Hydrological summary for Great Britain

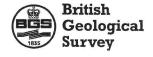
General

November was a cold, sunny month with near average rainfall in most regions. Levels in some major reservoirs were drawn down to provide flood attenuation storage but overall stocks for England and Wales remain around 93% of capacity - the highest for early December since the national monitoring programme began (note however, that stocks in the spring of 1999 will be more important in relation to the water resources outlook for next summer). River flows were substantially above average in most regions during November but - the first couple of days aside - flooding was limited and localised. A few pockets of depressed groundwater levels remain but brisk recoveries characterised most aquifer outcrop areas.

Rainfall

The very unsettled weather patterns of late September and October continued into November with a succession of westerly frontal systems crossing much of the country. Subsequently, anticyclonic conditions became more common, producing a protracted dry spell in mid-month in large parts of the English lowlands; the dry and cold weather contrasted with more maritime conditions to the west and north. Milder westerly airflows reasserted themselves over the final week. Regional rainfall totals for November were relatively close to the average throughout Britain - most being in the 80-135% range with the wettest areas in southern Scotland where some districts approached twice the average. By contrast, the eastern Thames Valley reported less than 60% and parts of the lower Trent valley fell below 40% - both areas where the residual long term rainfall deficiencies are most significant. Notwithstanding the relatively dry conclusion to autumn, England and Wales registered its wettest Sept-Nov period since 1984. More notably, rainfall for the year thus far exceeds the annual average in all regions, notably so in north-east Britain. For England and Wales, provisional data suggest that the Jan-Nov period is the wettest since 1960. In the same timeframe, the provisional total for Scotland ranks third highest in a series from 1869 (1990 and 1992 were wetter). Long term deficiencies have been greatly reduced over the last eight months and are of hydrological significance only in a few areas (see below).

River Flows

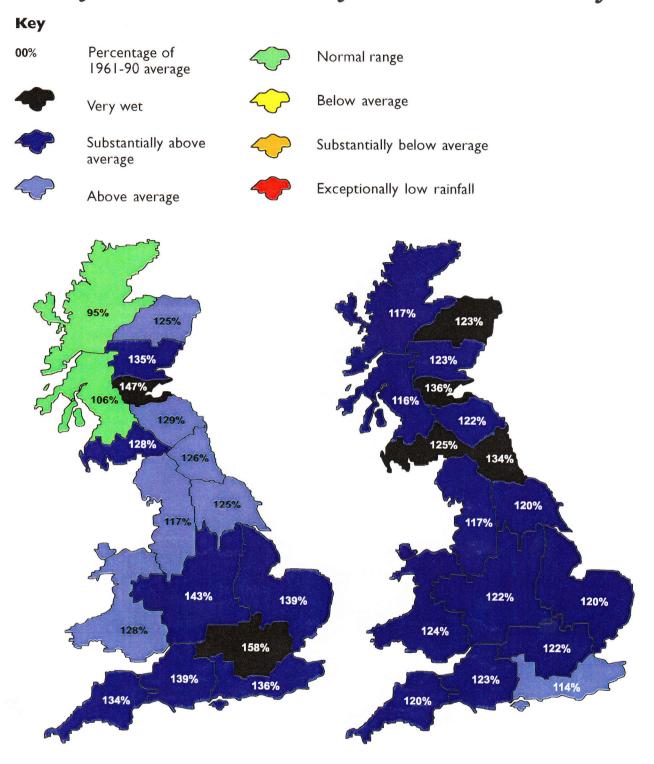

The month began with widespread spate conditions and flooding in a number of responsive catchments (e.g. in the Tweed basin). Recessions had became well established in many impermeable western catchments by mid-month but increased baseflows, following the heavy early autumn rainfall, maintained high runoff rates in many permeable lowland catchments. Flows were close to bankfull on the Thames early in November and the monthly runoff was the highest in the last 24 years - around twice the monthly average despite the catchment rainfall only being about 80% of the 1961-90 mean. Generally, monthly runoff totals were well above average and approached November

maxima for many gauging stations (e.g. on the Whiteadder, Kennet, Coln and Hampshire Avon). Autumn runoff totals were also exceptional - unprecedented for the Whiteadder, Yscir and the Dove - and catchments recording new maximum Jan-Nov runoff totals showed a very wide distribution. By contrast, flows in the Mimram were below average for the 37th successive month and the accumulated runoff deficiency is unprecedented in the three-year timeframe. Combinations of below average flows and large long term runoff deficiencies are, however, mostly confined to a small minority of spring-fed lowland rivers.

Groundwater

The very wet early autumn produced near saturated soil conditions in most aquifer outcrop areas and infiltration in the five weeks to mid-November was heavy. In some aquifers - particularly where the water-table was depressed in the summer - recoveries have been delayed, but generally groundwater levels were rising briskly through November. Most November levels in the Chalk were close to the average in the eastern outcrops (although levels in the upper Lee catchment remain depressed), and well above average to the west where Rockley reported its second highest November level in 38 years. Rapid recoveries have produced very healthy levels in most limestone aguifers also - but levels declined somewhat in the more responsive units towards month end. The recent heavy infiltration is also reflected in the notably high lateautumn levels in many Permo-Triassic sandstones outcrops (e.g. at Bussels and Skirwith) by contrast its benefit is still awaited in a number of very slow responding aquifer units - particularly at the borehole Morris Dancers where the November level was the lowest on record. Overall, groundwater resources have improved substantially over the last three months and average rainfall through until next April will produce a healthy outlook in almost all areas.

Rainfall . . . Rainfall . . . Rainfall. .

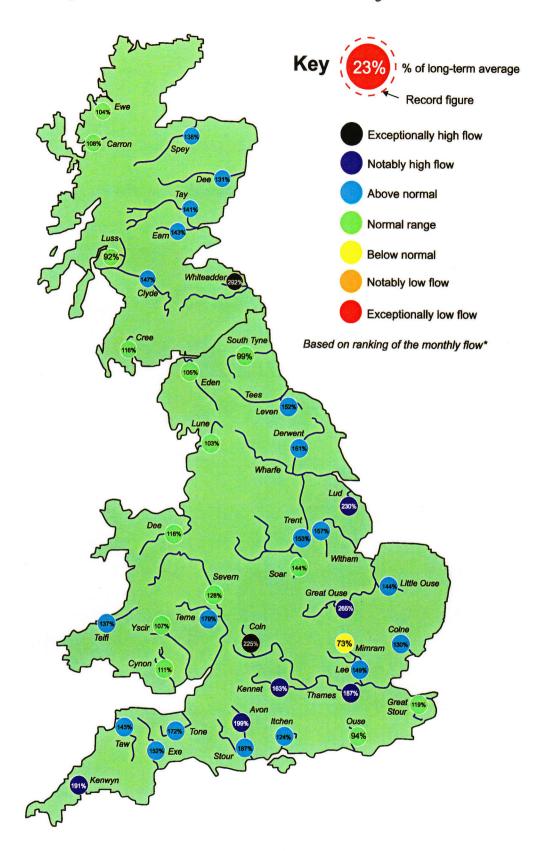

Rainfall accumulations and return period estimates

Area	Rainfall	Nov 1998	Sep98-Nov 98 RP		Jun 98-Nov 98 RP		Jan 98-Nov 98 RP		Dec 96-Nov 98 RP	
England &Wales	mm %	82 91	322 128	5-10	552 121	5-10	950 118	10-15	1868 104	2-5
North West	mm %	121 99	430 117	2-5	768 120	5-10	1265 117	5-10	2442 101	2-5
Northumbria	mm %	100 116	296 126	5-10	590 134	15-25	1031 134	50-80	1953 114	10-20
SevernTrent	mm %	62 87	285 143	10-20	490 130	10-20	825 122	10-20	1617 107	2-5
Yorkshire	mm %	77 96	277 125	5-10	500 121	5-10	888 120	10-15	1757 107	2-5
Anglian	mm %	54 93	220 139	10-15	387 124	5-10	649 120	5-15	1269 106	2-5
Thames	mm %	66 101	293 158	20-35	451 130	10-15	752 122	5-15	1401 102	2-5
Southern	mm %	64 75	318 136	5-10	474 121	5-10	793 114	5-10	1610 103	2-5
Wessex	mm %	69 83	325 139	5-10	528 129	5-15	915 123	10-15	1826 109	2-5
South West	mm %	127 101	447 134	5-10	722 130	10-20	1246 120	5-15	2495 106	2-5
Welsh	mm %	126 89	506 128	5-10	840 129	10-20	1437 124	10-20	2763 105	2-5
Scotland	mm %	174 115	505 113	2-5	882 118	5-10	1546 120	20-35	3066 107	5-10
Highland	mm %	191 94	543 95	2-5	946 105	2-5	1829 117	10-20	3637 103	2-5
North East	mm %	14 15	353 125	5-10	649 128	10-20	1079 123	20-35	2202 113	10-20
Tay	mm %	163 135	493 135	5-15	816 134	20-35	1359 123	10-20	2697 110	5-10
Forth	mm %	157 140	494 147	25-40	841 146	120-170	1361 136	>200	2558 115	20-30
Tweed	mm %	126 135	356 129	5-10	629 125	5-15	1073 122	10-20	2203 114	10-20
Solway	mm %	190 132	570 128	5-10	1016 138	35-50	1586 125	20-35	3095 109	5-10
Clyde	mm %	212 118	587 106	2-5	1051 118	5-10	1767 116	5-15	3455 102	2-5

RP = Return period

The monthly rainfall figures* are copyright of the Met. Office and may not be passed on to any unauthorised person or organisation. Recent monthly rainfall figures for the Scottish regions have ben compiled using data provided by the Scottish Environment Protection Agency. The return period estimates are based on tables provided by the Meteorological Office (see Tabony, R.C., 1977, *The variability of long duration rainfall over Great Britain*, Scientific Paper No. 37) and relate to the specified span of months only, (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered). The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts in the England & Wales and Scotland rainfall series can exaggerate the relative wetness of the recent past. *See page 12.

Rainfall . . . Rainfall . . . Rainfall

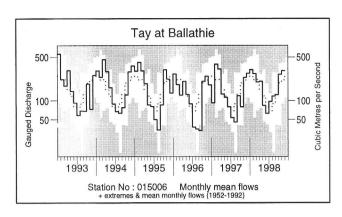

September 1998 - November 1998

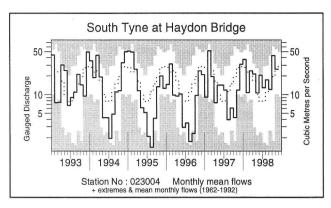
January 1998 - November 1998

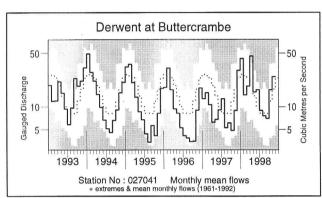
Rainfall accumulation maps

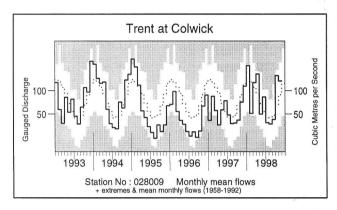
In contrast to 1997, when the autumn was the second driest in 20 years, the September-November period this year has been the wettest since 1984 for Britain as a whole. A wet phase extends back to the early spring; provisional data suggest that the March-November period for Britain has been the third wettest since 1927 (1992 was wetter).

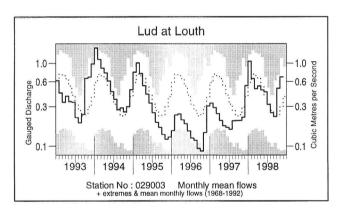
River flow . . . River flow . . .

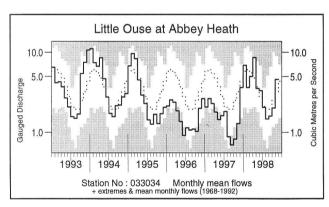


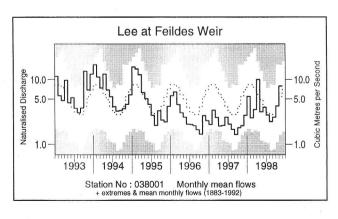

River flows - November 1998

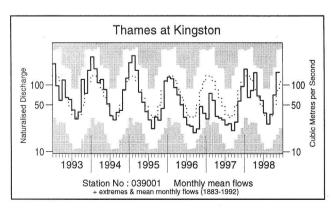

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater.

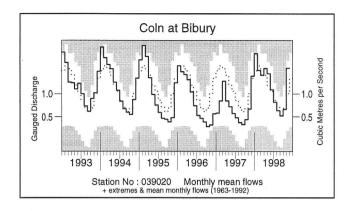

River flow.

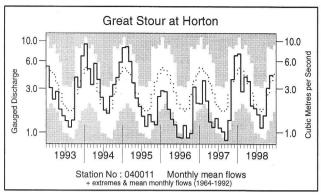

River flow.

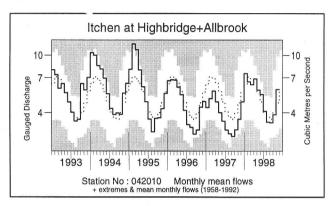


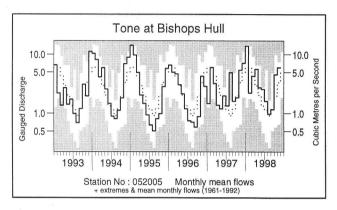


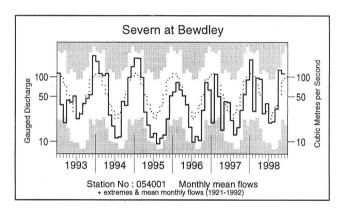


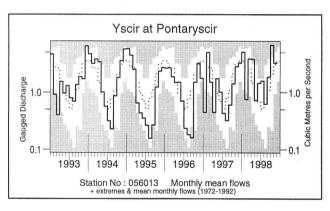


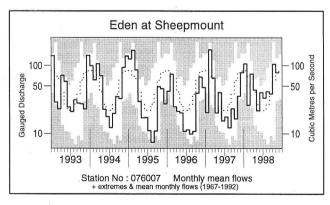


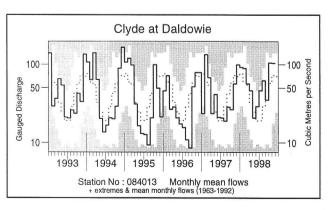

Monthly river flow hydrographs

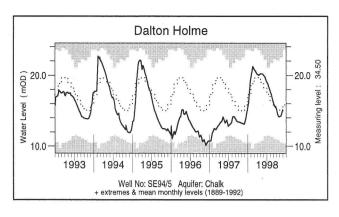

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 1992 (shown by the shaded areas). Monthly flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

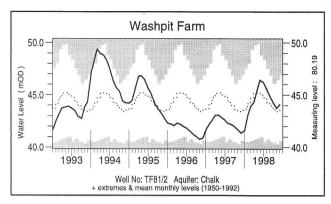

River flow . . . River flow .

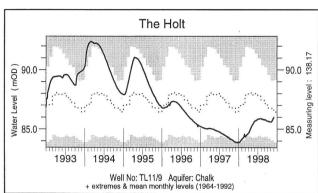


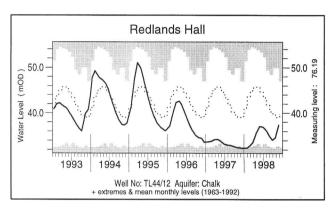


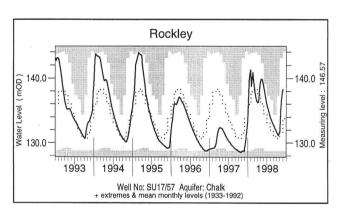


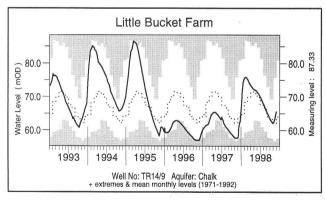


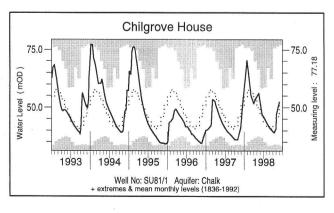


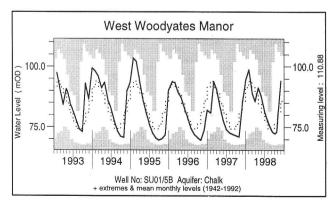

Notable runoff accumulations September 1998 - November 1998 (a); January 1998 - November 1998 (b)

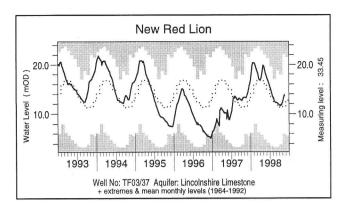

(a)	River	%lta	Rank	(b)	River	%lta	Rank	River	%lta	Rank
	Tyne	229	33/33		Tyne	153	33/33	Cynon	146	39/39
	Whiteadder	255	30/30		Tweed	130	38/38	Spey	118	44/46
	Dove	180	37/37		Whiteadder	164	29/29	Dove	128	35/37
	Yscir	157	26/26		Mole	131	23/23	Ouse	157	63/66
	Cree	132	32/35		Tone	145	37/37	Exe	136	40/42
	Exe	177	42/43		Yscir	152	26/26	Clyde	139	34/35
						6		lta = long term ave	erage	
								Rank $1 = lowest o$	n record	

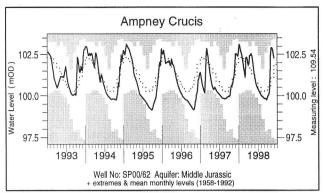

Groundwater . . . Groundwater

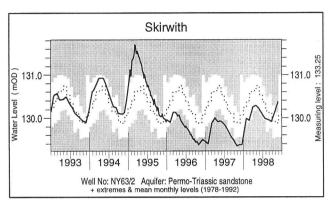


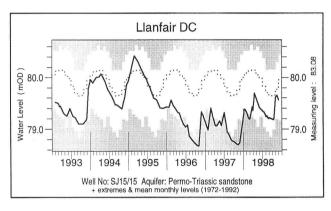


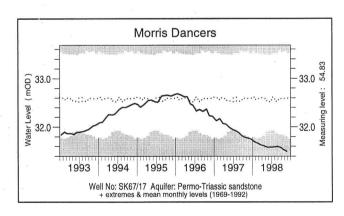


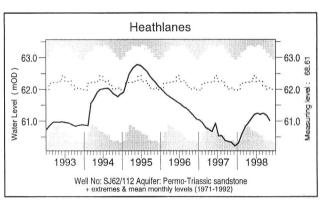


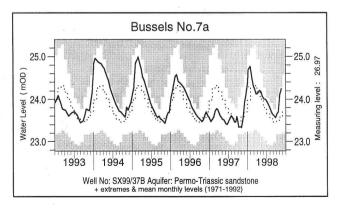


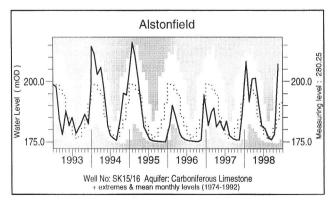

What is groundwater?

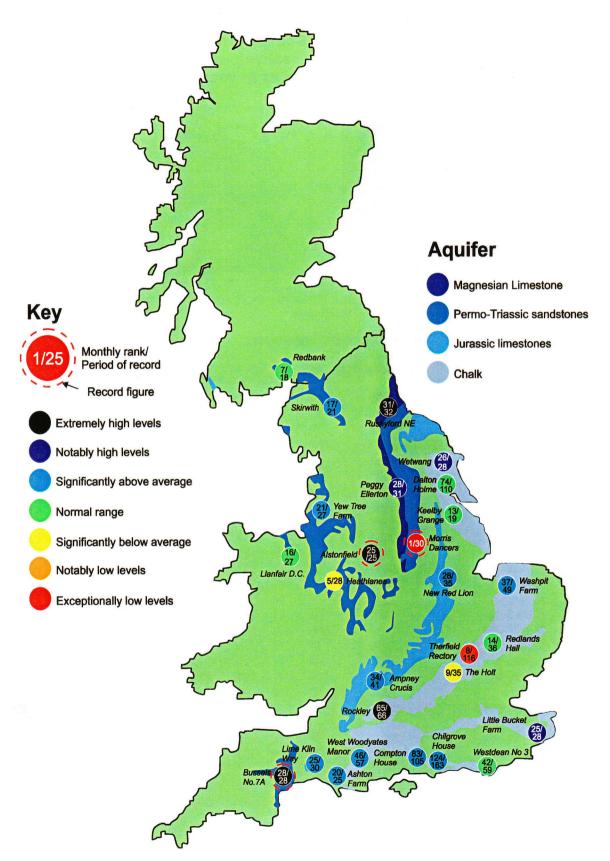

Groundwater is stored in the natural water bearing rock strata (or aquifers) which are found mostly in southern and eastern England (see page 11) where groundwater is the major water supply source. Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs, note that most groundwater levels are not measured continuously — the latest recorded levels are listed overleaf.


Groundwater . . . Groundwater





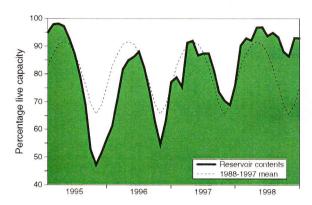




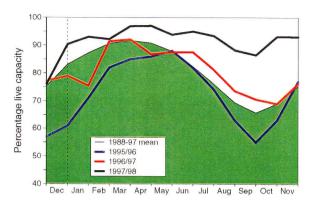
Groundwater levels November/December 1998

Borehole	Level Date	Nov av.	Borehole	Level Date	Nov av.	Borehole	Level Date	Nov av.
Dalton Holme	15.11 27/11	14.79	Chilgrove	52.36 30/11	46.50	Llanfair DC	79.56 30/11	79.55
Washpit Farm	44.10 2/12	43.17	W Woodyates	94.10 30/11	80.53	Morris Dancers	31.50 23/11	32.48
The Holt	85.99 30/11	86.87	New Red Lion	13.84 18/11	11.66	Heathlanes	61.01 7/11	61.84
Redlands Hall	37.41 24/11	38.22	Ampney Crucis	102.28 30/11	101.09	Bussels	24.25 19/11	23.57
Ashton Farm	68.95 30/11	66.20	Skirwith	130.37 25/11	129.85	Alstonfield	207.07 19/11	184.14
Little Bucket	65.60 30/11	62.32						

Groundwater . . . Groundwater



Groundwater levels - November 1998


The rankings are based on a comparison of current levels (usually a single reading in a month) with the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record.

Reservoirs . . . Reservoirs . .

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.

Percentage live capacity of selected reservoirs

Area	Reservoir	Capacity (MI)	1998						Min.	Year*
			Jul	Aug	Sep	Oct	Nov	Dec	Dec	of min
NorthWest	N Command Zone	133375	85	84	80	75	90	93	44	1993
	Vyrnwy	55146	93	90	81	83	100	93	33	1995
Northumbrian	Teesdale	• 87936	90	90	92	87	99	98	39	1995
	Kielder	(199175)	(93)	(92)	(94)	(88)	(96)	(93)	(65)	1989
SevernTrent	Clywedog	44922	98	97	93	88	100	81	43	1995
	DerwentValley	• 39525	100	93	96	90	100	99	9	1995
Yorkshire	Washburn	• 22035	98	89	85	82	96	96	16	1995
	Bradford supply	41407	96	93	92	92	99	99	20	1995
Anglian	Grafham ***	58707	96	95	87	84	92	87	47	1997
	Rutland ***	130061	96	93	88	86	87	88	57	1995
Thames	London	• 206399	99	96	85	82	83	92	52	1990
	Farmoor	 13843 	98	96	97	98	96	93	52	1990
Southern	Bewl	28170	92	86	76	70	77	87	34	1990
	Ardingly	4685	100	96	74	67	80	100	44	1989
Wessex	Clatworthy	5364	92	87	77	70	92	100	37	1989
		• (38666)	(92)	(88)	(79)	(72)	(84)	(95)	(27)	1990
South West	Colliford	28540	77	78	76	76	82	89	42	1995
	Roadford	34500	98	99	98	96	100	98	8	1989
	Wimbleball	21320	100	99	92	87	100	100	34	1995
	Stithians	5205	92	88	80	71	80	100	29	1990
Welsh	Celyn and Brenig	131155	100	100	84	95	100	96	50	1995
	Brianne	62140	99	100	100	97	100	94	72	1995
	Big Five ****	• 69762	98	97	88	94	92	86	49	1990
	- and	• 99106	98	98	96	97	100	100	47	1995
East of	Edinburgh/Mid Lothian	• 97639	54	51	45	43	50	56**	67	1997
Scotland	East Lothian	10206	100	100	99	100	100	100	43	1989
West of	Loch Katrine	i11363	81	85	89	85	92	89	86	1997
Scotland	Daer	22412	95	98	87	81	99	100	87	1997
	LochThom	11840	90	100	98	97	100	100	82	1997
() gross storage	reservoir groups	* last occure	ence	** Meg	get fillir	ng, wor	k finished	d 2/10/98	1	

^{***} Resurveying, revised capacity will be used from 1/1/99 *** Pumping to Llandegfedd reduced due to repairs

Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each area; this can be particularly important during droughts. The minimum storage figures relate to the 1988-1998 period only. In some gravity-fed reservoirs (eg. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

Location map . . . Location map

Where the information comes from

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Institute of Hydrology (IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department of the Environment, Transport and the Regions, the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA) and the Office of Water Services (OFWAT).

River flow and groundwater levels

The National River Flow Archive (maintained by IH) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoirs

Reservoir level information is provided by the Water Service Companies, the EA and, in Scotland, the West of Scotland and East of Scotland Water Authorities.

Rainfall

Most rainfall data are provided by the Met Office. To allow better spatial differentiation the rainfall data are presented for the regional divisions of the precursor organisations of the EA and SEPA. The recent rainfall estimates for the Scottish regions are derived by IH in collaboration with the SEPA regions. In England and Wales the recent rainfall figures derive from MORECS. MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain. The discontinuation of the CARP system used by the Met. Office to provide more definitive regional rainfall assessments means that the recent MORECS figures have not been updated. Negotiations are continuing with the Met. Office to provide more accurate areal figures. Until the negotiations are concluded the regional rainfall figures (and the return periods associated with them) should be regarded as a guide only.

The Meteorological Office Sutton House London Road Bracknell RG12 2SY. Tel. 01344 856858; 01344 854024.

Centre for Ecology & Hydrology Institute of Freshwater Ecology
Institute of Hydrology
Institute of Terrestrial Ecology
Institute of Virology & Environmental Microbiology

Natural Environment Research Council

The cooperation of all data suppliers is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs £48 per year. Orders should be addressed to:

Hydrological Summaries Institute of Hydrology Wallingford Oxfordshire OX10 8BB

Tel.: 01491 838800 Fax: 01491 692424

Selected text and maps are available on the WWW at http://www.nwl.ac.uk/ih

© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.