-20
Tay	mm	'776		1182		3271		5635	
	\% LTA	116	5-10	113	5-10	103	≤ 5	107	5-10
Forth	mm	707		1050		3003		5040	
	\% LTA	114	$\underline{5}$	111	5	105	≤ 5	107	5-10
Tweed	mm	652		972		2532		4053	
	\% LTA	117	5-10	116	5-10	99	<5	96	<5
Solway	mm	925		1463		3721		4300	
	\% LTA	123	10-20	123	20-35	103	≤ 5	105	<5
Clyde	mm	1133		1808		4997		8367	
	\% LTA	133	30-70	130	100-150	119	120-180	120	>200

Return period assessments are based on tables provided by the Meteorological Office*. These assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less - for the longest durations the return period estimates converge. "Wet" return periods underlined.
The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate.

[^0]FIGURE 1. MONTHLY RAINFALL FOR 1990-1992 AS A PERCENTAGE OF THE 1941-1970 AVERAGE

England and Nales

North Nest
Region

Yorkshire
Region

Southern
Region

Scotland

Morthumbria
Region

Anglian
Region

Hessex
Region

Helsh
Region

Severn-Trent Rejion

Thanes
Region

South Hest
Region

FIGURE 2a SEPTEMBER MORECS RAINFALL AS \% LTA

FIGURE 3a END OF SEPTEMBER 1992 SMD (MORECS)

FIGURE 2b APRIL TO SEPTEMBER MORECS RAINFALL AS \% LTA

FIGURE 3b SMD (MORECS) ANOMALIES FOR END OF SEPTEMBER 1992

FIGURE 4 MONTHLY RIVER FLOW HYDROGRAPHS

TABLE 3 RUNOFF AS MM. AND AS A PERCENTAGE OF THE PERIOD OF RECORD AVERAGE WITH SELECTED PIERIODS RANKED IN THE RECORD

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
River/ \\
Station name
\end{tabular} \& May \& Jun

19 \& \& Aug' \& Sep
199 \& \& \& \& \& \& \& \& 10/8 \&

\hline \& | mm |
| :--- |
| \%LT | \& \[

$$
\begin{gathered}
\mathrm{mm} \\
\boldsymbol{\% L T}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{mm} \\
\text { \%LT }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\operatorname{mrn} \\
\boldsymbol{\%} \mathrm{L} \cdot \mathrm{r}
\end{gathered}
$$

\] \& \[

\underset{\%LT}{mm}

\] \& | rank |
| :--- |
| /yrs | \& \[

$$
\begin{gathered}
\text { mm } \\
\text { \%LT }
\end{gathered}
$$

\] \& | rank |
| :--- |
| /yrs | \& \[

\underset{\%LT}{mm}

\] \& \[

$$
\begin{gathered}
\text { rank } \\
\text { /yrs }
\end{gathered}
$$

\] \& \[

\underset{\boldsymbol{*} \mathrm{LT}}{\mathrm{~mm}}

\] \& | rank |
| :--- |
| /yrs | \& \[

\underset{\%LT}{mm}

\] \& | rank |
| :--- |
| /yrs |

\hline Dee at Park \& $$
\begin{aligned}
& 54 \\
& 87
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 15 \\
& 40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14 \\
& 49
\end{aligned}
$$
\] \& 42

134 \& $$
\begin{array}{r}
55 \\
137
\end{array}
$$ \& \[

$$
\begin{array}{r}
16 \\
/ 20
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
178 \\
90
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
10 \\
120
\end{array}
$$
\] \& 672

85 \& 4
119 \& 1422
90 \& 4
118 \& 2704
84 \& /16

\hline Tay at Ballathie \& 79
115 \& 26
58 \& 27
67 \& 80
157 \& 139

200 \& $$
\begin{array}{r}
38 \\
/ 40
\end{array}
$$ \& \[

$$
\begin{aligned}
& 349 \\
& 126
\end{aligned}
$$
\] \& 34

140 \& 1312
117 \& 35
140 \& 2446
109 \& 28
$/ 39$ \& 5279
118 \& 34
137

\hline Whiteadder Water at Hutton Castle \& 16
60 \& 9

5 \& $$
\begin{array}{r}
8 \\
63
\end{array}
$$ \& 12

78 \& 19

123 \& $$
\begin{array}{r}
20 \\
/ 24
\end{array}
$$ \& 64

74 \& 9
$/ 23$ \& 318
81 \& /23 ${ }^{6}$ \& 765
97 \& /22 \& 1197
76 \& 120

\hline South Tyne at Haydon Bridge \& 36
103 \& 8
30 \& 8
28 \& 28 \& 48
95 \& 14
$/ 29$ \& 127
72 \& 8
$/ 29$ \& 767
102 \& $\begin{array}{r}17 \\ \hline 129\end{array}$ \& 1532
101 \& 15
$/ 27$ \& 2790
91 \& r ${ }^{5}$

\hline Wharfe at Flint Mill Weir \& 32
86 \& 10
40 \& 111 \& 26
65 \& 41

93 \& $$
\begin{array}{r}
17 \\
/ 37
\end{array}
$$ \& \[

$$
\begin{array}{r}
119 \\
70
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
7 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
631 \\
88
\end{array}
$$
\] \& 9

137 \& $$
\begin{array}{r}
1274 \\
89
\end{array}
$$ \& \[

$$
\begin{array}{r}
12 \\
/ 36
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
2466 \\
85
\end{array}
$$
\] \& /34

\hline Derwent at Buttercrambe \& 14
59 \& 8
48 \& 8
57 \& 7
49 \& 11
82 \& 10

$/ 31$ \& \[
$$
\begin{aligned}
& 48 \\
& 59
\end{aligned}
$$

\] \& \[

/ 31
\] \& 174

54 \& /31 \& 450
69 \& 130 \& 812 \& /28

\hline Trent at Colwick \& 16
64 \& 16

85 \& $$
\begin{array}{r}
16 \\
101
\end{array}
$$ \& 16

97 \& 20
121 \& 26
134 \& 83
90 \& 12
134 \& 234
66 \& /34 \& 505
71 \& /33 \& 1074
75 \& /31

\hline Lud at Louth \& 10
38 \& 9

45 \& $$
\begin{array}{r}
7 \\
44
\end{array}
$$ \& 8

60 \& 8

72 \& $$
\begin{array}{r}
8 \\
/ 25
\end{array}
$$ \& 42

50 \& $$
\begin{array}{r}
4 \\
/ 24
\end{array}
$$ \& 102

40 \& /24 \& 206
41 \& /23 \& 503
49 \& $121{ }^{1}$

\hline Witham at Claypole Mill \& 8
51 \& 66 \& 7
100 \& 5
73 \& 11
179 \& 31
134 \& 37
82 \& 15
134 \& 104 \& r ${ }^{4}$ \& 219
60 \& /32 \& 475
64 \& /30

\hline Little Ouse at Abbey Heath \& 78
48 \& 5
47 \& $\begin{array}{r}6 \\ \hline\end{array}$ \& 4
53 \& 5

69 \& r ${ }^{9}$ \& $$
\begin{aligned}
& 28 \\
& 58
\end{aligned}
$$ \& / 6 \& 75

45 \& r ${ }^{1}$ \& 153
46 \& /23 \& 405
60 \& 121

\hline Colne at Lexden \& 5
58 \& 74 \& 96 \& 3
75 \& 9
216 \& 31
$/ 33$ \& 25
94 \& 17
133 \& 65
48 \& 5
$/ 33$ \& 132
48 \& /32 \& 351
65 \& /30

\hline Lee at Feildes Weir (natr.) \& 4
31 \& 5
53 \& 5
62 \& 5
66 \& 8

111 \& $$
\begin{array}{r}
70 \\
/ 107
\end{array}
$$ \& 28 \& \[

$$
\begin{array}{r}
19 \\
/ 107
\end{array}
$$
\] \& 60

37 \& /106 \& 144
45 \& /104 \& 414
64 \& /100

\hline Thames at Kingston (natr.) \& 11
63 \& 71 \& 8
84 \& 9
103 \& 17
191 \& 105
1110 \& 54

95 \& $$
\begin{array}{r}
53 \\
/ 110
\end{array}
$$ \& 141

58 \& $$
\begin{array}{r}
12 \\
/ 109
\end{array}
$$ \& 288

59 \& /108 \& 700
71 \& /106

\hline Coln at Bibury \& 23
70 \& 17
64 \& 15
72 \& 13
78 \& 18
128 \& 26
$/ 29$ \& 87
79 \& 9
129 \& 280
72 \& 6
$/ 29$ \& 546
70 \& 2
128 \& 1207
76 \& 2
$/ 26$

\hline Great Stour at Horton \& 15 \& 7
45 \& 9
63 \& $\begin{array}{r}9 \\ \hline\end{array}$ \& 11
81 \& 8
$/ 28$ \& 51
66 \& /27 \& 165
57 \& /25 \& 377
64 \& /23 \& 744
63 \& /19

\hline Itchen at Highbridge + Allbrook \& 24 \& 20
58 \& 21
69 \& 20
71 \& 22
84 \& 7
134 \& 108
68 \& 2
134 \& 285
62 \& \% ${ }^{1}$ \& 632
69 \& /33 \& 1392
76 \& 131

\hline Piddle at Baggs Mill \& 24
76 \& 17
73 \& 15
84 \& 14
90 \& 17

113 \& $$
\begin{array}{r}
23 \\
/ 29
\end{array}
$$ \& 87

84 \& $\begin{array}{r}7 \\ \hline 29\end{array}$ \& 271
68 \& 3
128 \& 580
73 \& /26 \& 1233
76 \& /22

\hline Exe at Thorverton \& 36
97 \& 13

55 \& $$
\begin{aligned}
& 15 \\
& 71
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
4.7 \\
16,9
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
61 \\
161
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
31 \\
187
\end{array}
$$
\] \& 170

115 \& 23
$/ 37$ \& 636
77 \& / ${ }^{5}$ \& 1376
84 \& 6
135 \& 2743
83 \& /33

\hline Taw at Umberleigh \& 28
97 \& 8
51 \& 7

46 \& $$
\begin{array}{r}
30 \\
16.4
\end{array}
$$ \& \[

$$
\begin{array}{r}
38 \\
162
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
29 \\
/ 34
\end{array}
$$
\] \& 110

108 \& 19
$/ 34$ \& 480
70 \& /34 \& 1124
82 \& /34 \& 2333
85 \& /31

\hline Tone at Bishops Hull \& $$
\begin{aligned}
& 16 \\
& 59
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 10 \\
& 57
\end{aligned}
$$
\] \& 8

52 \& 1.1

90 \& $$
\begin{array}{r}
16 \\
106
\end{array}
$$ \& \[

$$
\begin{array}{r}
25 \\
/ 32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 61 \\
& 71
\end{aligned}
$$
\] \& /32 \& 288

62 \& $131{ }^{2}$ \& 623

66 \& /30 \& $$
\begin{array}{r}
1453 \\
76
\end{array}
$$ \& 1

$/ 28$

\hline Severn at Bewdley \& 15

64 \& $$
\begin{array}{r}
24 \\
138
\end{array}
$$ \& \[

$$
\begin{array}{r}
9 \\
64
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
26 \\
1 \leqslant 2
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
35 \\
163
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
56 \\
/ 72
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 109 \\
& 116
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
51 \\
/ 72
\end{array}
$$
\] \& 343

76 \& $$
\begin{array}{r}
10 \\
/ 71
\end{array}
$$ \& 737

82 \& 170 \& 1518
84 \& 8
$/ 68$

\hline Wye at Cefn Brwyn \& 113
120 \& 41 \& 44 \& 21.4

149 \& 204 \& $$
\begin{array}{r}
30 \\
/ 40
\end{array}
$$ \& 616

103 \& 23
138 \& 2012
98 \& 16
$/ 37$ \& 4085
99 \& 15
$/ 32$ \& 7818
94 \& 5
$/ 22$

\hline Cynon at Abercynon \& 51
87 \& 17
42 \& 32
93 \& 199

408 \& $$
\begin{aligned}
& 140 \\
& 213
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
32 \\
/ 34
\end{array}
$$
\] \& 439

173 \& $$
\begin{array}{r}
30 \\
/ 34
\end{array}
$$ \& 1100

89 \& 8
134 \& 2371
96 \& 12
$/ 32$ \& 4791
96 \& 12
$/ 28$

\hline Dee at New Inn \& 83
128 \& 40

68 \& $$
\begin{aligned}
& 29 \\
& 43
\end{aligned}
$$ \& 160

178 \& $$
\begin{aligned}
& 156 \\
& 120
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
16 \\
/ 24
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 468 \\
& 111
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
17 \\
/ 23
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1639 \\
91
\end{array}
$$
\] \& 7

123 \& 3256

90 \& /22 \& $$
\begin{array}{r}
6426 \\
88
\end{array}
$$ \& /20

\hline Eden at Sheepmount \& $$
\begin{array}{r}
40 \\
126
\end{array}
$$ \& \[

$$
\begin{aligned}
& 13 \\
& 51
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14 \\
& 52
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
31 \\
104
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
55 \\
132
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
15 \\
/ 22
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
153 \\
98
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
12 \\
/ 22
\end{array}
$$
\] \& 672

97 \& /11 \& 1393
102 \& 10

119 \& $$
\begin{array}{r}
2744 \\
100
\end{array}
$$ \& 7

$/ 15$

\hline Clyde at Daldowie \& $$
\begin{array}{r}
53 \\
155
\end{array}
$$ \& \[

$$
\begin{aligned}
& 16 \\
& 61
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 19 \\
& 69
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
10 \\
176
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 107 \\
& 189
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
28 \\
/ 29
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 264 \\
& 141
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
28 \\
/ 29
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1024 \\
133
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
29 \\
/ 29
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1890 \\
123
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
28 \\
/ 28
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
3596 \\
118
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
25 \\
/ 26
\end{array}
$$
\]

\hline
\end{tabular}

Notes: (i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
(i) Values based on gauged flow data unless flagged (nat
(iii) sLT means percentage of long term average from the start of the record to 1991. For the long periods (at the right of this table), the end date for the long term is 1991.

TABLE 4 START-MONTH RESERVOIR STORAGES UP TO OCTOBER 1992

Area	$\begin{aligned} & \text { Reservoir (R)/ } \\ & \text { Group (G) } \\ & \hline \end{aligned}$		Capacity (M1)	May	Jun	1992		Sep	Oct	$\begin{array}{r} 1991 \\ \text { Oct } \end{array}$
						Jul	Aug			
North West	Northern		133375	93	86	66	55	60	66	33
	Command Zone ${ }^{1}$	(G)								
	Vyrnwy	(R)	55146	100	94	89	80	96	93	71
Northumbria	Teesdale ${ }^{2}$	(G)	87936	97	89	71	58	63	68	31
	Kielder	(R)	199175*	91*	90*	86*	77*	84*	89*	85*
Severn-Trent	Clywedog	(R)	44922	99	97	93	85	87	92	74
	Derwent Valley ${ }^{3}$	(G)	39525	100	91	79	73	66	62	35
Yorkshire	Washburn ${ }^{4}$	(G)	22035	99	95	85	72	64	64	36
	Bradford supply ${ }^{5}$	(G)	41407	99	91	76	58	56	65	38
Anglian	Grafham	(R)	58707	96	96	95	95	94	94	81
	Rutland	(R)	130061	82	82	81	81	86	93	68
Thames	London ${ }^{6}$	(G)	206232	100	93	86	85	89	94	66
	Farmoor ${ }^{7}$	(G)	13843	100	98	98	97	99	99	82
Southern	Bewl	(R)	28170	70	73	71	64	60	68	62
	Ardingly	(R)	4730	100	100	100	88	71	79	84
Wessex	Clatworthy	(R)	5364*	85*	77*	65*	43*	35*	40*	40*
	Bristol WW ${ }^{8}$	(G)	38666*	86*	80*	71*	61*	58*	65*	46*
South West	Colliford	(R)	28540	82	80	71	66	63	65	81
	Roadford	(R)	34500	92	91	83	75	70	72	84
	Wimbleball ${ }^{9}$	(R)	21320	79	76	63	53	48	50	52
	Stithians	(R)	5205	65	69	61	54	53	63	40
Welsh	Celyn + Brenig	(G)	131155	100	100	99	87	89	93	68
	Brianne	(R)	62140	100	97	88	77	90	99	84
	Big Five ${ }^{10}$	(G)	69762	98	92	77	66	83	86	69
	Elan Valley ${ }^{11}$	(G)	99106	100	96	91	87	100	100	77
Lothian	Edinburgh/Mid Lothian	(G)	97639	100	98	87	79	86	92	71
	West Lothian	(G)	5613	85	76	60	49	60	82	59
	East Lothian	(G)	10206	89	91	81	72	68	78	67

Live or usable capacity (unless indicated otherwise)

* Gross storage/percentage of gross storage

1. Includes Haweswater, Thirlmere, Stocks and Barnacre.
2. Cow Green, Selset, Grassholme, Balderhead, Blackton and Hury.
3. Howden, Derwent and Ladybower.
4. Swinsty, Fewston, Thruscross and Eccup.
5. The Nidd/Barden group (Scar House, Angram, Upper Barden, Lower Barden and Chelker) plus Grimwith.
6. Lower Thames (includes Queen Mother, Wraysbury, Queen Mary, King George VI and Queen Elizabeth II) and Lee Valley (includes King George and William Girling) groups pumped storages.
7. Farmoor 1 and 2 - pumped storages.
8. Blagdon, Chew Valley and others.
9. Shared between South West (river regulation for abstraction) and Wessex (direct supply).
10. Usk, Talybont, Llandegfedd (pumped storage), Taf Fechan, Taf Fawr.
11. Claerwen, Caban Coch, Pen y Garreg and Craig Goch.

Note: Variations in storage depend on the balance between inputs (from catchment rainfall and any pumping) and outputs (to supply, compensation flow, HEP, amenity). There will be additional losses due to evaporation, especially in the summer months. Operational strategies for making the most efficient use of water stocks will further affect reservoir storages. Table 4 provides a link between the hydrological conditions described elsehwere in the report and the water resources situation.

FIGURE 5 GROUNDWATER LEVEL HYDROGRAPHS

TABLE 5 A COMPARISON OF SEPTEMBER GROUNDWATER LEVELS : 1992, 1991 AND 1976

Site	Aquifer	Records commence	Average September Level	September 1976		September 1991		September /October 1992		No of years Sept/leve ls <1992	$\begin{aligned} & \text { Lowest } \\ & \text { pre-1992 } \\ & \text { level (any } \\ & \text { month) } \end{aligned}$
				Day	Level	Day	Level	Day	Level		
Wetwang	C \& UGS	1971	19.52	16/09	18.29	26/09	17.85	25709	17.91	2	16.84
Dalton Holme	C \& UGS	1889	15.67	25/09	11.87	29/09	12.83	29/09	10.98	0	10.34
Little Brocklesby	C \& UGS	1926	11.72	24/09	4.56	24/09	5.85	15/09	4.69	1	4.54
Washpit Farm	C \& UGS	1950	43.98	01/09	41.70	03/09	41.21	01/10	40.43	0	40.61
The Holt	C \& UGS	1964	87.45	02/09	84.59	29/09	85.18	01/10	84.75	2	83.90
Therfield Rectory	C \& UGS	1883	79.84	01/09	73.63	29/09	73.04	01/10	dry	-	dry (below 71.60)
Redlands	C \& UGS	1964	40.79	01/09	36.00	16/09	33.90	11/09	32.40	0	32.46
Rockley	C \& UGS	1933	131.06	26/09	dry	23/09	130.03	27/09	131.15	>10	$\begin{gathered} \text { dry } \\ \text { (below } \\ 128.94 \text {) } \end{gathered}$
Little Bucket Farm	C \& UGS	1971	65.56	30/09	57.64	25/09	62.30	21/09	60.29	3	56.77
Compton House	C \& UGS	1894	33.11	30/09	27.72	24/09	32.99	24/09	30.51	6	27.64
Chilgrove House	C \& UGS	1836	41.24	25/09	33.68	24/09	42.31	24/09	37.89	>10	33.46
West Dean No 3	C \& UGS	1940	1.46	24/09	1.37	27/09	1.47	28/09	1.47	>10	1.01
Lime Kiln Way	C \& UGS	1969	125.09	15/09	124.12	10/09	124.48	28/09	123.85	0	124.09
Ashton Farm	C \& UGS	1974	65.28	24/09	63.23	02/09	65.90	28/09	64.80	5	63.10
West Woodyates	C \& UGS	1942	72.84	01/09	67.67	30/09	73.50	28/09	74.50	> 10	67.62
New Red Lion	LLst	1964	12.03	28/09	3.68	09/09	7.42	24/09	8.78	5	3.29
Ampney Crucis	Mid Jur	1958	100.28	26/09	97.87	16/09	99.81	11/09	101.06	>10	97.38
Dunmurry (NI)	PTS	1985	28.19	no	levels	26/09	27.51	24/09	27.98	4	27.47
Redbank	PTS	1981	4.58	no	levels	05/09	3.93	01/10	4.37	5	3.93
Llanfair DC	PTS	1972	79.61	01/09	78.85	16/09	79.24	15/09	78.92	1	78.85
Morris Dancers	PTS	1969	32.58	21/09	31.85	10/09	32.05	16/09	31.88	1	30.87
Weeford Flats	PTS	1966	90.13	29/09	dry	19/09	dry	02/10	dry	-	dry (below 88.61)
Stone	PTS	1974	90.07	03/09	89.34	23/09	89.79	05/10	89.73	1	89.34
Bussels 7A	PTS	1972	23.49	28/09	23.09	12/09	23.39	09/09	23.15	1	22.90
Rushyford NE	MgLst	1967	71.83	27/09	71.10	04/09	75.21	16/09	74.47	>10	64.77
Peggy Ellerton	MgLst	1968	34.28	27/09	31.10	05/09	33.08	09/09	31.23	1	31.10
Alstonfield	CLst	1974	178.02	01/09	174.56	20/09	175.11	05/10	177.56	>10	174.22

Grounclwater levels are in metres above Ordnance Datum

C \& UGS LLst PTS

Chalk and Upper Greensand
Lincolnshire Limestone
Permo-Triassic sandstones

Mid Jur MgLst CLst

Middle Jurassic limestones Magnesian Limestone
Carboniferous Limestone

[^0]: * Tabony, R.C., 1977, The Variability of lorg duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office (HMSO).

