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Abstract 

Correct species identification is fundamental to all areas of biology, but particularly the 

policy related areas of conservation and fisheries management. To enable guidelines to 

be developed for environmental management and conservation, such identifications 

need links to studies of the evolutionary history, biological factors and environmental 

influences driving species divergence and population dynamics for the target species. 

This study concerns two genera of gadiform fish, Muraenolepis and Macrourus, found 

in southern temperate and Antarctic waters, with a single species, Macrourus berglax, 

present in the North Atlantic. With similar distribution patterns to toothfish species, 

Dissostichus eleginoides and D. mawsoni, they are a major food source and by-catch of 

the toothfish fishery. Both are slow growing and long lived, with different evolutionary 

histories, life expectancies and strategies for reproduction. For both genera, the accuracy 

of morphological keys, number of described species and their distribution is under 

debate. 

This study has identified specimens to species level using both morphological and 

genetic techniques, redefining the range for morphological features and taxonomic keys. 

For Muraenolepis, this has clarified confusion over Mu. marmoratus and Mu. microps 

being a single species, confirmed some mis-identification from sexual dimorphism and 

provided genetic evidence for the recently described species Mu. evseenkoi. For 

Macrourus, this work has identified a new species, now named Ma. caml, and found 

that Ma. holotrachys and Ma. berglax are genetically identical, raising the question of 

bipolar distribution or recent divergence. 

The low level of genetic variation within both species suggests a recent evolution and 

expansion into Antarctic waters. Similar geographic species limits imply common 

processes influencing divergence, with the oceanographic fronts as potential barriers. 

Further investigation of niche overlap and fine scale population structure are required to 

fully understand the processes driving speciation and provide the underlying data 

required for fisheries management.  
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CHAPTER 1 

General introduction 

1.1 Introduction 

Accurate identification of species and defining population structure are fundamental to 

understanding ecosystem functioning. Without this information, it is difficult to 

accurately predict how populations will evolve and also respond to exploitation (e.g. 

fisheries) or environmental perturbation (e.g. global climate change or pollution). The 

Southern Ocean provides a unique environment, isolated by a continuous circumpolar 

current that also serves to link the Atlantic, Indian and Pacific Oceans, with warming of 

Antarctic waters is thought to affect global circulation and climate change (Gille, 2002).  

It is possibly the last ocean not fully exploited by commercial fisheries (Dodds, 2000).  

1.2 Antarctica and the Southern Ocean 

The evolutionary history of an environment is important to the understanding of the 

evolution of its fauna. In the early Tertiary period (65-55 MYA), South America, South 

Australia and Antarctica were part of a single faunal region, a remnant of  Gondwanan 

supercontinent (Miller, 1993a). The deep water isolation of Antarctica was due to the 

opening of the Tasman Gateway, between Australia and Antarctica, ~33 MYA (Kuhnt 

et al., 2004), and the beginning of the Drake Passage opening, between South America 

and Antarctica, ~41-37 MYA (Scher and Martin, 2004), although precise timings of 

these events have not been fully resolved. Continued plate tectonics and volcanic 

activity have resulted in a series of basins, ridges, seamounts and islands (Figure 1-1), 

which form the bathymetry of the Southern Ocean (Tomczac and Godfrey, 2001). 
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Figure 1-1 Bottom topography of the Southern Ocean. Shaded areas are less than 

3000m (Tomczac and Godfrey, 2001). 

The Scotia Arc is thought to have been a link between the Antarctica Peninsula (West 

Antarctica) and South America, and is composed of continental fragments, uplift of 

oceanic sediments and volcanic activity. Formed over the last 40 MY, the youngest of 

these islands are the volcanic South Sandwich Island chain, formed as recently as 5 

MYA (Thomson, 2004).  

Ocean circulation 

The opening of deep seaways 33-41 MYA between Australia (Tasman Rise) and East 

Antarctica, and South America and Antarctic Peninsula (Drake Passage) resulted in the 
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formation of the Antarctic Circumpolar Current (ACC), an eastward flowing deep 

current driven by the West Wind Drift (Lawver and Gahagan, 2003, McGonigal and 

Woodworth, 2004). At the continent, the currents are driven by the East Wind Drift and 

flow in the opposing direction (Figure 1-2) causing formation of cyclonic gyres in the 

Weddell and Ross seas. 

Figure 1-2 Block diagram of the circulation of the Southern Ocean (STF: Subtropical 

Front; SAF: SubAntarctic Front; PF: Polar Front; CWB: Continental Water Boundary) 

(Tomczac and Godfrey, 2001). 

This ACC is linked to a series of fronts (sharp changes in temperature and salinity) 

known as the Polar Frontal Zone (PFZ), found between 40˚S and 60˚S (McGonigal and 

Woodworth, 2004) (Figures 1-2 & 1-3). These fronts may act to transport fauna and 

larvae or act as barriers to dispersal (Rogers et al., 2006, Rogers, 2012). The position of 

these fronts has varied with glaciations, other oceanic influences (El Niño) and with 

bathymetry (Tomczac and Godfrey, 2001, Becquey and Gersonde, 2002). 
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Figure 1-3 Schematic representation of the convergences and divergences of the 

Southern Ocean. STF: Subtropical Front; SAF: SubAntarctic Front; PF: Polar Front; 

AD: Antarctic Divergence; and CWB: Continental Water Boundary (Tomczac and 

Godfrey, 2001). 

Movement of the PFZ northwards may have lead to colonisation of new coastal habitats 

(South America and South Africa) followed by isolation when the fronts moved south 

during periods of global temperature change (Tomczac and Godfrey, 2001). Certainly in 

the past, periods of cooling and glaciations have lead to the loss of coastal habitats and 

extinction of fauna, but have also lead to the formation of new habitats offering the 

potential for evolution of new species or new populations (Clarke and Johnston, 1996). 

Localised currents around islands may act to produce microhabitats, retaining nutrients 

and larvae in coastal regions (Tomczac and Godfrey, 2001).  
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Recent studies of marine invertebrate and fish species in the Southern Ocean have found 

that populations once thought to be homogenous are genetically distinct sub-populations 

or cryptic species, and gene flow in the Southern Ocean may be restricted (Appleyard et 

al., 2002, Parker et al., 2002, Rogers, 2012). This genetic diversity has been partially 

attributed to the Antarctic Polar Front acting as a barrier to larval dispersal (Parker et 

al., 2002, Rogers et al., 2006). Deep-water troughs, coastal currents, distance between 

sites and sedentary lifestyles are also thought to contribute to the genetic structure 

(Shaw et al., 2004, Rogers et al., 2006).  

1.3 Evolution of Antarctic Fish 

The fossil record for Antarctica extends back 400 MYA and includes both freshwater 

and marine fish. The fossil record is limited and with no clear connection to the modern 

fish fauna (Eastman, 1993a). Therefore, it will not be discussed further here and only 

the modern fauna will be considered. Despite the size and age of Antarctica, only 

approximately 1% of the World’s fish fauna species can be found there (Eastman, 

1993b). 

The evolution of modern fish fauna has been governed by a number of factors; 

geographic movements of tectonic plates and land masses, changes in water 

temperature, effects of ice cover, changes in oceanographic currents and habitat 

availability (particularly the lack of shallow continental shelf habitats, see Figure 1-1). 

The most predominant order of fish in the modern Antarctic fauna is the perciform 

suborder Notothenioidei. This suborder is endemic to the Antarctic and comprises 45% 

of the total fish fauna (Eastman and McCune, 2000). It is thought that the original 

coastal fauna began to disappear in the late Eocene (38-25 mya), being replaced by 

these cold-tolerant fish. Notothenioids are most abundant in coastal waters, both benthic 
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and pelagic, and are thought to have evolved in this area, associated with the continental 

shelf (Eastman, 1993c).  

There are a number of theories behind the distribution of non-notothenioid fish. Some 

are thought to have evolved in the Southern Ocean but been constrained in their 

distribution by the formation of the Antarctic Convergence. Others are thought to have 

evolved in the Atlantic, the most probable route into the Antarctic being the Scotia Sea 

(Eastman, 1993c). A few are thought to have originated in the Pacific. Many also have 

sister taxa present in the Arctic, suggesting a possible Arctic origin (Anderson, 1990). 

1.4 Study Fish Species 

The fish chosen for this study belong to the order Gadiformes (or Anacanthini). There 

are over 500 species distributed globally throughout the World’s oceans and many 

species are of ecological importance. There is much disagreement on the division of this 

order into families and subfamilies and morphological distinction is unclear. They have 

a preference for cooler benthopelagic habitats of tropical and temperate seas, with only 

a few species present in the Antarctic (Cohen, 1990). These Antarctic species comprises 

c. 7.6% of the Antarctic fish fauna in terms of number of species (Eastman, 1993b).  

The two genera under consideration belong to families in the order Gadiformes and 

have species ranges that include temperate, subAntarctic and high Antarctic waters. 

They have been chosen for this study for two main reasons. Firstly, they are by-catches 

of the Dissostichus eleginoides fishery and secondly, they are both long-lived deep-sea 

species, thus enabling more generalised comparisons to be made of gene flow between 

deep-sea Southern Ocean fish species. 
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The first is the genus Muraenolepis, belonging to the family Muraenolepididae 

(suborder Muraenolepididei). There are nine species described within this genus: 

Muraenolepis marmoratus Gunther, 1880; Mu. orangiensis Vaillant, 1888, Mu. microps 

Lönnberg, 1905; Mu. microcephalus Norman, 1937; and the recently described Mu. 

andriashevi Balushkin and Prirodina, 2005; Mu. trunovi Balushkin and Prirodina, 2006; 

Mu. kuderskii Balushkin and Prirodina, 2007; Mu. pacifica Balushkin and Prirodina, 

2007; Mu. evseenkoi Balushkin and Prirodina, 2010. It has also been proposed that Mu. 

microcephalus should be considered as a separate genus, Notomuraenobathys 

microcephalus Balushkin and Prirodina, 2010. Further information on each species is 

given in Chapter 3. 

The second is the genus Macrourus, belonging to the family Macrouridae (subfamily 

Macrourinae). There are five described species for this genus: Ma. berglax Lacepede 

1801; Ma. carinatus (Günther, 1878); Ma. Holotrachys Günther, 1878; Ma. whitsoni 

(Regan, 1913) and the recently described Ma. caml Smith, 2011. Further information on 

each species is given in Chapter 4. 

 

  A   B  

Figure 1-4 Typical morphology of the families (A) Muraneolepididae and (B) 

Macrouridae (Cohen, 1990) p13 &14. 
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The typical morphology of these families is shown in Figure 1-4. Very little is known 

about the life cycle and biology of these species and the systematics of both groups is 

open to question, making them ideal candidates for molecular investigation. 

1.5 Antarctic Fisheries 

Both Muraenolepis and Macrourus species are caught as by-catch of Antarctic fisheries 

and, like other deep-sea fish, tend to have low fecundity and long life cycles making 

them particularly susceptible to over-fishing. In recent years the exploitation of the 

Southern Ocean’s marine resources has become a cause for concern with the depletion 

of fish stocks as a result of over-fishing, and among these species are the Patagonian 

toothfish (Dissostichus eleginoides) and Antarctic toothfish (Dissostichus mawsoni). 

Fishery prospecting in the 1960s established a fishery on the Kerguelen Plateau in 1970 

and expansion to include toothfish trawls in 1984 (Palomares and Pauly, 2011). Similar 

fishing efforts have been in place around South Georgia during this time (Agnew, 

2000). The introduction of new fishing techniques, such as longline in late 1990s, has 

allowed access to new fishing areas and deeper waters, which has lead to the rapid 

growth of the toothfish industry (Constable et al., 2000, Lack and Sant, 2001, Palomares 

and Pauly, 2011). This situation is further complicated by illegal, unregulated and 

unreported (IUU) catches. Fish are processed onboard ships, traded under a variety of 

names and sold mainly in the northern hemisphere (Ferguson et al., 1995). 

Successful management of these fisheries is essential for sustainability. Many of these 

fisheries are within the Convention area of the Commission for the Conservation of 

Marine Living Resources (CCAMLR) and are governed by strict quotas per annum of 

allowable catch (Croxall and Nicol, 2004, Constable et al., 2000). Catch limits are also 

set for ecologically important by-catch species (CCAMLR Conservation measures 33-
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03) and reaching these limits results in the closure of the fishery even if the catch of 

target species is well within limits; as was the case for Macrourus species for the Ross 

Sea (88.2) toothfish fishery in 2006 

(http://fs.fish.gov.nz/Doc/23465/021_TOT_November_2013.pdf.ashx).  

 

Figure 1-5 Map of CCAMLR zones for the Antarctic and subAntarctic islands showing 

the division into fishing areas (Fallon and Stratford, 2003). 

The fish under study in this thesis are caught as by-catch of the toothfish fishery. The 

level of by-catch has increased in line with increased efforts by the fishing industry. For 

the Kerguelen Islands (area 58.5.1) fishery the Macrourus species catch has increased 

from 6 tons in 1998 to 537 tons in 2007 (Palomares and Pauly, 2011). For the Ross Sea 
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(area 88.1) it has increased from 9 tons in 1998 and peaked at 462 tons in 2005; and 4 

tons in 2002 to 92 tons in 2006 for area 88.2 

(http://fs.fish.gov.nz/Doc/23465/021_TOT_November_2013.pdf.ashx). 

The North Atlantic Macrourus species, Ma. berglax, is among the grenadier species that 

has been fished commercially in the North Atlantic, but is also a by-catch species of 

Greenland halibut and deep-water shrimp trawls. The stocks of Ma. berglax in the north 

Atlantic are estimated to have declined by 93.3% as a result of overfishing (Devine et 

al., 2006, Devine et al., 2012). Recovery time for Ma. berglax in Canadian waters has 

been estimated at 18 to 125 years, or 19 to 248 years if 5% by-catch is included (Baker 

et al., 2009). 

The Southern Ocean species are of little commercial importance in their own right, with 

the exception of Macrourus species in the Patagonian region (Cohen, 1990, Coggan et 

al., 1996). Assessment of the stocks of Ma. carinatus in Falkland Islands waters 

estimated that a 2-4% removal of stock would yield 1000-2000 mt while maintaining a 

sustainable fishery. From 1988 to1990, 100,365 mt of Macrourus species were caught 

in this area by Soviet squid and finfish fisheries (Laptikhovsky et al., 2008). 

All of the fish species targeted in this study have similar distribution patterns and life 

cycles associated with the continental shelves. They are all slow-growing, long-lived 

species with low overall recruitment rates, making them vulnerable to over fishing and 

at risk of becoming endangered (Devine et al., 2006, Morley et al., 2004). 

1.5 The role of genetics in conservation 

Successful conservation and good fisheries management rely on a good understanding 

of population (stock) structures. Molecular markers can be used for management and 
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conservation to identify and classify species, identify fish products and determine 

biologically meaningful stocks. They can provide information on population structure, 

phylogenetics, dispersal and evolutionary history that remain hidden to traditional alpha 

taxonomic techniques (Avise, 1998). Therefore, genetic studies have become a very 

useful tool in conservation and fisheries management.  

Maintenance of genetic diversity is also essential for population survival. Declines in 

population size can lead to a reduction in genetic diversity through inbreeding. This 

potentially reduces the ability of the population to adapt to changing circumstances, 

such as increased environmental temperatures in line with global climate change 

predictions (Frankham, 2003).  

The fundamental role genetics can offer to conservation is the correct identification of 

species. The mitochondrial gene region, cytochrome oxidase I, has been shown to be 

very useful for species identification and is the molecule of choice for DNA barcoding 

(Morita, 1999, Ward et al., 2005), including in the barcode of life project (Savolainen et 

al., 2005) and the Census of Antarctic Marine Life (Dettai et al., 2011).  

However, barcoding cannot define fine-scale population dynamics, and for this a more 

variable marker is required. Determining effective stocks for fisheries management and 

conservation measures can be achieved by the use of microsatellite markers. These are 

highly variable, non-coding regions of nuclear DNA, and have become a popular choice 

for studies in fisheries genetics (Liu and Cordes, 2004). For example, where 

mitochondrial markers revealed no significant population heterogeneity for the New 

Zealand snapper (Pagrus auratus), microsatellites (and previously allozymes) revealed 

differentiation between north-east and southern populations with the Tasman Bay 

population isolated from both; possibly because coastal currents were acting as barriers 
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to dispersal (Bernal-Ramirez, et al, 2003). In contrast, for the mesopelagic Antarctic 

fish, Electrona antarctica, microsatellite analysis revealed a high level of genetic 

variability but lack of population structure within the Southern Ocean (Van de Putte et 

al., 2012). Genetic studies such as these help to understand the role life-cycle and 

environment in governing population dynamics and lead to a better understanding of the 

ecosystem as a whole. 

1.6 Aims and objectives 

The aim of this thesis is to investigate the systematics and population structure of two 

Southern Ocean deep-sea fish genera, Muraenolepis and Macrourus. Currently very 

little is known of the relationships between Macrourus and Muraenolepsis species. 

Using phylogenetic analysis I will supply molecular tags and provide clear species 

definition. By comparing the gene flow of Macrourus and Muraenolepsis species I will 

provide an important insight into the factors that structure the genetic variation of deep-

water species in Antarctic waters, with associated implications for understanding 

dispersal in Antarctic species and the influence that historical factors had on evolution 

of the Southern Ocean Biota. 

The specific objectives are: 

• Species Identification and phylogenetic characterisation of Muraenolepsis, 

species using mitochondrial DNA sequences, to confirm current systematics and 

resolve the evolutionary history of these species. 

• Species Identification and phylogenetic characterisation of Macrourus species, 

using mitochondrial DNA sequences, to confirm current systematics and resolve 

the evolutionary history of these species. 
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• Population genetic analysis of Macrourus species using a suite of microsatellite 

markers developed for Macrourus berglax (north Atlantic species). 

• Synthesis of data to compare species with respect to geographical history and 

ocean currents. 

1.7 This thesis 

My project originated from the observations made, and difficulties experienced, by 

fisheries scientists working around South Georgia regarding the accurate morphological 

identification of the species present in the region. Originally, my study was to focus on 

the South Georgia area with samples collected during CCAMLR ground fish survey 

(2003). However, the outcome of these initial results led to further collaborative and 

sampling opportunities, which expanded the geographic area to include the South 

Sandwich Islands, Falkland Islands and Ross Sea. 

The samples for this thesis were collected on scientific and fisheries vessels over an 

eleven year period, from 2002 to 2013, form part of the CCAMLR ground fish survey, 

and are stored at the British Antarctic Survey for genetic analysis. Additional samples 

were also obtained opportunistically from fishing vessels or scientific cruises. The 

morphological methods used for identification and molecular techniques employed are 

detailed in Chapter 2. 

The results of my study are presented in four chapters. The first, Chapter 3, concerns the 

morphological and molecular species identification, of the species in the genus 

Muraenolepis (Family: Muraenolepididae) and examines the phylogenetic relationship 

between species and any evidence for population structure within the Southern Ocean. 

Chapter 4 describes the morphological and genetics of the Southern hemisphere species 
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whitin the genus Macrourus (Family: Macrouridae), with an aim to identify 

phylogenetic relationships between species and population structures.  

Chapter 5 will look at the relationship of both of these genera in comparison to other 

families within the order Gadiformes. Chapter 6 tests the cross-amplification of nuclear 

DNA markers, known as microsatellites, isolated and developed for Ma. berglax on the 

four Southern Ocean species, and evaluates their suitability for use on population 

genetic analysis. 

In the final section, Chapter 7, I will draw together the results of the previous chapters, 

comparing the combined results in light of the evolutionary history and population 

dynamics of other Antarctic species.  
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CHAPTER 2 

Materials and Methods 

2.1 Sample collection and Morphological Identification 

This project was designed to utilise samples collected during CCAMLR ground fish 

surveys, which were already available in the specimen collection at BAS, Cambridge. 

There had been no scope within this project’s funding for planned sampling via 

dedicated cruises, however, further samples were collected by CCAMLR Fisheries 

Observers and scientists, BAS scientists, or were kindly donated by researchers from 

other institutes. For the Macrourus study, a small number of Ma. berglax (from the 

North Atlantic) tissue samples were obtained so that all species belonging to the genus 

could be included in the phylogenetic analysis.  

Samples were labelled, at source, to genus or species level by morphological 

identification carried out by the scientific observers onboard the vessels using standard 

taxonomic keys for species identification or by assumptions from catch depth or 

geographic location.  

After species identification was completed, a small tissue sample was collected for 

genetic analysis. This varied in size from 5 mm3 to 5 cm3 and was muscle tissue, liver 

tissue or fin clippings. Samples were placed in individual tubes and preserved in 96% 

ethanol or frozen at -80°C. Whole specimens were then discarded except in a small 

number of cases where the whole specimen was frozen for further identification. 
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Muraenolepis Species Identification 

The genus Muraenolepis is a poorly studied group and there is some controversy over 

the number of species described and the morphological characteristics used to 

discriminate between species. A range of standard measurements used for full 

morphological identification are shown in Figure 2-1. This work predates the 

description of the additional species in this genus (Balushkin and Prirodina, 2013) and 

so they were not considered in the morphological identification. 

 

Figure 2-1 Diagram showing the measurements for species identification. SL – standard 

length; PA – preanal distance; H – head length; D1 - length of dorsal filament; E – eye 

diameter; B – length of mental barbell; DB – body depth; P – length of pectoral fin; V – 

length of pelvic fin; 1.1 – chord length of lateral line. (Figure taken from Kompowski 

and Rojas, 1993; p90). 

Where x-rays are available, the following key can be applied (Chiu and Markle, 1990): 

Species Lateral Line Vertebrae 2nd Dorsal Fin Anal Fin 
Mu. marmoratus Regular, middle of D2 67-71 128-147 89-108 
Mu. orangiensis Regular, middle of D2 74-76 161-175 124-131 

Mu. microcephalus Irregular, short 83-85 160-176 122-135 
Mu. microps Irregular, short 70-74 133-146 99-112 

Table 2-1 Morphological key for Muraenolepis as proposed by Chiu and Markle (1990). 
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The most simplistic key for identifying the four species, and therefore more practical for 

identification at capture, is based on four morphological features: length of lateral line, 

eye diameter, length of mental barbell and length of dorsal filament (Cohen, 1990). 

1. Lateral line extends past middle of second dorsal fin. 

a. First dorsal fin ≥ eye diameter; mental barbel < eye diameter. 

 Mu. marmoratus 

b. Dorsal fin > 3x eye diameter; mental barbel = eye diameter 

 Mu. orangiensis 

 

2. Lateral line extends slightly past pectoral fins 

a. First dorsal fin ≤ 2x eye diameter; mental barbel > eye diameter. 

 Mu. microps 

b. Dorsal fin > 4x eye diameter; mental barbel = eye diameter. 

 Mu. microcephalus 

Figure 2-2 Key to identification of Muraenolepis species (Cohen, 1990). 
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Samples were identified to species level using this key or designated only to genus 

level. Where possible, further measurements were recorded by fisheries scientists.  

Macrourus Species Identification 

For the genus Macrourus, all samples were identified, at source, to species level using a 

number of morphological features, although overlapping ranges for some of the 

characteristics often leads to problems distinguishing between species. One of the 

principle taxanomic features used is the presence or absence of scales on the underside 

of the head (as shown in Figure 2-3). However, in some specimens, particularly juvenile 

fish, this scale coverage is reduced or are removed during capture and can lead to 

misidentification.  

            

Figure 2-3 Drawing showing the difference in scaling to the underside of the head as 

used to distinguish between Macrourus species; (A) Ma. holotrachys, (B) Ma. carinatus 

and (C) Ma. carinatus where scales are reduced (Cohen, 1990). 

Additional morphological features used to assist identification were the number of rays 

in the pelvic fin, the number of pyloric caeca (finger-like structures of the intestine), 

position of the dorsal fin relative to the anal fin, and number of scales between anal fin 

and lateral line (Cohen, 1990, Morley et al., 2002). The key for species identification is 

A B 

 

C 
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shown in Figure 2-4. Geographic location and depth were also taken into consideration 

as these species are considered to have distinct ranges (Table 2-1). 

1. Underside of head without scales, or only 1-3 above corner of mouth. 

Pelvic rays = 8, pyloric caeca ≈ 20  

Ma. berglax 

Pelvic rays = 9, pyloric caeca = 8 to 16, start of second dorsal fin anterior 
to start of anal fin. 

Ma. holotrachys 
2. Scales between suborbital ridge and jaw, and underside of lower jaw. 

a. Scales in oblique row between anal fin and lateral line <27. Start of 

second dorsal fin slightly anterior to start of anal fin.  

Ma. carinatus 
b. Scales in oblique row between anal fin and lateral line >27. Start of 

second dorsal fin directly above start of anal fin. 

 Ma. whitsoni 

Figure 2-4 Key to identify Macrourus species (modified from (Cohen, 1990, Morley et 

al., 2002). 
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Table 2-2 Geographic distribution and morphological identification of Macrourus 

species (Iwamoto, 1990, Cohen, 1990). 

General comments on identification 

For a limited number of samples, detailed measurements were recorded and further 

species identification carried out by fisheries scientists. For Muraenolepis, most 

specimens measured for Total Length (TL). For specimens where only Standard Length 

(SL) was recorded a comparable conversion factor for the relevant species was used was 

calculated using specimens where both measurements had been recorded. For 

Macrourus, length was generally measured as SL. Where only TL was recorded, a 

conversion factor was used to convert to SL. Length was plotted against weight using 

 

Species 
Distribution 

Depth range 

(m) 

Pelvic 

fin ray 
Colour 

Pyloric 

caeca 

Underside 

head 

Ma. berglax 

Temperate to 

Arctic waters 

of North 

Atlantic 

100-1000   

(300-500 

greatest 

conc) 

8 (7-9) 

overall grey, 

darker ventrally on 

trunk, fins darker 

19-20 

entirely 

naked or 1-

3 scales 

Ma. 

holotrachys 

Patagonian 

slope, South 

Georgia 

300-1200 9 (8) 

light to medium 

brown, grayish 

brown; fins darker 

8 - 16 

entirely 

naked or 1-

3 scales 

Ma. carinatus 

SubAntarctic, 

temperate 

waters South 

America, 

South Africa, 

New Zealand 

300-1100 8 (9) 
medium brown to 

straw; fins darker 
13 - 21 scaled 

Ma. whitsoni 

Circumpolar 

Antarctic 

waters, 

Malvinas 

shelf 

400-3185 8 (7-9) 

dark brown to 

swarthy; some 

much paler 

18 - 28 scaled 
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SigmaPlot10 (Systat Software, San Jose, CA) to determine whether there were any 

trends indicating differences between species or between male and female specimens. 

Full details of sample collection and morphological identification are given in Chapter 3 

(Muraenolepis) and Chapter 4 (Macrourus). 

2.2 Molecular Methods 

For the molecular identification, the species identifications were carried out using either 

PCR amplification and sequencing of regions of the mitochondrial genome (barcoding), 

or High Resolution Melt (HRM) analysis.  

DNA extraction 

Tissue samples were removed from ethanol and a small subsample weighing 

approximately 25 mg was taken for DNA extraction, which was extracted using DNeasy 

tissue kits (Qiagen, UK) according to manufacturer’s instructions. The DNA was 

resuspended in elution buffer and the DNA yield checked using a Nanodrop ND1000 

spectrophotometer (Labcare International, UK), and the concentrations used ranged 

from 25 ng/µl to 170 ng/µl. 

Mitochondrial DNA PCR amplification 

The regions of the mitochondrial genome selected for use in this study were the 16S 

large ribosomal RNA subunit and the Cytochrome Oxidase I subunit. The 16S region 

mutates at a slower rate than the other regions of the mitochondrial genome (Palumbi, 

1996) and is therefore relatively conserved with some regions of high sequence 

substitutions, providing a longer fragment compared to the small ribosomal subunit, 

12S.  
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The Cytochrome Oxidase I gene is protein coding and is highly conserved across phyla, 

therefore has low variability, with few intra-species substitutions. This makes it ideal 

for use in phylogenetic studies. Since beginning this project the COI region has become 

the standard gene used for species identification and DNA barcoding in initiatives such 

as the Barcode of Life (BOLD) (www.boldsystems.org) and Fish Barcode of Life 

(www.fishbol.org)(Ward et al., 2009). However, for some species, the level of 

interspecific variation may not be sufficient to resolve species identity (Dettai et al., 

2011) 

16S rRNA amplification 

The partial 16S rRNA region was sequenced using the universal primers 16S AR (5’-

CGC CTG TTT ATC AAA AAC AT- 3’) and 16S BR (5’-CCG GTC TGA ACT CAG 

ATC ACG-3’) (Palumbi et al., 1991). The following reaction conditions were used for a 

50 µl reaction: 5 µl 10X PCR buffer (Tris-HCl, KCl, pH 7.8, containing 1.5mM 

MgCl2), 1 µl MgCl2, 1 µl dNTP (10mM each dNTP), 0.5 µl each primer (10nM), 0.25 

µl Taq (2.5 U), between 0.5 µl and 2 µl DNA and between 41.25 µl and 39.25 µl dH2O; 

all reagents from Qiagen. Reaction conditions were: 94˚C for 4 minutes, 30 cycles of 

94˚C for 30 seconds, 50˚C for 1 minute, 72˚C for 1 minute, then 72˚C for 10 minutes. 

All reactions were carried out on an MJ Research Peltier Thermal Cycler 225 DNA 

Engine Tetrad-Gradient. PCR products were cleaned using Qiaquick (Qiagen, UK) PCR 

spin columns following manufacturer’s instructions. 

COI amplification 

The partial CO1 mRNA region was amplified using the universal primers LCO 1490 

(5’- GGT CAA CAA ATC ATA AAG ATA TTG G -3’) and HCO 2198 (5’- TAA ACT 

TCA GGG TGA CCA AAA AAT CA -3’) (Folmer et al., 1994). The reaction 
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conditions were as follows in a 50 µl reaction: 5 µl 10X PCR buffer (Tris-HCl, KCl, pH 

7.8, containing 1.5mM MgCl2), 3 µl MgCl2, 1 µl dNTP (10mM each dNTP), 0.5 µl each 

primer (10nM), 0.25 µl Taq (2.5 U), between 1 µl and 10 µl DNA and between 39.25 µl 

and 30.25 µl dH2O; all reagents from Qiagen. The reaction was carried out on a MJ 

Research Peltier Thermal Cycler 225 DNA Engine Tetrad-Gradient using the following 

thermal profile: 95˚C for 4 minutes followed by 5 cycles of 95˚C for 1 minute, 45˚C for 

90 seconds and 72˚C for 90 seconds, then 35 cycles of 94˚C for 1 minute, 50˚C for 90 

seconds and 72˚C for 1 minute, and finally 72˚C for 5 minutes. PCR products were 

cleaned using Qiaquick PCR spin columns following manufacturer’s instructions. 

2.3 Species’ Specific COI Primers for Macrourus Species 

A high number of Macrourus samples produced double banded PCR products when 

using the LCO 1490 and HCO 2198 primers (Folmer et al., 1994). A number of 

attempts to optimise the reaction, such as varying the magnesium concentration and 

altering the annealing temperature, failed to overcome the problem. Therefore species-

specific primers were designed. Sequence data from samples that had been successfully 

amplified were aligned and examined for conserved regions which could provide 

suitable primer binding sites. Primers were designed using Primer3 (Rozen, 2000), 

checked for self-compatibility using Operon Oligo Analysis Tool 

(http://www.operon.com/tools/oligo-analysis-tool.aspx) and visually inspected for 

suitability. 

Three primer pairs were selected for testing and all combinations produced a single 

band product of the expected size with high efficiency. 
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1. Product size 542bp; Tm 57°C (annealing 52°C) 

 Mac_F1  5’- AGCCCGGAGCACTTTTAG -3’ 

Mac_R1   5’- GGCAGGATCAAAGAAAGAAG -3’ 

2. Product size 543bp; Tm 57°C (annealing 52°C) 

  Mac_F2   5’- GCCCTAAGCCTTCTCATTC -3’ 

  Mac_R2   5’- CGGCAGGATCAAAGAAAG -3’ 

3. Product size 557bp; Tm 56°C (annealing 61°C) 

  Mac_F2   5’- GCCCTAAGCCTTCTCATTC -3’ 

  Mac_R3   5’- GTATTAAGGTTTCGATCTGTGAG -3’ 

Primer pair Mac_F1 and Mac_R1 was chosen for use and the reaction conditions used 

were 5µl 10X Buffer, 1.5µl MgCl2, 1µl dNTPs, 1µl each primer (10nM), 0.25µl Taq 

(500U) (all reagents Qiagen, UK), 34.25µl H2O and 2µl template DNA with a thermal 

profile of 94°C for 10 minutes followed by 30 cycles of 94°C for 30 seconds, 50°C for 

60 seconds and 72°C for 60 seconds, then a final annealing step of 72°C for 10 minutes. 

PCR product was cleaned as before. 

DNA sequencing 

Initially, sequencing was carried out in-house using BigDye Dye Terminator Mix 

(Applied Biosystems, UK) according to manufacturer’s instructions and using the 

following thermal profile: 25 cycles of 96˚C for 10 seconds followed by 50˚C for 10 

seconds, with a final extension step of 60˚C for 4 minutes. Products were cleaned by 

ethanol precipitation (30µl of 1:25 3M sodium acetate:ethanol added to each sample and 
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centrifuged at 4˚C for 50 minutes then washed twice with 50µl 70% ethanol) and re-

suspended in 10µl MegaBACE loading solution (Amersham Bioscience, GE 

Healthcare, UK). Sequences were visualised using a MegaBACE 1000 capillary DNA 

sequencer and Sequence Analyser version 3.0 software (Amersham Bioscience, GE 

Healthcare, UK). 

Following the loss of in-house sequencing facilities at the British Antarctic Survey the 

PCR product was sent to a commercial sequencing facility, either LGC Genomics 

(Berlin, Germany) or Source Bioscience (Cambridge, UK), for product clean-up and 

Sanger sequencing. All samples were sequenced using the forward and reverse primers 

to maximise read length. 

2.5 Molecular Analysis of Mitochondrial Sequences 

All sequences were manually edited and aligned using CodonCode Aligner Version 

2.0.6 (CodonCode Corporation, USA), which allowed direct reference to, and 

visualisation of, the raw chromatogram data. Each data set was edited to remove 

characters with more than 50% gaps (Doolittle, 1987). The sequence alignments 

produced were viewed in Geneious Version 6.1.6 (www.geneious.com). The COI data 

were translated to amino acid codons using the first reading frame in CodonCode 

Aligner to ensure that the sequences were mitochondrial DNA and not nuclear 

pseudogenes (numpts) (Bensasson et al., 2001, Zhang and Hewitt, 1996). The 

haplotypes were identified for 16S, COI datasets by identifying sequences with identical 

residues and extracting the unique sequences.  
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Muraenolepis species 
Dataset Unique Haplotypes Outgroups Characters A B C 

16S 9 2 508 416 92 36 
COI 25 2 600 420 180 78 

Macrourus species 
Dataset Unique Haplotypes Outgroups Characters A B C 

16S 4 2 500 408 92 36 
COI 11 2 420 291 129 49 

       
A=constant characters; B=variable characters; C=parsimony informative characters 

 

Table 2-3 Summary of characters for 16S and COI phylogenetic analysis, including 

outgroups. 

Sequences generated within this study for the Muraenolepis species were used the 

outgroup for the Macrourus species, and vice versa, alongside sequence data for 

Merluccius paradoxus (voucher DAAPV F8) obtained from Genebank. Merluccius 

paradoxus was selected as it is a similar genetic distance from both of the genera under 

investigation in this study and sequence data were available for 16S and COI regions 

from the same individual. 

Standard phylogenetic models make the assumption that evolution is under stationary, 

reversible, homogenous conditions and data which do not fit these conditions increase 

the risk of phylogenetic errors (Ho et al., 2006). The haplotype alignments were tested 

for nucleotide frequency compositional heterogeneity by performing a Chi-squared test 

of homogeneity across all taxa in PAUP v4.0b10 (Swofford, 2002).  The results are 

shown in table 2-4. 
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Muraenolepis species 
Dataset Chi-square P 

16S 5.374645 (df=30) 0.99999983 
COI 26.322695 (df=78) 0.99999999 

 
Macrourus species 

Dataset Chi-square P 
16S 4.932397 (df=15) 0.99926835 
COI 13.266982 (df=36) 0.99980721 

 

Table 2-4 Results from Chi-square test of homogeneity. 

The two genes were analysed separately using standard analysis methods of heuristic 

searches using unweighted maximum parsimony (optimal trees produced on assumption 

of simplest chain of events for given characteristics), heuristic searches using Maximum 

Likelihood with DNA substitutions models (trees obtained are best fit for the data and 

model chosen), and Bayesian inference using substitution models (Markov chain Monte 

Carlo algorithm and posterior probability to define the tree which best represent the 

phylogeny) were applied. The maximum parsimony analyses were conducted using 

PAUP v4.0b10 (Swofford, 2002), all characters equally weighted with each search 

starting from a random tree, with 50 random addition replicates, one tree held at each 

step, tree bisection-reconnection branch-swapping, steepest decent on and a maximum 

of 10,000 saved trees. Default values were used for all other setting. 

The maximum likelihood (ML) analysis were conducted using GARLI v2.0 (Zwickl, 

2003) on default settings, with the exception of the nucleotide models. The nucleotide 

models used were the best fitting models inferred by jModelTest version 2.1.2 (Guindon 

and Gascuel, 2003, Posada, 2008) using the Bayesian information criteria selection 

procedure and ML optimised topologies. 
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Dataset BIC best fitting model 

Muraenolepis 16S TMP2+I or TMP2+G (TMP2+G chosen) 

Muraenolepis COI TPM2uf+G 

Macrourus 16S TMP2+I or TMP2+G (TMP2+G chosen) 

Macrourus COI HKY+G or TMP2+G (both chosen) 

Table 2-5 Nucleotide substitution models fron JModelTest, selected for use in ML and 

MP analysis 

Phylogeny confidence values were generated for both analyses by non-parametric 

bootstrapping (Felsenstein, 1985), with 10,000 replicates for each heuristic tree for the 

parsimony analysis and 1000 replicates for the Maximum Likelihood analysis. 

The data were also analysed using MrBayes (Huelsenbeck and Ronquist, 2001). The 

models suggested by jModelTest were not available in MrBayes so the nearest 

equivalent models were selected: For 16S for both species and COI for Macrourus, this 

was GTR+G (Nst=6) instead of TMP2+G and for Muraenolepis COI it HKY instead of 

TMP2uf+G. Two runs were conducted, each with two chains of 10,000,000 generations 

sampled every 500 generations, first 7,500 trees as burnin. Convergence statistics 

produced by MrBayes (PSRF), effective samples sizes (ESS) and posterior distributions 

of parameters from Tracer v1.5 (Rambaut et al., 2007) suggested this level of burnin 

was sufficient for mcmcMarkov chains to reach stationarity. All analyses were repeated 

to ensure consistency of results. 

A second method of analysis was carried out to test for nucleotide frequency 

compositional heterogeneity using match-based pairs tests for symmetry (Ababneh et 

al., 2006), with the software SeqVis V1.3 (Ho et al., 2006). Significant compositional 
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heterogeneity is inferred where x% of the matched-pairs tests of symmetry produced P-

values greater than or equal to x (Goodall-Copestake et al., 2009). For both 16S data 

sets, no significant heterogeneity was shown. For COI however, significant 

heterogeneity was inferred for both datasets: 

Dataset x% at p-value<0.05 x% at p-value<0.01 

Muraenolepis 16S 0.0000 0.0000 

Muraenolepis COI 0.1254 0.0826 

Macrourus 16S 0.0000 0.0000 

Macrourus COI 0.1538 0.1282 

Table 2-6 Results for matched-pairs test for nucleotide frequency compositional 

heterogeneity. 

Therefore, additional analysis was required using phylogenetic methods developed to 

accommodate compositional heterogeneity, to account for any possible negative impact 

of the heterogeneity. 

There are two approaches available for phylogenetic analysis which account for this 

level of heterogeneity. One option is to use parameter rich models (Gowri-Shankar and 

Rattray, 2007). However, the COI data sets were not sufficiently suited to the 

requirements of these models. The other option is to simplify the data using RY coding 

(Phillips et al., 2004, Ishikawa et al., 2012), where the base characters are recoded, A or 

G into purine (R) and T or C into pyrimidine (Y). This approach reduces the degree of 

compositional heterogeneity but can also result in the loss of variation, with the loss of 

information on transition substitutions (A-G or T-C).  

The COI data sets were converted to RY-coding and this successfully reduced the level 

of compositional heterogeneity. However, the level of variation was also reduced.  
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RY Coded Dataset 
Species Unique Haplotypes Outgroups Characters A B C 

Muraenolepis 25 2 539 61 18 
 Macrourus 11 2 373 47 23 
 AGY Coded Dataset 

Dataset Unique Haplotypes Outgroups Characters A B C 
Muraenolepis 25 2 507 93 36 

 Macrourus 11 2 351 69 32 
 

 A=constant characters; B=variable characters; C=parsimony informative characters 
 

Table 2-7 Comparison of statistics for RY coded and AGY coded COI sequence data.   

The approach to reduce the heterogeneity whilst maintaining maximum variation was to 

partially recode the data, changing the C and T to Y, and keeping the A and G 

characters unchanged (AGY coding). This approach proved to be effective, maintaining 

a higher signal of variation than for the RY coded data. 

The level of heterogeneity was also shown to be reduced to within acceptable levels 

when analysed using both the Chi-squared test in PAUP and matched-pairs test for 

symmetry in SeqVis. 

Chi-square Test 
Dataset Chi-squared P 

Muraenolepis 3.305876 (df=52) 1.00000000 
Macrourus 2.087536 (df=24) 1.00000000 

 Mismatched-pairs Test 
Dataset x% at p-value<0.05 x% at p-value<0.01 

Muraenolepis 0.0057 0.0000 
Macrourus 0.0000 0.0000 

 

Table 2-8 Results for matched-pairs test for nucleotide frequency compositional 

heterogeneity for AGY coded COI data. 
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This AGY data set was analysed using maximum parsimony as described above. 

However, for maximum likelihood and Bayesian analysis, special nucleotide models are 

required and these were not available within the more routinely used phylogenetic 

software. The software package PHASE (http://www.bioinf.man.ac.uk/resources/phase) 

offered models suitable for AGY coded analysis. The Bayesian program mcmcPHASE 

was applied to the original COI datasets and the THREESTATE (general time-

reversible AGY) model selected. The same parameters were set as for MrBayes, with 

10,000,000 generations sampled every 500 generations, the first 7,500 trees discarded as 

burnin. The analyses were repeated three times to ensure consistency of results. 

For consistency and to compare the results obtained with the output from MrBayes, the 

16S data were also analysed using mcmcPHASE, with a standard GTR+G model. The 

results from mcmcPHASE were processed using mcmcSUMMARISE to obtain 

majority-rule trees and the trees then edited to display species names and support values 

using MEGA (http://www.megasoftware.net).  

Gadiform comparison 

Additionally, gadiform species present in the same fishing area were identified, as listed 

in FAO Species Catalogue (Cohen, 1990) and, where available, sequence data for 16S 

and COI obtained from Genbank (Appendix II). Sequences were aligned and unique 

sequences identified, as before. Each of the genera were analysed individually and then 

the data set as a whole, including both Macrourus and Muraenolepis data from this 

study. Dissostichus eleginoides and Zeus faber were selected as outgroups.  
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Muraenolepis species 
Dataset Taxa Outgroups Characters A B C 

16S 24 2 234 129 105 84 
COI 54 2 359 189 170 162 

COI (AGY) 54 2 359 238 121 108 
Macrourus species 

Dataset Taxa Outgroups Characters A B C 
16S 19 2 234 129 105 83 
COI 41 2 420 233 187 180 

COI (AGY) 41 2 420 288 132 124 
All data 

Dataset Taxa Outgroups Characters A B C 
16S 28 2 234 127 107 85 
COI 61 2 420 231 189 183 

COI (AGY) 61 2 420 285 135 126 
A=constant caracters; B=variable characters; C=parsimony informative characters 

 

Table 2-9 Summary of statistics for gadiform 16S, COI and AGY coded COI sequence 

data. 

The data were tested for nucleotide frequency heterogeneity using the Chi-square test 

and matched pairs test, as before. 

Chi-square Test 
Dataset Chi-square P 

Gadiform 16S 24.533460 (df=87) 1.00000000 
Gadiform COI 130.693938 (df=186) 0.99926030 

Gadiform (AGY) 59.351682 (df=186) 1.00000000 
 
Table 2-10 Results from Chi-square test for nucleotide frequency heterogeneity for 
gadiform sequence data. 

 
Mismatched-pairs Test 

Dataset x% at p-value<0.05 x% at p-value<0.01 
Gadiform 16S 0.1034 0.0000 
Gadiform COI 0.2227 0.0917 

Gadiform COI (AGY) 0.0420 0.0077 
 

Table 2-11 Results from matched-pairs test for nucleotide frequency heterogeneity for 

gadiform sequence data. 
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Both tests show the same issue with heterogeneity for the COI data sets, as was 

observed for the previous analyses for each genus, and this was resolved by AGY 

coding the data sets.  For the Macrourus 16S data set, a possible problem with 

heterogeneity was indicated from the mismatched-pairs tests; however, there was no 

problem evident from the Chi-squared test.  

The maximum parsimony analyses were conducted using PAUP, un-weighted 

parsimony search with 10,000 non-parametric bootstrap replicates of each heuristic tree 

search. The Bayesian analysis was carried out in PHASE, using the GTR (REV) model 

for the 16S data sets and AGY THREESTATE model for the COI datasets. Extended 

50% majority rule consensus trees and cladograms were produced from both outputs, 

using both bootstrap support values and Baysian posterior probability support values, 

where support values were greater than 50%.  

Population structure 

The geographic location for each of the species identified in this study were mapped 

using ArcGIS 9.3 (ESRI, 2011) for visual clarification of the species distribution 

patterns. The haplotype data sets were partitioned by geographic location and year and 

tested for population structure in Arlequin V3.5 (Excoffier and Lischer, 2010) using a 

standard AMOVA test to calculate pairwise distances and Fixation Index (Fst). Samples 

where there were less than five individuals per site were not included in this analysis 

due to the lack of statistical significance. This population structure analysis was 

repeated to test for temporal variation where samples collections were available from 

the same geographic location for more than one year. 
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2.5 High Resolution Melt Analysis (HRMA) for Macrourus Species 

Due to degradation of the DNA from poor sample preservation, a relatively high 

number of Macrourus samples were still problematic, even with the species’ specific 

primers. This was particularly the case with the Ross Sea 2006 samples, where 76 of the 

96 samples generated sequencing data of low quality. Correct species identification was 

required for accurate analysis of the data in the subsequent microsatellite study, hence it 

was decided to test HRMA as a potential alternative technique to mitochondrial 

barcoding. 

High Resolution Melt Analysis (HRMA) is a closed-tube post-PCR analysis which can 

distinguish between samples with as little as a single base change in DNA sequence. 

Following conventional quantitative real-time PCR incorporating a DNA intercalating 

fluorescent dye, the product is denatured and the changes in sample fluorescence with 

temperature are monitored. Changes in base composition alter the temperature profile 

produced as the double stranded DNA separates and the fluorescent dye is activated. 

These differences in profile can be related to known sequences and utilised to 

discriminate between species. The technique was successfully applied to gene regions 

containing a single base difference between species. 

 

Primer design and development of protocol 

After aligning Macrourus COI sequence data using Geneious V5.3 (Drummond and 

Moir, 2010), the sequence data were examined to identify a fragment of less than 400bp 

in length (Wittwer, 2009), which incorporated a minimum of one polymorphism 

specific to each of the four identified species (figure 2-5). 
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Figure 2-5 COI sequence alignment for the four species showing polymorphic sites. 

Initially, four sets of primers were designed for testing, using Primer3 (Rozen, 2000). 

1. Product size 344bp; Tm 52°C (Annealing 51°C) 

HRM_Mac_F1   5’– CTAATAATCGGGGGTTC -3’ 

HRM_Mac_R1   5’- GCTCAGACAAATAAAGGTG -3’ 

2. Product size 388bp; Tm 55°C (Annealing 55°C) 

HRM_Mac_F2   5’- CTCTAATAATCGGGGGTTC -3’ 

HRM_Mac_R2   5’- ACAGGAAGCGACAGTAAAAG -3’ 
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3. Product size 212bp; Tm 53°C (annealing 53°C) 

HRM_Mac_F3   5’- TAATAATTGGGGCTCCTG -3’ 

HRM_Mac_R3   5’- AATTCCGGCTAAGTGAAG -3’ 

4. Product size 249bp; Tm 54°C (annealing 54°C) 

HRM_Mac_F4   5’- TCTAATAATCGGGGGTTC -3’ 

HRM_Mac_R4   5’- ATTCCGGCTAAGTGAAGAG -3’ 

Six samples where COI sequences had been successfully obtained were selected for 

each species and the DNA extract diluted to a standard concentration of 20 ng/µl. 

Standard PCR was carried out with 1 µl 10X Buffer, 0.2 µl MgCl2, 1µl dNTPs, 0.2 µl 

each primer, 0.05 µl Taq (all reagents Qiagen, UK), 6.5 µl H2O and 0.5µl DNA. The 

reaction was performed on a DNA Engine2 (Genetic Research Instrumentation Ltd, 

UK) with a thermal profile of 94°C for 5 minutes, followed by 35 cycles of 94°C for 30 

seconds, a gradient of 47°C to 55°C for 60 seconds and 72°C for 60 seconds, then a 

final elongation step of 72 for 10 minutes. The PCR product was then visualised on a 

1.5% gel (1.5g agarose/100ml TBE). Primer pairs HRM_Mac_F1/R1, 

HRM_Mac_F3/R3 and HRM_Mac_F4/R4 produced PCR product for all 24 of the 

selected samples. Unfortunately, primer pair HRM_Mac_F2/R2 failed to produce PCR 

product for all samples and showed strong primer self-bonding so was not included in 

further testing. 

For the HRMA, a total reaction volume of 25 µl was made up of 12.5 µl Reaction 

Buffer (Type-It HRM Kit, Qiagen, UK), 1.75 µl of primers, 7 µl H2O and 2 µl of DNA. 

The reaction was carried out on an ECO Real-Time PCR system (Illumina Inc., USA) 

with a thermal profile of 50°C for 2 minutes and 95°C for 10 minutes, then 35 cycles of 
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95°C for 15 seconds and 50°C for 1 minute. The samples were then heated to 95°C for 

15 seconds, 50°C for 15 seconds and 95°C for 15 seconds. The changes in fluorescence 

were measured during the final heating cycle and analysed using Eco software (Version 

3.1). 

The number of cycles had to be increased by incorporating additional cycles during the 

program. The Ct values were in the region of 25 to 42 cycles and the number of cycles 

was increased to 65 cycles for subsequent tests to ensure that all of the samples reached 

plateau. Analysis of the initial results showed distinct melt profiles for each of the four 

species (figure 2-6). 

 

A B  

Figure 2-6 Graph of Ct values (A) and Difference Plot for Melt Curve (B) from initial 

test. 

The results indicated that while the three primers sets were successful for conventional 

PCR they were not performing optimally on real-time PCR. The primers were 

redesigned specifically for real-time PCR using QuantiProbe Design Software (Qiagen, 

UK) and two sets of primers were selected for testing: 

5. Product size 299bp 

HRM_Mac_F5   5’- TTTCGGAAACTGGTTAATC -3’ 

HRM_Mac_R5   5’- TAATAGCGGGTGGTTTTA -3’ 
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6. Product size 300bp 

HRM_Mac_F6   5’- TTTCGGAAACTGGTTAATC -3’ 

HRM_Mac_R6   5’- GTAATAGCGGGTGGTTTT -3’ 

The reactions conditions were as before with the annealing temperature increased to 

55°C and the number of cycles reduced to 55 cycles. As a result, the range of Ct values 

produced was reduced to 16 to 25 cycles, which was within the acceptable level (Figure 

2-7). The higher number of cycles was maintained in the program to allow for any 

samples where the DNA degradation had lowered the concentration, to reach plateau.  

A B  

Figure 2-7 Graph of Ct values (A) and Difference Plot for Melt Curve (B) generated 

using the redesigned primers. 

Both selected primers pairs produced similar results and four clear melt profiles could 

be seen which corresponded with the four target species (Figure 2-8). 
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A B  

C  D  

Figure 2-8 HRM difference profiles for (A) Ma. carinatus (reference species), (B) Ma. 

holotrachys, (C) Ma. whitsoni 1 and (D) Ma. whitsoni 2. 

Validation and application of method 

Having established the protocol, a sample of each species was selected for use as the 

positive reference sample. In each case, the species identity had been confirmed by high 

quality sequence data. The technique was validated using samples of known COI 

species identity (28 Ma. carinatus, 28 Ma. holotrachys, 30 Ma. whitsoni type 1 and 20 

Ma. whitsoni type 2), a blind test of 43 random samples where sequence data had been 

obtained, and 24 degraded samples (Ross Sea 2006 collection). The technique was then 

applied to all of the Ross Sea 2006 samples which had failed to generate informative 

sequence data for COI to enable their incorporation into the microsatellite study. 
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This HRMA work has been published as Fitzcharles, E. M. (2010) Rapid discrimination 

between four Antarctic fish species, genus Macrourus, using HRM analysis. Fisheries 

Research 127-128, 166-170. 

2.6 Microsatellite Markers 

The original outline of this project involved the in-house isolation of microsatellites for 

each species, followed by the design and testing of primers for these potential 

microsatellite markers. The final aim was to develop a suite of microsatellite markers 

for both genera, ideally allowing for multiplex reactions to be set up. Potential 

microsatellites were isolated for Muraenolepis sp., Macrourus carinatus, Ma. 

holotrachys and Ma. whitsoni (samples from South Georgia; believed at that time to be 

the only Ma. whitsoni species at that time). The full details of this procedure are given 

in Appendix I. 

Despite extensive searching and requests to international collaborators, sufficient 

sample numbers for Muraenolepis could not be obtained from different geographic 

locations to generate data of statistical significance. Thus the decision was made not to 

continue with this work for Muraenolepis. It is hoped this work can be resumed at a 

later date if sufficient samples are obtained or via a collaborative opportunity. 

The COI sequence data for the Southern Ocean Macrourus species, carried out in this 

thesis, suggest very little variation between these species and Ma. berglax. During the 

course of the in-house microsatellite development the Marine Biodiversity Ecology and 

Evolution research group based at University College Dublin published a suite of 

microsatellite markers for Ma. berglax (Helyar, 2010) and were in the process of using 

these markers to carry out a genetics study for Ma. berglax populations in the North 

Atlantic. To maximise the potential of global comparisons it was decided to use the Ma. 
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berglax microsatellite primers on the Southern Ocean species. A Memorandum of 

Understanding was agreed with this research group to collaborate on this work and they 

provided details on the markers and experimental conditions used in order for the work 

to be replicated using the Southern Ocean species. This work will be described in detail 

in Chapter 6. 
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CHAPTER 3 

 The phylogenetics and phylogeography of the genus Muraenolepis 

3.1 Introduction 

The Gadiform family Muraenolepididae (suborder Muraenolepidoidei) was a single 

genus, Muraenolepis, with a second genus, Notomuraenobathys, recently proposed 

(Balushkin and Prirodina, 2010c). It is the only gadiform family restricted to southern 

temperate, subAntarctic and Antarctic waters. Their morphology with a small head and 

long tapered body has given them the common name of eel cods. The evolution of this 

family is disputed and its ancestry and position within the order is the subject of much 

debate.  

Original Species 

The first mention of this genus was in the H.M.S. Challenger (1872-1876) report, 

published in 1880, describing the species Muraenolepis marmoratus (marbled moray 

cod) from a specimen caught off Kerguelen Island (Günther, 1880). A second specimen 

was identified by Vaillant in 1888 from the Mission Scientifique du cap Horn 

expedition, 1882-1883. This differed from the previous description in having a longer 

body, eye larger than the inter-orbital space, four rays in the ventral fin (Mu. 

marmoratus described as having five rays) and well defined teeth. This species was 

named Muraenolepis orangiensis (Patagonian moray cod).  

Specimens collected during the Schwedische Südpolar-Expedition 1901-1903 are 

described by Lönnberg (1905) as differing from Mu. marmoratus in that the eye 
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diameter, inter-orbital width and snout length were smaller. Lönnberg also describes a 

specimen matching this morphology from Tierra del Fuego and designated this 

morphotype to be a geographic sub species, Mu. marmoratus microps (later to be 

regarded as Mu. microps (Regan, 1914), smalleye moray cod). The fourth species was 

identified during the B.A.N.Z. Antarctic Research Expedition, 1929-1931 and published 

by Norman (1937). The specimen was caught off Enderby Land and described as being 

more like to Mu. orangiensis in morphology and named Mu. microcephalus (smallhead 

moray cod). Illustrations of the four species are shown below in figure 3-1. 

                        A   

                         B  

C         

D  

Figure 3-1 Illustrations showing the morphology of the described species, (A) M. 

marmorata (Günther, 1880), (B) Mu. orangiensis (Vaillant, 1888), (C) Mu. microps 

(Regan, 1914), (D) Mu. microcephalus (Norman, 1937). 
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There is some debate over the designation of these four species with Mu. microps and 

Mu. marmoratus thought to be very closely related, possibly the same species (Norman, 

1937, Kompowski and Rojas, 1993, Balushkin and Prirodina, 2010b). 

Recent Species 

While this research was in progress an additional five new species were described, and a 

new genus, Muraenolepididae, proposed in a series of publications from Soviet and 

Russian Antarctic cruises (from 1957 to 2007). Illustrations of all the species are shown 

in figure 3-2. 

Muraenolepis andriashevi (Balushkin and Prirodina, 2005) was discovered at Agulhas 

Bank off the coast of South Africa, at a depth of 980 to 1010m (single specimen). It is 

described as having an elongate body with a humped appearance, most similar to Mu. 

orangiensis, the other temperate water species. Specimens have also been described 

from the Discovery Sea Mounts (Balushkin and Prirodina, 2010a). 

Muraenolepis trunovi (Balushkin and Prirodina, 2006) was described from a single 

specimen found in the Lazarev Sea at a depth of 730-860m. It has a small head, and 

more elongated pectoral and dorsal fins than the previously described species. 

Muraenolepis pacifica (Prirodina and Balushkin, 2007) was collected off the Ridge of 

Hercules (Pacific-Antarctic Rise) at 200-500m depth. As with Mu. andriashevi, this 

species is described as being most similar to Mu. orangiensis in terms of vertebrae 

number and ray ratio of fins, but with a differing body proportions. 

Muraenolepis kuderskii (Balushkin and Prirodina, 2007) was caught in the Scotia Sea, 

off South Georgia, at a depth of 440-605m. The new species is described from 6 
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specimens caught across 3 stations and is described as being most similar to Mu. trunovi 

but differing in several measurements from all previously described species. 

Muraenolepis evseenkoi (Balushkin and Prirodina, 2010b) has been described from 

specimens caught in the continental marginal Antarctic seas (Commonwealth, Riiser-

Larsen, Amundsen and Ross) at depths of 500-2010m. This species was found in the 

high Antarctic, as is Mu. trunovi, but differed from Mu. trunovi in several body 

proportions.  

In addition, Balushkin and Prirodina have suggested that Mu. microcephalus should 

form a separate genus, and propose the name Notomuraenobathys (Balushkin and 

Prirodina, 2010c). This genus would consist of the single species, renamed 

Notomuraenobathys microcephalus (Norman, 1937). This designation of a new genus 

has not been taken into consideration at this point but will be discussed, in view of the 

molecular results obtained in this study. 
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A  

B  

C   

D  

E  

Figure 3-2 Illustrations showing the morphology of the described species; (A) Mu. 

andriashevi (Balushkin and Prirodina, 2005), (B) Mu. trunovi (Balushkin and Prirodina, 

2006), (C) Mu. kuderski (Balushkin and Prirodina, 2007), (D) Mu. pacifica (Prirodina 

and Balushkin, 2007), (E) Mu. evseenkoi (Balushkin and Prirodina, 2010b). 

46 
 



To summarise, there are nine species to be considered in the context of this study. The 

holotypes for each of these species are listed in table 3-1 and the geographic location 

shown in figure 3-3.  

Species Location 
Co-

ordinates 
Depth (m) 

TL 

(cm) 
Reference 

Mu. 

marmoratus 
BMNH 

1879.5.14.640 

Kerguelen Islands 
49°28' S  

70°13' E 
50 23.5 Gunther, 1880 

Mu. 

orangiensis 
MNHM  

1884-0819 

Cape Horn, 

Orange Bay 

55°58' S  

67°16' W  
63 Vaillant, 1888 

Mu. microps 
NRM 11213 

Cumberland Bay, 

South Georgia 

54°17' S  

36°30' W 
100 

32.1 

(F) 
Lonnberg, 1905 

Mu. 

microcephalus 
BMHN 

1937.9.21.96 

Off Enderby Land 
63°51' S  

54°16' E 
3000 12.5 Norman, 1937 

Mu. 

andriashevi 
ZIN 53487 

Agulhas Bank, 

southern coast of 

Africa. 

35°20'S  

18°40'E 
980 - 1010 

47.4 

(F) 

Balushkin & 

Prirodina, 2005 

Mu. trunovi 
ZIN53780 

Lazarev Sea. 
69°15'S 

11°49'E 
730 - 860 

25.5 

(M) 

Balushkin & 

Prirodina, 2006 

Mu. kuderskii 
ZIN 50618 

South Georgia 
53°36'S 

36°43'°W 
500 - 600 

22.4 

(M) 

Balushkin & 

Prirodina, 2007 

Mu. pacifica 
ZIN 53543 

Pacific-Antarctic 

Ridge, Ridge of 

Hercules. 

53°34'S 

140°39'W 
200 - 450 39  (F) 

Balushkin & 

Prirodina, 2007 

Mu. evseenkoi 
ZIN 54651 

Commonweath 

Sea, Kemp Coast 

66°30'S 

59°30'E 
500-1180 

35.1 

(F) 

Balushkin & 

Prirodina, 2010 

Table 3-1 Type locality for all described species of Muraenolepis. 
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Figure 3-3 Map of the holotype locality for each species (see Table 3-1) and additional 

recordings for species from recent literature where new species are recognised 

(Balushkin and Prirodina, 2005, Balushkin and Prirodina, 2006, Balushkin and 

Prirodina, 2007, Prirodina and Balushkin, 2007, Balushkin and Prirodina, 2010b, 

Balushkin and Prirodina, 2013). 

Geographic Distribution 

Norman (1937) suggested that despite the fact these fish can be caught mid-water they 

should be regarded as coastal fish. There is considerable disagreement over the range of 

Holotype 
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the original four described species, resulting in part from the difficulties in accurate 

species identification.  

The temperate species Mu. orangiensis has been described from the Patagonia region 

and Falkland Islands in the South Atlantic, seamounts of the South Atlantic and the 

subAntarctic Islands of the Indian Ocean (Crozet, Kerguelen and Heard). The depth 

range extends from 135 m to 860 m (Cohen, 1990, Chiu and Markle, 1990, Miller, 

1993c).  

For the subAntarctic species Muraenolepis marmoratus there is some disagreement 

over its distribution range. Cohen (1990) restricts the distribution to the subAntarctic 

Islands of the Indian Ocean (Crozet, Kerguelen and Heard) from depths of 30 m to 1600 

m. However it has also been reported from the Scotia Sea (Chiu and Markle, 1990, 

Miller, 1993c). 

From literature, Mu. microps has the widest distribution range of the four species; 

spanning the Scotia Sea islands of South Georgia, South Sandwich, South Orkney and 

South Shetland to the continental shelves of Victoria Land and the Ross Sea, with 

depths from 10 m to 1600 m (Chiu and Markle, 1990). This range has also been 

extended to include the continental shelf around Tierra del Fuego and Burdwood Bank 

(Cohen, 1990, Miller, 1993c). 

For Muraenolepis microcephalus, specimens have been recorded from the Scotia Sea 

islands of South Georgia, South Sandwich, South Orkney and South Shetland, the 

northern Antarctic Peninsula and the continental slope of the East Antarctic coast 

(Enderby coast) (Chiu and Markle, 1990, Cohen, 1990, Miller, 1993c). This is the 

deepest dwelling of the species with a range of 1976 m to 3040 m (Chiu and Markle, 

1990). 
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At present, the recordings for the new species are too limited to define species ranges. 

The location of specimens collected to date and any additional recordings for the 

original four species from samples collections by Balushkin and Prirodina have been 

mapped to demonstrate the distributions (Figure 3-3). 

The locations of specimens for the five newly proposed species overlap with the ranges 

of the original four species. In an extension to the previously defined range, Mu. 

microcephalus was recorded in the Patagonian-Falkland region (Balushkin and 

Prirodina, 2013). Two of the new species, Mu. andriashevi and Mu. pacifica, have been 

recorded outside the areas previously described for Muraenolepis distribution 

(Balushkin and Prirodina, 2005, Balushkin and Prirodina, 2010a, Prirodina and 

Balushkin, 2007). Further resolution is required for both the species identification and 

geographic distribution of this Family. 

Ecology 

The Muraenolepididae family has been poorly studied in term of morphological and 

ecological aspects. Pre-juvenile specimens of Mu. marmoratus have been observed in 

the water column off Kerguelen Island and it was speculated that this unusual 

ichthyoplanktonic, rather than benthic, phase may aid dispersal (Duhamel et al., 2000). 

In the South Georgia region the abundance of Mu. marmoratus was found to increase 

with depth. Males are thought to mature at 3-5 years (21-27 cm length) and reach a 

maximum length of 46 cm (12 years) (Kompowski and Rojas, 1996).  

For Mu. evseenkoi off the Antarctic continental shelf, the highest abundance was at 

depths of 1000-1500 m. A fecundity of 81,000-441,000 oocytes was found in mature 

females (over 38 cm in length). It is proposed that this fish has a single winter spawning 

season as there was no evidence of previtellogenic oocytes in ovaries of mature fish. 
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The eggs are 1.3-1.35 mm in diameter and pelagic (Prut'ko and Chimilevskii, 2011). 

Age estimates for Muraenolepis species in the Ross Sea suggest a maximum age of 9.5 

years and total length 45 cm, with growth rates slowing after four years (Prut'ko and 

Chimilevskii, 2011). 

All species are benthopelagic and thought to feed on zooplankton. The main diet of Mu. 

microps has been shown to be invertebrates such as gammarids, isopods, benthic 

shrimp, decapods, mysids, polychaete worms, fish and krill (Permitin and Tarvediyeva 

(1972) in Miller, 2003). Diet appears to change with size, small fish feeding on benthic 

animals, preferentially amphipods, and the proportion of fish in the diet increasing with 

size. Notocrangon antarcticus (Antarctic shrimp) and Euphausia superba (Antarctic 

krill) have both been identified as important food sources, for average size and large 

fish respectively, with krill comprising up to 95% of food weight in some regions. 

(Kompowski, 1993).  

Muraenolepids play an important role in the Antarctic ecosystem and are an important 

food source for other fish, in particular the Patagonian toothfish (Dissostichus 

eleginoides). Studies of the diet of juvenile toothfish around South Georgia classed 

Muraenolepis species as a minor component of the diet (Barrera-Oro et al., 2005) and it 

has been identified in 1.4% of the fish stomachs studied (Pilling et al., 2001). It has also 

been shown to vary with predator size and was found in 3.8% of stomachs for 40-49cm 

long fish, but no other size classes, on the Argentinean slope (García de la Rosa et al., 

1997). For the Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea, 

Muraenolepis microps was a more notable prey item, occurring in 7.3% of fish 

stomachs (Fenaughty et al., 2003). Any conservation or fisheries management measures 

are reliant on correct species identification and geographic distribution. 
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3.2 Morphological Identification 

As the molecular results for the work, which are presented in this chapter, started to 

come through preliminary analysis indicated that these would not necessarily correlate 

with the species previously designated using morphological characteristics. Therefore, 

retrospectively, it was decided that it was essential to gain a fuller understanding of the 

morphological species identification. Hence, access to the type specimens (holotypes) 

were obtained and examined (Figure 3-4). For the aid of clarity these morphological 

results are presented first. The type specimens for Mu. marmoratus and Mu. 

microcephalus are held at the British Museum of Natural History, London. The type 

specimen for Mu. orangiensis is held at the Muséum National d’Histoire Naturelle, 

Paris. Unfortunately this latter specimen could not be provided on loan; however, 

photographs and x-rays were supplied on request. The type specimen for Mu. microps is 

held at the Natural History Museum, Sweden and was obtained on loan to the British 

Museum of Natural History.  

The condition of the Mu. orangiensis and Mu. microcephalus specimens was very poor 

and made morphological examination difficult. Type specimens for the five newly 

proposed species could not be obtained from the Museum of the Zoological Institute of 

the Russian Academy of Science for examination but measurements for these species 

(and any accompanying data recorded for the original species) were taken from 

literature and summarised in table 3-2.  
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A   

B  

C   

D  

Figure 3-4 Type specimen for (A) Mu. marmoratus, (B) Mu. orangiensis, (C) Mu. 

microps and (D) Mu. microcephalus. Images A, C & D courtesy of the British Museum 

of Natural History, London. Image B courtesy of the Muséum National d’Histoire 

Naturelle, Paris. 

53 
 



Characteristic  
(% of Standard Length) 

Muraenolpis 
marmoratus 

n=17 

Muraenolpis 
orangiensis 

n=4  

Muraenolpis 
microcephalus 

n=5 

Muraenolpis 
andriashevi 

n=5 

Muraenolpis 
trunovi  

n=1 

Muraenolpis 
kuderskii 

n=6 

Muraenolpis 
pacifica 

n=7 

Muraenolpis 
evseenkoi 

n=12 

SL Standard Length 
(mm) 144-341 63-286 72-304 351 - 445 243 166-214 250-414 214-415 

Lmx % Upper Jaw 
Length 8.8-10.8 5.0-7.0 4.9-6.6 10.4 - 11 7 7.0-7.8 7.3-9.2 8-9.8 

H(A) % Body depth 17.2-19.9 11.1-15.3 8.4-10.9 15 - 17.9 14.8 12.9-15.6 12.5-16.4 14.9-18.5 
c % Head Length 19.2-24.1 13.7-16.9 13.7-15.9 20.7 - 25.4 17.5 15.7-18.9 16.7-20.3 18.3-23.1 

aA % Pre Anal Length 47.1-51.3 34.3-46.2 36.4-43.1 49.6 - 55.6 43.2 39.0-41.6 46.6-53.4 47.2-54 
postA % Post Anal Length 50.4-54.4 58.4-59.8 58.7-63.6 44.9 - 50.4 56.8 58.4-61.0 50.0-51.7 47.7-52.8 

o % Eye Diameter 3.6-5.5 2.8-5.1 2.6-3.5 3.6 - 4.1 4.1 4.2-5.3 3.0-4.0 3.1-4.3 

io % Inter-orbit 
Distance 3.5-5 2-3.4 1.2-2.8 2 - 3.1 2.1 1.8-3.5 1.9-2.7 1.9-3.8 

ao % Snout Length 5.5-6.7 3.8-5.6 3.4-4.9 5.9 - 7 4.3 4.1-4.9 5.0-6.7 5.1-6.6 
Lbarb % Barbel Length 2.8-4.1 2.6-4.1 2.8-3.8 4 - 4.8 5.1 1.5-2.2 3.2-3.9 2.4-5 

HD1 % 1st Dorsal Fin 
Length 6.5-9.0   6.4-9.9 8.3 - 15 16.9 11.0-14.8 6.2 6-10.3 

LV % Pelvic Fin 
Length 14.4-16.8 10.8-14.2 12.1-15.5 23.4 - 28.2 23.4 17.7-22.9 13.7-16.9 17.8-21.5 

LP % Pectoral Fin 
Length 12.5-14.3 9.6-10.8 9.7-11.2 11.7 - 13.5 17.1 14.3-16.9 8.5-10.5 11.7-15 

Table 3-2 Morphometric measurement ranges for all described species, taken from literature (Balushkin and Prirodina, 2005, Balushkin and 

Prirodina, 2006, Balushkin and Prirodina, 2007, Prirodina and Balushkin, 2007, Balushkin and Prirodina, 2010b). 
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Vertebrae Counts 

A further method used to distinguish between Muraenolepis species is the number of 

vertebrae. For this purpose, x-rays were obtained for each of the type specimens and the 

number of vertebrae examined (Figure 3-5.; Table 3-3). X-rays were also available for 

three additional museum specimens (Table 3-4). 

A   

B  

C      

D  

Figure 3-5 X-rays of the type specimen for (A) Mu. marmoratus, (B) Mu. orangiensis, 

(C) Mu. microps and (D) Mu. microcephalus (Norman, 1937). X-rays A, C & D 

courtesy of the British Museum of Natural History, London. X-ray B courtesy of the 

Muséum National d’Histoire Naturelle, Paris. 
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Species Vertebrae Range for Species Holotype Vertebrae Count 
Mu. marmoratus 67 - 71 68 
Mu. orangiensis 74 - 76 75 

Mu. microps 70 - 74 70 
Mu. microcephalus 83 - 85 83 

Table 3-3 Expected vertebrae ranges for each species (Chiu and Markle, 1990) and 

vertebrae count for the holotype of the species. 

In addition, further museum specimens were available. 

Table 3-4 Vertebrae counts for additional museum specimens where the x-ray was 

available. 

It should be noted that, in spite of species designation, the vertebrae counts of one of 

these specimens (Mu. microps NRM9364) is outside the expected species range. 

For the further five species, the vertebrae count for the holotypes and all other samples 

given in this literature was collated and presented in Table 3-5. 

 

 

 

 

 

Species Museum 
Code Count Location Co-ordinates Depth Date 

Mu. microps  NRM9364 68 Cumberland Bay, 
South Georgia 

45°14'0"S; 
36°28'0"W 20m 1902 

Mu. microps  NRM11106 73 Tierra del Fuego, 
Argentina 

55°10'S; 
66°15'W 125m 1902 

Mu. 
marmoratus 

MNHN 
1985-0447 67 Kerguelen Islands 50°37' S ; 

71°34'E   1974 
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Table 3-5 Vertebrae counts for the holotypes of the newly described species, taken from 

literature (Balushkin and Prirodina, 2005, Balushkin and Prirodina, 2006, Balushkin and 

Prirodina, 2007, Prirodina and Balushkin, 2007, Balushkin and Prirodina, 2010b). 

Sample Collection for Molecular Analysis 

The samples collected for use in this study (n=355) were identified by the scientific 

observer onboard vessels, using the key given in Figure 2-2 (see also Table 3-6). 

Accurate identification was made more difficult by the overlapping ranges of the 

features used and time constraints on-board collection vessels precluding accurate 

measurements. For these reasons most of the specimens were identified to genus-level 

only, with only 9% designated as Mu. marmoratus and 3% as Mu. microps. Mu. 

microcephalus and Mu. orangiensis were not specifically identified. 

 

 

 

 

Species Museum 
Code 

Vertebrae 
Count Location Depth Date 

Vertebrae 
Range for 

Species 
Mu. 

andriashevi 
ZIN 

53487 73 Africa 
35 20'S 18 40'E 

980-
1010m 1974 72-73 

(n=5) 

Mu. trunovi ZIN 
53780 73 Lazarev Sea 

69 15'S 11 49'E 
730-

860m 1983 73 
(n=1) 

Mu. kuderskii ZIN 
50618 69 South Georgia 

53 36'S 36 43'W 
500-

600m 1981 68-69 
(n=6) 

Mu. pacifica ZIN 
53543 74 Hercules Ridge 

53 34'S 140 39'W 
240-

290m 1977 73-75 
(n=7) 

Mu. evseenkoi ZIN 
54651 70 

Commonwealth 
Sea 

66 30'S 59 30’E 

1180-
500m 1957 70 

(n=12) 
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Table 3-6 Collections of Muraenolepis specimens and species identification at 

collection. 

3.3 Molecular Identification and Phylogenetics 

Molecular methods were used to investigate the specimens collected (Table 3-5) to 

confirm the species identity. Two mitochondrial gene regions, ribosomal RNA subunit 

16S and Cytochrome Oxidase I (COI) were targeted. In the analysis, the results from 

each of these markers was analysed separately. Two outgroups were selected for use in 

the analysis; Macrourus holotrachys or Macrourus whitsoni (from this study) and 

Merluccius paradoxus (voucher DAAPV F8) sequence obtained from GenBank 

(GU324141; GU324176).  

Species names have been assigned to the phylogenetic trees. These were applied post 

analysis for clarity of the results. The method used to determine the correct species 

   Species identified at collection 

Location Year Collection Genus 
only 

Mu. 
marmoratus 

Mu. 
microps 

Mu. 
microcephalus 

Mu. 
orangiensis 

South 
Georgia 2004/5 Dorada 44 18 9   
South 

Georgia 2008 Dorada  8    
Scotia 

Arc 2006 JR145 16 3    
Burdwood 

Bank 2006 MUO 4     
Kerguelen 

Island 2006 MNHN 5     
South 

Sandwich 2010 ZMGO 5 3 3   
South 

Sandwich 2010 Argos 
Foyannes 20     

Ross Sea 2005-8 NIWA 24     
Ross Sea 2013 NIWA 194     

Total 312 32 11 0 0 
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name to assign to each branch, based on morphology and geographic location, is 

detailed after the phylogenetic results. 

16S Data 

The 16S gene region was sequenced for 161 samples (the Ross Sea 2013 sample 

collection were not available when 16S processing occurred. Later work on these 

samples using COI identified a single species, so the decision was taken not to 

retrospectively sequence the 16S region from the Ross Sea samples). The sequences 

were edited to remove poor quality data and a 510 bp read length was successfully 

obtained for 149 of the samples. These sequences were aligned using Geneious and nine 

unique haplotypes (individuals with identical sequence grouped together) were 

identified.  

These nine haplotypes were checked to ensure there was no evidence for compositional 

heterogeneity using Chi-square test and mismatched-pairs test for symmetry. The 

sequences were analysed using standard methods of heuristic searches using 

unweighted maximum parsimony (PAUP), heuristic searches using maximum 

likelihood with DNA substitution models, as identified by jModelTest (GARLI; 

substitution model TPM2+G) and Bayesian inference substitution models (MrBayes; 

substitution model HKY). 

The data were also analysed for Bayesian inference using PHASE with the program 

mcmcPHASE, GTR+G substitution model, and the results processed in SUMMARIZE 

to obtain the majority rule tree (Figure 3-6). The PHASE Bayesian inference posterior 

probability support values are also shown. The full details of the molecular analysis 

methods are given in Chapter 2. 
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Figure 3-6 Majority rule phylogenetic tree for Muraenolepis 16S data showing 

bootstrap support values and branch posterior probability support values from the 

different analyses performed. Haplotype frequencies are shown in parentheses. 

Geographic locations of samples are given on right. 

Essentially, this phylogenetic tree (Figure 3-6) shows four main clades (one based on a 

single sample). The main branch nodes between species were well supported with a 

bootstrap support value of greater than 80% for maximum parsimony and maximum 

likelihood analysis, and greater than 0.95 for the posterior probability support. Two 

branches receive poor support; Mu. microcephalus and Mu. evseenkoi/Mu. marmoratus, 

and within the Mu. marmoratus clade. The only branch shown with less than 50% (0.5) 

support is within the main Mu. marmoratus group (Burdwood Bank, South Georgia and 

Burdwood Bank 
New Zealand 

 Ross Sea 

Burdwood Bank 
South Georgia 
South Sandwich 

Kerguelen 

South Sandwich  
Ross Sea 

PAUP     100 
GARLI     97 
PHASE   1.0 
MrBayes 1.0 

PAUP        66 
GARLI      72 
PHASE   0.78 
MrBayes 0.79 

 

PAUP        99 
GARLI      97 
PHASE   0.99 
MrBayes   1.0 

 

PAUP        85 
GARLI      87 
PHASE   0.99 
MrBayes   1.0 

 

PAUP        63 
GARLI      95 
PHASE   0.77 
MrBayes 0.79 

 

PAUP        85 
GARLI      87 
PHASE   0.99 
MrBayes   1.0 
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South Sandwich Islands). This branch is still shown due to its non-conflicting 

relationship within the extended majority rule tree. 

There were only 24 variable sites for this gene region (5%) so it was decided to examine 

another region of the mitochondrial genome to determine whether the same tree 

topology was to be obtained and improve statistical support. 

COI Data 

The COI region is more variable than 16S and therefore is a more informative marker 

for molecular phylogenetics (This data set also included the additional 194 Ross Sea 

2013 samples). After editing to remove poor quality data, a 600bp sequence for the COI 

gene region was obtained for 297 (95%) of the samples. As expected, the COI data were 

more informative, with 72 variable sites (12%) for this gene region. Alignment of the 

sequence data in Geneious and identification of identical sequences resulted in 25 

unique haplotypes. 

As for the 16S data, these haplotypes were checked for evidence of compositional 

heterogeneity. The values obtained for the Chi-square tests were within acceptable 

limits (P>0.999), however, the mismatched-pairs test for symmetry revealed a level of 

heterogeneity (x%=0.1254 at p-value <0.05; x%=0.08526 at p-value <0.01). The data 

were analysed as above but the resultant phylogenetic trees gave poor support values for 

both bootstrap percentage and posterior probability for a number of the branches, and 

these values varied between the different analysis methods. 

The initial attempt to resolve this issue using RY-coding (Phillips et al., 2004) 

succeeded in removing the heterogeneity but also resulted in an unacceptable loss of 

variation. Converting the data to AGY-coded proved more successful, reducing the 
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heterogeneity to within accepted limits (P=1.0000; x%=0.0057; x%=0.0000) for 

phylogenetic analysis.  

The original data were analysed in PHASE using the program mcmcPHASE and 

THREESTATE substitution model, a general time-reversible AGY model. A majority 

rule tree with Bayesian posterior probability support values was produced using 

SUMMARIZE (Figure 3-7).  

 

62 
 



 

Figure 3-7 Majority rule phylogenetic tree for Muraenolepis COI data showing 

bootstrap percentage and posterior probability branch support values for each analyses 

method (*AGY coded dataset). Haplotype frequencies are given in parentheses. 

Geographic locations of sample collections are given on right. 

PAUP         99 
PAUP*       99 
GARLI       62 
PHASE* 0.99 
MrBayes 0.73 

PAUP          - 
PAUP*       50 
GARLI        - 
PHASE* 0.56 
MrBayes     - 

 

PAUP      100 
PAUP*    100 
GARLI      68 
PHASE*  1.0 
MrBayes 0.99 

 

PAUP         73 
PAUP*        - 
GARLI       56 
PHASE*  0.89 
MrBayes  0.82 

 

PAUP         - 
PAUP*       52 
GARLI       -
PHASE*  0.61 
MrBayes  0.54 

 

PAUP         93 
PAUP*       96 
GARLI       53 
PHASE*  0.93 
MrBayes  0.95 

 

PAUP        63 
PAUP*      63 
GARLI      52 
PHASE*  0.88 
MrBayes  0.85 

 

PAUP      80 
PAUP*      - 
GARLI      - 
PHASE*  0.66 
MrBayes  0.60 

 

South Georgia 
South 
Sandwich 
Scotia Arc 

 
 

 

Kerguelen 

Ross Sea 

Burdwood Bank 

South Sandwich   
Ross Sea 

New Zealand 
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This phylogenetic tree (Figure 3-7) differs from the 16S data (Figure 3-6), showing the 

same four clades but structured differently. The initial branch separates Mu. 

marmoratus whereas the initial branching separated Mu. orangiensis for 16S. The 

branch support values vary between the different analysis methods, which can be 

attributed to the high level of nucleotide frequency heterogeneity causing the COI data 

set to be unsuitable for use with standard models. Higher posterior probability values 

are obtained for the AGY coded data set. Many of the branches are poorly supported for 

all analysis methods, which may be attributed to the weak statistical power of low level 

genetic variation. 

 

Assigning species names 

Both phylogenetic trees (Figures 3-7 and 3-8) show four clades which can be attributed 

to the presence of four species. Accurately assigning names for each of these species 

required consideration of all factors: i.e. catch location and morphology of original type 

specimens; comparison with the catch location of the samples used in this study; and 

any morphological measurements or descriptions recorded for the studied specimens.  

Only one species, Mu. marmoratus, was present at the main study area of South Georgia 

and this was genetically identical to the samples from Kerguelen Island, Burdwood 

Bank and South Sandwich Islands. As mentioned in the introduction (Chapter 1 and this 

chapter), there has been some debate over the presence of a second species at South 

Georgia and the designation of Mu. microps as a separate species. The results obtained 

in this study support the hypothesis of a single species present at both South Georgia 

and Kerguelen Islands. Re-examination of the type specimen for Mu. microps revealed 

that the lateral line extended past the middle of the body. According to the key 

developed by Chiu and Markle (1990) this is consistent with the taxonomy for Mu. 
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marmoratus and not Mu. microps; suggesting that Mu. microps was not a separate 

species. Mu. marmoratus was first described from Kerguelen Island in 1880 and Mu. 

microps from South Georgia in 1905. Therefore, according to the International Code of 

Zoological Nomenclature (ICZN) (2000), Mu. marmoratus takes seniority and Mu. 

microps becomes the junior synonym. 

The second major grouping consisted mainly of the Ross Sea 2013 samples (initially 

identified as Muraenolepis sp) and also the majority of the South Sandwich Island 

samples (initially identified as Muraenolepis sp., Mu. marmoratus and Mu. microps). 

The holotypes described from the high Antarctic are Mu. microcephalus (Norman, 

1937), Mu. trunovi (Balushkin & Prirodina) and Mu. evseenkoi (Balushkin & Prirodina). 

The Ross Sea 2013 samples were identified as Mu. evseenkoi after careful examination 

of their morphological features (Peter McMillan, NIWA, personal communication). 

There were no morphological data available for the samples that composed the two 

smaller clades (Mu. microcephalus and Mu. orangiensis), with the exception of a 

description of “elongate form” for the single sample from the NIWA mixed geographic 

location sample set, caught in the Ross Sea.  

The samples originating from Burdwood Bank and New Zealand had no accompanying 

morphological data. They were given the designation of Mu. orangiensis. This is a 

speculative designation based on the location for the holotype of Mu. orangiensis which 

was caught off Cape Horn, Orange Bay (1888), and the circumpolar temperate 

distribution of the specimens identified in this study. 

The final clade, from the Ross Sea, also lacked associated morphological data. It has 

been given the designation of Mu. microcephalus based on the catch location, depth 

208-1621 m and the description of “elongate form”. There were three potential holotype 

candidates to consider: Mu. microcephalus, Mu. trunovi, and Mu. evseenkoi. All three 
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were found in East Antarctic waters but only Mu. microcephalus has an elongate body 

morphology. Again this designation is tentative and additional specimens with 

accompanying morphological data are required for both of these genotypes to confirm 

the association with the phenotypes. 

3.4 Morphological Data 

Combining all of these morphological and molecular results the species designation on 

collection were corrected following molecular identification (table 3-7). Indentifications 

based on the COI data set were used for morphological comparison as data were 

available for a greater number of specimens.  

  

Table 3-7 Muraenolepis collections with species as identified by COI sequence data. 

 

   
Species identified by COI Sequence 

 
Location Year Collection Muraenolepis 

marmoratus 
Muraenolepis 
orangiensis 

Muraenolepis 
evseenkoi 

Muraenolepis 
microcephalus Fail 

South 
Georgia 2004/5 Dorada 71     
South 

Georgia 2008 Dorada 8     

Scotia 
Arc 2006 JR145 19     

Burdwood 
Bank 2006 MUO 2 2    

Kerguelen 
Island 2006 MNHN 5     
South 

Sandwich 2010 ZMGO   11   
South 

Sandwich 2010 Argos 
Foyannes   20   

Various 2005-
8 NIWA  1 20 1 2 

Ross Sea 2013 NIWA   178  16 

Total 105 3 229 1  
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Since there was a considerable disparity between the molecular results and the original 

species characterisation by morphology, it was decided to re-examine the morphology 

of specimens used in this study. This was only possible for the specimens identified as 

Mu. marmoratus and Mu. evseenkoi, where morphological data were recorded. The 

collections with sufficient numbers and availability of morphological data were: South 

Georgia 2005 (Mu. marmoratus), South Sandwich Islands 2010 (Mu. evseenkoi) and 

Ross Sea 2013 (Mu. evseenkoi).  

Characteristic 
Mu. marmoratus 

(n=71 ) 
Mu. evseenkoi 

(n=215 ) 

SL Standard Length 118 – 385 (144-341) 173 – 537 (214-415); 332 

Lmx Upper Jaw % 7.9 - 10.5 (8.8-10.8) 9.3  

H(A) % Body depth 14.5 - 25.2 (17.2-19.2)  16.9 

c % Head Length 15 - 20.7 (19.2-24.1) 15 – 23 (18.3-23.1); 20.1 

aA %Pre Anal Length 40 - 52.3 (47.1-51.3) 42.6 - 57.5 (47.2-54); 53.3 

postA %Post Anal Length   49 - 67.9 (47.7-52.8); 47.9 

o %Eye Diameter 1.9 - 5.3 (3.6-5.5)  3.6 

io %Inter-orbit Width 3.3 - 5.9 (3.5-5)  2.4 

ao %Snout Length 4.9- 7.6 (5.5-6.7) 5.4 - 8.5 (5.1-6.6); 5.7 

Lbarb %Barbel Length 1.7 - 4.3 (2.8-4.1) 1.8 - 4.4 (2.4-5); 2.4 

HD1 %1st Dorsal Fin Length 2.5 - 12.4 (6.5-9) 5.3 - 14.7 (6-10.3); 8.1 

LV % Pelvic Fin Ray   12.3 - 28.2 (17.8-21.5); 21.1 

LP % Pectoral Fin Ray   9.6 - 15.7 (11.7-15); 14.8 
 

Table 3-8 Summary of morphometric measurements taken for Mu. marmoratus and Mu. 

evseenkoi (sample collections South Georgia 2005, South Sandwich Islands 2010, Ross 

Sea 2012 and Ross Sea 2013). The range expected from literature (from Table 3-2) is 

given in parenthesis and data for holotype (where available) given in bold. 

Previously no size difference between male and female specimens have been found for 

Muraenolepis species (Horn and Sutton, 2010, Parker et al., 2012). To determine 

whether this was also the case for the current data set, the standard length was plotted 
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against the weight for male and female specimens of both species. This also allowed for 

comparison of growth rates between species. 

 South Georgia South Sandwich Is Ross Sea 

 
Mu. marmoratus 

(n=71) 
Mu. evseenkoi 

(n=20) 
Mu. evseenkoi 

(n=195) 
Total length (mm) 178-365 370-540 255-562 

Weight (g) 42-629 490-861 104-1620 
Table 3-9 Length and weight ranges for Mu. marmoratus (South Georgia 2005) and Mu. 

evseenkoi (South Sandwich Islands 2010; Ross Sea 2012, 2013). 

        

 

Figure 3-8 Graph showing standard length to weight ratio for Mu. marmoratus. 
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Figure 3-9 Graph showing standard length to weight ratio for Mu. evseenkoi. 

The graphs (Figure 3-8 and Figure 3-9) show that the catch was predominantly female 

for both species and where males were present they were smaller in size than the 

females. This consistent size difference can be interpreted as sexual dimorphism. It is 

possible that some of the confusion over species identification has originated from 

sexual dimorphism. The overall trend shown is that the Mu. evseenkoi are larger than 

Mu. marmoratus.  

3.5 Geographic Distribution 

Having clearly defined the identity of the Muraenolepis species, using molecular 

barcoding, the different species distributions were plotted to visualise any potential 

special separation/habitat preference. The geographic range for each of these species 

was examined by plotting the species identity by geographic catch location.  
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Figure 3.10 Circum-Antarctic geographic distributions of Muraenolepis species, as 

identified by COI sequence data. 

Muraenolepis orangiensis was found in two locations, Falkland Islands and New 

Zealand, both north of the Polar Front. The single specimen for Mu. microcephalus was 

found within the Polar Front, close to the Southern Boundary Front, in the Ross Sea 

region (depth 1850 m). The distribution of Mu. marmoratus ranged from the Falkland 

Islands and along the Scotia Arc to South Orkney Island, crossing the Polar Front. The 

subAntarctic range also extended to Kerguelen Island in the Indian Ocean Sector (no 
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depth data available). Mu. evseenkoi was found within the Southern Boundary Front at 

the South Sandwich Islands and the Ross Sea region (depth range 1560 m to 771 m). 

The main study area of the Scotia Arc was examined in closer detail.  

 

Figure 3.11 Geographic distributions in the Scotia Arc region for Muraenolepis species, 

as identified by COI sequence data. 

There is a clear difference between South Georgia and the South Sandwich Islands in 

terms of species composition, with only Mu. marmoratus present around South Georgia 

and Mu. evseenkoi as the predominant species at the South Sandwich Islands.  

The Mu. marmoratus samples around South Georgia were collected close to the 

Continental Shelf with a depth range of 1000 m to 117 m. The two samples of Mu. 

marmoratus found south of the Southern Boundary Front were collected by 200 m 

Agassi trawl whereas the Mu. evseenkoi in this region were collected by 1000 m Agassi 
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trawl (1502 m to 1238 m). Both Mu. marmoratus and Mu. orangiensis specimens from 

the Falkland Islands were collected at depths of 974 m to 950 m. 

3.6 Population Genetics 

With the more accurate species identification and revised distribution patterns, where 

sufficient numbers of samples were available, a more detailed population structure was 

tested in AMOVA using the haplotype frequencies. Data were discounted where 

insufficient numbers of samples were present for analysis using Arlequin (n<5). As 

there were insufficient samples for Mu. orangiensis and Mu. microcephalus they have 

been excluded from this analysis. The haplotype data for Mu. marmoratus and Mu. 

evseenkoi were partitioned by species to avoid any erroneous statistical significance 

between populations as a result species composition within populations. Each species 

was then partitioned into groups according to catch location and year. 

 

Mu. marmoratus 

To test for geographic variation the populations from South Georgia 2004 (n=18), South 

Georgia 2005 (n=51), Scotia Arc 2006 (n=19), South Georgia 2008 (n=7), Kerguelen 

Islands 2006 (n=5) were compared (Figure 3-10). It was found that 64.83% of the 

variation was within the groups and 35.13% of variation within populations. There was 

no statistical significance between populations from South Georgia and the Scotia Arc 

(FST (ФST)=0.02008; p=0.87598). There was however a significance (FST 

(ФST)=0.85253;p=0.00098+/-0.0010) between the genetic population at Kerguelen 

compared to the Scotia Arc and South Georgia.  
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Figure 3-12 Map showing the location of Mu. marmoratus populations analysed for 

population structure based on haplotype frequencies. 

To test for temporal variation the populations from South Georgia 2004 (n=18), South 

Georgia 2005 (n=51), South Georgia 2008 (n=7) were compared. For these data, 

99.80% of variation was within populations and FST (ФST)=0.01811; p=0.19531+/-

0.0096 between years, suggesting temporal stability of populations at South Georgia 

over this time period. 
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Mu. evseenkoi 

Geographic variation was tested by comparing the of populations from Mawson Bank 

(Ross Sea subarea 88.1H) 2008 (n=5), South Sandwich Islands 2010 (n=30) and Ross 

Sea 2013 (subdivided by subarea; 88.2G (n=14), 88.1K (n=19), 88.1J (n=10), 88.1H 

(n=32), 88.1I (n=11), 88.1H (n=11), 88.1I (n=39), 88.2H (n=32), 88.1C (n=12)) (Figure 

3-13). It was shown that 98.71% of the variation was within populations. There was no 

statistical significance between South Sandwich Island and Ross Sea populations. 

Statistically significant results were obtained for Ross Sea subarea 88.2H compared 

with Mawson Bank 2008 (FST (ФST)=0.30364 ; p=0.04980+-0.0070) and Ross Sea 

subarea 88.1J (FST (ФST)=0.20218; p=0.04688+-0.0084). However, when the data for 

this region was partitioned into two areas (longitude 122˚/123˚W and longitude 

127˚/128˚W) there was no significant difference between any geographic locations. 
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     Muraenolepis evseenkoi populations 

Figure 3-13 Map showing the location of Mu. evseenkoi populations within the Ross 

Sea analysed for population structure based on haplotype frequency. 
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3.7 Discussion 

Muraenolepis is the monotypic genus of the family Muraenolepididae with, at the start 

of this study in 2005, four described species: Mu. marmoratus, Mu. orangiensis, Mu. 

microps and Mu. microcephalus. The genus was poorly understood and there has been 

much debate over its origin and the number of species present. Recently, five new 

species (Mu. andriashevi, Mu. trunovi, Mu. kuderski, Mu. pacifica and Mu. evseenkoi) 

have been described (Balushkin and Prirodina, 2013), adding to the confusion over 

correct identification of specimens.  

In the process of this study it became evident that some of the species identification 

confusion has been caused by taxonomically important morphological features having 

greater intraspecific variability than had previously described. Much of this was due to 

low specimen numbers studied for morphology and, for some specimens, incorrect 

identification of the original examples. It was also found that some taxonomic features, 

used to distinguish species, may be attributed to sexual dimorphism. For example, based 

on measurements of Mu. marmoratus specimens collected at South Georgia, the length 

of the male’s first dorsal fin is longer than the female’s (Martin Collins, personal 

communication). Using the standard taxonomic key (Cohen, 1990) leads to 

misidentification of males as Mu. orangiensis. Similarly, there is speculation that the 

recently described single specimen of Mu. trunovi, for which a key distinguishing 

feature is also a long dorsal fin, may infact be a male specimen of Mu. evseenkoi. This is 

based on comparison with the larger morphological data set now available for Mu. 

evseenkoi (Peter McMillan, personal communication). Thus, accurate species 

identification is the foundation of any further study, be it morphological, ecological or 

genetic. 
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Species Identification and Geographic Range 

The first aim of this study was to identify the species using molecular methods and 

compare these results to morphological identification (Fitzcharles et al., 2012). Two 

mitochondrial DNA markers, 16S and COI, were selected for this as both have been 

used previously for phylogenetic analysis, and COI is now generally regarded as the 

DNA barcoding gene for fish species identification (Ward et al., 2009). 

Both markers were found to be informative for species identification, with COI 

providing a higher level of variation between species. Within the sample collection, four 

species were indicated to be present but these were initially designated by haplotype 

number rather than species identity. Re-examination of the type specimens and careful 

consideration of both morphological data and geographic information were required 

before species designation could be concluded. 

There were two main samples groups within the genetic data set. The first included 

samples from the Falkland Islands, South Georgia and the Scotia Arc, and Kerguelen 

Island. Where morphological identification to species had been carried out (when 

originally caught), these samples had been identified as a mix of Mu. marmoratus and 

Mu. microps. The second group concerned samples from the Ross Sea and South 

Sandwich Islands. The Ross Sea samples were identified to genus only (when originally 

caught), while the South Sandwich Island samples had been identified either to genus or 

as a mix of Mu. marmoratus and Mu. microps (Table 3-2). 

There has been considerable debate over the existence of Mu. marmoratus and Mu. 

microps, particularly around the South Georgia region (Norman, 1937, Kompowski and 

Rojas, 1993, Balushkin and Prirodina, 2010b, Balushkin and Prirodina, 2007). The 

Kerguelen Islands is the type locality for Mu. marmoratus and is therefore the accepted 
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species in this region, with a range extending to South Georgia (Chiu and Markle, 

1990). Muraenolepis microps was thought to have a wider distribution, from South 

America to the Antarctic continental shelf (Cohen, 1990, Chiu and Markle, 1990) (see 

Figure 3-14).  

 B  

Figure 3-14 Distribution maps for (A) Mu. marmoratus and (B) Mu. microps taken from 

FAO Species Catalogue (Cohen, 1990). 

These species are morphologically similar and a key taxonomic feature used to 

distinguish between them is the length of the lateral line (extending past the start of the 

second dorsal fin for Mu. marmoratus, reduced or absent for Mu. microps) (Chiu and 

Markle, 1990). The re-examination of the type specimen for Mu. microps showed that 

the lateral line extended past the origin of the second dorsal fin and was thus in-keeping 

with that expected for Mu. marmoratus (in agreement with Balushkin and Prirodina, 

2010b). Similarly the vertebrae count also fitted with the description of Mu. 

marmoratus. 
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Combining this with the genetic data provided by this study, which identified a single 

species with a subAntarctic distribution that extended from the Falkland Islands through 

the Scotia Arc to Kerguelen Islands, indicates probability of the South Georgian species 

being the same as that at Kerguelen Islands. This would place Mu. microps as the junior 

synonym of Mu. marmoratus.  

The second species identified from genetics was restricted to south of the Southern 

Boundary Front. Further morphological research identified these samples as Mu. 

evseenkoi (Peter McMillan, personal communication). The sample distribution from this 

study concurs with the high Antarctic distribution described for Mu. evseenkoi 

(Balushkin and Prirodina, 2010b).  

The original account for Mu. microps was from South Georgia (as Mu. marmoratus 

microps – Lönnberg, 1905), which was elevated to species by Regan (1914) based on 

examples from the Ross Sea. This means that Mu. marmoratus microps would have 

been elevated based on an example of Mu. evseenkoi. Add to this that the taxonomic 

key proposed by Chiu and markle (1990) was based on their own specimen collection 

(not type material) with samples identified as Mu. microps collected from the Ross Sea 

region and those identified as Mu. marmoratus from the Scotia Sea. Judging from the 

overlap in the geographic ranges and information provided in this study, it would 

suggest that the Chiu and Markle (1990) classification of Mu. microps was in fact an 

early description of what has now been described as Mu. evseenkoi. These errors have 

lead to much of the confusion surrounding these species. 

The genetic analysis identified two other species which were more difficult to resolve 

due to the small sample numbers and lack of accompanying morphological data. One of 

the two species was collected from two samples at Burdwood Bank and a third sample 
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from New Zealand. Based on the circumpolar distribution north of the Polar Front, it 

would suggest this species is Mu. orangiensis. The second of the two species was from 

a single sample found in the Ross Sea and was described at collection as ‘elongate 

form’. This high Antarctic location and morphological description would suggest that 

the sample is Mu. microcephalus. The recognised ranges for both of these species are 

illustrated in Figure 3-15. As with the previous two species, the full range for these 

species is still undetermined. 

A  B  

Figure 3-15 Distribution maps for (A) Mu. orangiensis and (B) Mu. microcephalus 

taken from FAO Species Catalogue (Cohen, 1990). 

The evidence of this study has shown that the taxonomic identification of Muraenolepis 

species based on morphology was prone to error in comparison with the clearly distinct 

molecular results. Indeed, many scientists and observers were only able to identify to 

genus. Much of this problem can be generally attributed to the standard morphological 

identification keys and the limited knowledge of species presence and distribution in the 

different geographic regions. The combination of genetics and re-examination of the 

morphology, which has also highlighted where past errors had been made, has allowed 
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clarification of the species identification key with a redefined Mu. marmoratus and Mu. 

evseenkoi, and to demonstrate that within these species the range of measurements for 

taxonomical morphological features extends further than had previously been thought. 

With regards to the other recently described species, no examples were collected from 

the geographic areas proposed for Mu. andriashevi (Balushkin and Prirodina, 2005, 

Balushkin and Prirodina, 2010a), Mu. trunovi (Balushkin and Prirodina, 2006), or Mu. 

pacifica (Prirodina and Balushkin, 2007). At South Georgia, there was no evidence to 

support a second species, as suggested for Mu. kuderskii (Balushkin and Prirodina, 

2007). Muraenolepis kuderskii was collected at a depth of 440-605 m, which is within 

the depth range of this study, and morphologically, the length of lateral line and 

vertebrae count are within the expected range for Mu. marmoratus. However, the 

morphological measurements of head features (eye diameter, inter-orbital width, snout 

length and barbel length) do fall below the expected range. Genetic identification of this 

species is required to determine its relationship to Mu. marmoratus and the other 

described species. 

Finding of specimens of Mu. microcephalus in the Magellanean Region (1000-750 m) 

and Macquarie Ridge (2109-2030 m) extends both the geographic and depth range 

previously described for this species (Balushkin and Prirodina, 2013). The 

morphological features, most noticeably the vertebrae count, absence of an anal lateral 

line and reduced upper lateral line all suggest a correct identification based on the 

current species descriptions. It is possible, given the extensive range now proposed for 

this species, that this represents a previously undescribed sister species to Mu. 

microcephalus, which has a shallower, subAntarctic distribution. Currently there are too 

few specimens of this species in collections to provide a clear view of the morphology 

or distribution and so further work is needed. 
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The geographic ranges shown here for Mu. marmoratus and Mu. evseenkoi clearly show 

a separation between subAntarctic and high Antarctic distributions for these two 

species. The occurrence of Mu. marmoratus in shallow water trawls but not deep water 

trawls south of the Southern Boundary front at the Scotia Arc support the depth 

structuring proposed for distribution of these species and may be related to 

oceanographic currents.  

Currently, very little is known about the life cycle and ecology of these fish. 

Measurement of size with depth distribution for Mu. marmoratus at South Georgia 

showed a large range of sizes (9-39 cm) present above 250 m and a range from 15cm to 

39 cm below 250 m, with a prevalence of fish between 19-25 cm total length 

(Kompowski and Rojas, 1996). Age of maturity was estimated at 24 cm for this 

population and a maximum age of 12 years (45 cm). A study investigationg the stomach 

contents of fish from this region revealed their diet to be mainly shrimp (Notograngon 

antarcticus), krill (Euphausia superb) and other fish (Nototheniops larseni), and to a 

lesser extent, benthic invertebrates. It was found that smaller, juvenile fish (<20 cm) fed 

mainly on small invertebrates, average sized (sub-adult to adult fish; 20-30 cm) on 

shrimp and larger, mature adult fish (>30 cm) on fish and Eupasiacea (Kompowski, 

1993). 

In the Ross Sea, Muraenolepis sp. has been found in greatest abundance between 1000 

to 1500m on the Ross Sea continental slope. Age estimations from otoliths and growth 

rate place the majority of fish within the 4-8 years age range and a maximum age of 9.5 

years (total length 45cm), with growth rates slowing after 4 years (Horn and Sutton, 

2010). Males were absent from this study (Horn and Sutton, 2010) possibly due to their 

smaller size. Muraenolepis species are thought to be semelparous (one-time spawners) 

with a relatively high fecundity (81,000-441,000 eggs). Mureanolepis. evseenkoi in the 
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Ross Sea region are thought to spawn during the austral winter, earlier than Mu. 

marmoratus at South Georgia (Prut'ko and Chimilevskii, 2011, Parker et al., 2012).  

In this study, it was found that the catches were predominantly female and male 

specimens were generally of smaller size, but this may be an effect of sampling 

methods. Previous studies on length-weight relationship for Muraenolepis species in the 

Ross Sea did not show any sexual dimorphism (female n= 2297; male n=116), catches 

were also predominantly female and growth rates for Mu. evseenkoi were shown to be 

higher than for Mu. marmoratus (Parker et al., 2012). Comparison with data for Mu. 

marmoratus and Mu. evseenkoi from this study agreed with this length-weight 

distribution, and Mu. evseenkoi were generally larger in size than Mu. marmoratus. 

The predominance of benthic invertebrates in the diet of small, juvenile fish implies a 

requirement on the availability of continental shelf habitats for this stage of 

development. Earlier spawning of the high latitude species may be to allow pelagic 

larvae and juvenile fish optimal time for feeding in the austral summer where sea ice 

cover is reduced and availability of prey species is increased. 

Phylogenetic Evolution 

The second aim of this study was to examine the phylogenetic relationship of all four 

species (Mu. marmoratus, Mu. orangiensis, Mu. evseenkoi and Mu. microcephalus) and 

the population dynamics of the two main species (Mu. marmoratus and Mu. evseenkoi). 

The level of genetic variation between and within species was relatively low, with only 

5% variation within the mitochondrial gene 16S region and 12% for the COI gene 

region. Both phylogenetic trees (Figure 3-6 and Figure 3-7) display four clades relating 

to the four expected species. The evolutionary history implied between clades differed 
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for the two gene regions, however, both place the two elongate forms, Mu. orangiensis 

and Mu. microcephalus, as sister species. 

It has been suggested that Mu. microcephalus should be regarded as a separate genus 

from the other species (Balushkin and Prirodina, 2005) due to morphological 

differences and deep-sea distribution. During the course of this study this newly 

proposed genus, Notomuraenobathys Baluskin et Prirodina 2010, for the deep-sea eel 

cods, and containing the single species “N. Microcephala (Norman 1937)” was 

published (Balushkin and Prirodina, 2010c). The key diagnostic feature used to 

differentiate this genus is the larger number of vertebrae (83-85). Neither of the 

phylogenetic trees produced for this study supported this new genus. However, the 

allocation of Mu. microcephalus to the single sample analysed, for which there were no 

morphological data beyond the description of “elongate form”, was tentative and may 

represent a yet unreported Muraenolepis species. Again, further integrative taxonomy, 

combining morphology and molecular studies, are required on a greater number of 

example specimens to confirm the genus and potential new species. 

Population Structure 

This analysis of the COI haplotype data for evidence of population structuring showed 

statistical significance between the Mu. marmoratus populations around the Scotia Arc 

and the population at Kerguelen Islands. This suggests that these are separate 

populations and that gene flow between these populations is limited. In contrast, there 

was no evidence for population structuring for Mu. evseenkoi, despite the equally large 

geographic range. 

Both these species are distributed along the continental shelves and this may be a key 

factor in their distribution patterns. For the subAntarctic populations, shelf areas around 
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islands are separated by areas of deep water where there is no habitat available for 

larvae distributed by the oceanographic currents. This lends itself to isolation of 

populations within limited gene flow. In contrast, for the high Antarctic populations, 

there is a continuous continental shelf which offers a potential route for larval dispersal 

and associated gene flow. This will be discussed further along with the results for 

Macrourus species in Chapter 7. 

3.8 Summary of Results 

This study has examined both morphological and molecular descriptions for the genus 

Muraenolepis and conclusively demonstrated that four species exist, thus resolving the 

confusion and sometimes contradictory results of previous investigations. 

 

Figure 3-16 Summary of the species proposed for the genus Muraenolepis and the 

outcome of this research. 
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Species Lateral Line Vertebrae 2nd Dorsal Fin Anal Fin 

Mu. marmoratus Regular, middle of 
D2 67-71 128-147 89-108 

Mu. orangiensis Regular, middle of 
D2 74-76 161-175 124-131 

Mu. microcephalus Irregular, short 83-85 160-176 122-135 
Mu. evseenkoi Irregular, short 70-74 133-146 99-112 

Table 3.10 Key proposed by Chiu and Markle (1990) edited in respect of the findings 

from this research. 
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CHAPTER 4 

The phylogenetics and phylogeography of the genus, Macrourus 

4.1 Introduction 

The Macrouridae is a predominant benthopelagic family throughout the World’s deep 

seas. The common name is grenadiers or rattails, morphologically defined by a short 

body with a long, tapered tail and lack of caudal fin. The family consists of 35 genera 

with over 300, mostly tropical, species. Only nine species are known in the Southern 

Ocean (Coelorinchus faciatus, Coelorinchus marinii, Coryphaenoides ferrier, 

Coryphaenoides filicauda, Coryphaenoides lecontei, Cynomacrurus piriei, Macrourus 

carinatus, Macrourus holotrachys, Macrourus whitsoni) and four of which (C. ferrier, 

C. lecontei, C.piriei, Ma. whitsoni) are endemic. Macrouridae are divided into four 

subfamilies - Bathygadinae, Trachyrincinae, Macrouroidinae, and Macrourinae – with 

about 270 of the species belonging to Macrourinae (Iwamoto, 1990, McLellan, 1997), 

including the species in the genus Macrourus, which is the subject of this study. 

At the start of this study, the genus Macrourus had 4 described species. Macrourus 

berglax Lacepede, 1801 is found in the North Atlantic; Macrourus carinatus (Günther, 

1878) and Macrourus holotrachys Günther, 1878 are both found in temperate to 

subAntarctic waters; and Macrourus whitsoni (Regan, 1913) is found exclusively in 

Antarctic waters. A fifth species, Macrourus caml Smith, 2011, was discovered during 

the course of this research and in parallel research (Smith et al., 2011). At the time of 

morphological identification only the four species had been described. The fifth species 

will be discussed in context of the results from this study. 
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Recognised Species 

The first Macrourus species to be described (in Histoire Naturelle de Poissons 

(Lacepede, 1801)) for this genus was Macrourus berglax, caught off the coast of 

Greenland and Iceland, in the North Atlantic. Lacepede (1801) concurred with the 

suggestion of Bloch (1786) to place this fish in a separate genus from Coryphaenoides. 

It was described as being covered in scales with a dorsal fin ending with a spine, which 

has given rise to the common name of ‘rattail’. There were five rows of teeth in the 

upper jaw and three in the lower jaw. It was also noted that this species is an important 

prey item for other species. 

Two further species were then described in the preliminary notices of deep-sea fish 

from the H.M.S. Challenger (1872-1876) expedition (Günther, 1878). Macrourus 

holotrachys was described, from a single specimen collected off the coast of Argentina, 

as having a short snout and large eye. The head is covered with rough scales on the top 

and sides but naked on the underside, and there are five scales between the first dorsal 

spine and lateral line. Macrourus carinatus (named Coryphaenoides carinatus at 

collection and later to be renamed in Günther, 1878) was described from a station at 

Prince Edward Island. The snout is more pronounced compared with the other described 

species, with a single row of teeth in the lower jaw. The scales were pronounced with 

six scales between the first dorsal spine and lateral line.  

The fourth species to be described was Macrourus whitsoni (Regan, 1913) in the 

Antarctic Fishes of the Scottish National Antarctic Expedition, 1902-1904. It was 

described from two specimens, found off Coats Land in the Weddell Sea, as having a 

pronounced snout with a prominent orbital ridge, large eye and scaled body, including 

side of head, with seven scales between the dorsal fin and lateral line. The illustrations 
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taken from these texts are shown in figure 4-1 and the catch locations given in table 4-1 

and illustrated in figure 4-2 (with the exception of the North Atlantic Ma. berglax). 

A       

B  

C   

D  

Figure 4-1 Illustrations showing the morphology of the described species; (A) Ma. 

berglax (Lacepede 1801), (B) Ma. carinatus (FAO, www.fishbas.org), (C) Ma. 

holotrachys (FAO, www.fishbas.org), and (D) Ma. whitsoni (Regan, 1913). 
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Species Distribution Depth Reference 

Ma. carinatus 
near Prince Edward Island, 

46˚ 41'0" S 38˚ 10'0" E 
500 fathoms Gunther, 1878 

Ma. holotrachys 
east of Rio de la Plata,   37˚ 

17'0" S 53˚ 52'0" W 
600 fathoms Gunther, 1878 

Ma. whitsoni 
off Coats Land,      71°22' S, 

16°34' W 
1410 fathoms Regan, 1913 

Table 4-1 Type locality for all described species of Macrourus from the southern 

hemisphere. 

 

 

Figure 4-2 Map showing the type localities of southern hemisphere Macrourus species. 
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Geographic Distribution 

Although this study is primarily concerned with the distribution of species within the 

Antarctic and subAntarctic, for completeness, Macrourus berglax has been included in 

the species descriptions of the genus and will also be considered here. This North 

Atlantic counterpart has a distribution range that extends across the North Atlantic from 

the northern states of the U.S.A and Canada to Greenland, Iceland and Norway. It is a 

benthopelagic species with a depth range of 100 m to 1000 m (Cohen, 1990) 

For the Antarctic species there are conflicting definitions of the species ranges. 

According to Cohen (1990) the distribution of Macrourus holotrachys is restricted to 

the Patagonian slope (300 m to 1200 m) and Shag Rocks (South Georgia) but Iwamaoto 

1990) extended this to include the continental shelf of southern Chile. Miller (1993) 

included East and West Antarctica and Laptikhovsky (2005) extended the depths down 

to 1750 m. The distribution of Macrourus carinatus also ranges from the continental 

shelves of South America but extends to include the subAntarctic islands (Crozet, 

Prince Edward, Macquarie), seamounts (Discovery, Meteor) and off the coast of New 

Zealand. It has also been described off Africa (Laptikhovsky, 2005). The depth range is 

similar to that of Ma. holotrachys, with the greatest overlap at about 1000 m. Below 

1100 m, Ma. holotrachys is the dominant species (98.7% of macrourid catch) 

(Laptikhovsky, 2005). 

The fourth species, Macrourus whitsoni, is the true Antarctic species with a 

circumAntarctic distribution extending from the continental shelf to the Antarctic 

Convergence and Scotia Arc, at depths of 400 m to 3185 m (Cohen, 1990, Iwamoto, 

1990, Miller, 1993b). 
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Ecology 

Studies analysing age structure on Macrourus species based on otoliths have found the 

species to be slow growing and long-lived, and a preference of descending to greater 

depths with age (Marriot et al., 2003). The maximum age for Ma. whitsoni in the Ross 

Sea has been estimated at over 50 years for both males and females, with females found 

to grow faster than males; ( L50 = 12 years for males and L50 = 14 years for females), 

(Marriot et al., 2003). For Ma. holotrachys at South Georgia the maximum age was 

thought to be in excess of 30 years, with maturity reached at 9 years and females 

growing larger than males (Morley et al., 2004), and indication of sexual dimorphism.  

Macrourus carinatus is of similar size to Ma. holotrachys, but as with Ma. holotrachys, 

displays sexual dimorphism with females being larger than males. This size difference 

is possibly a strategy to increase fecundity in nutrient poor deep water (Laptikhovsky, 

2005). In contrast, Ma. carinatus from Heard and MacDonald Islands showed slower 

growth rates with no significant size difference between males and females (van Wijke 

et al., 2003); however this may be attributed to a bias towards smaller sizes caught by 

trawl fishing methods and seasonal variations. 

Examination of the ovaries suggested a complex reproductive cycle with a major, 

prolonged spawning season. Fecundity has been estimated at 22,000 to 260,000 oocytes, 

increasing with body size (Morley et al., 2004). The eggs are ornamented with a 

hexagonal honeycomb structure which may slow the ascent of the eggs in the water 

column after release. Eggs released by adults at the lower depths of the range would rise 

to the thermocline, hatch and then the larvae would sink, remaining within the adult 

depth range. This possibility is supported by the large numbers of juveniles caught at 

depth and absence of larvae caught in surface waters (Merrett and Barnes, 1996). 
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Similar egg development at adult depths is also thought to occur in macrourid species in 

the Ionian Sea (Mediterranean) (D'Onghia et al., 2000). 

The parasite fauna comprising of all four macrourid species was found to be very 

similar, suggesting an overlap in prey and distribution patterns, and a close phylogenetic 

relationship. Macrourus whitsoni revealed a range of exo- and endoparasites, serving as 

both an intermediate and end host. This is a common find in generalistic, predatory 

feeding Antarctic fish (Walter et al., 2002). 

The rostrum and jaws of grenadiers are the most variable features between the species 

and indicative of feeding behaviour. A large mouth and blunt snout suggests mostly 

pelagic and benthopelagic prey. A small mouth and pointed snout is more indicative of 

benthic prey. Macrourids do not show any great degree of specialisation in the shape. 

Macrouridae are generalist feeders with their diet varying with size, depth and season. 

Analysis of the stomach contents of Ma. berglax were shown to alter with fish size 

(McLellan, 1997). Small fish preyed on benthic prey, large fish on benthopelagic prey. 

Macrourus carinatus shows a preference for pelagic prey such as salps, amphipods, 

euphausids and bathypelagic fish. The deeper living Ma. holotrachys prefers benthic 

prey such as amphipods, decapods, isopods and polychaetes (Laptikhovsky, 2005, 

McLellan, 1997).. At the overlap between the two species (1000 m), prey biomass is 

high and competition for prey is minimal (Laptikhovsky et al., 2008) 

As well as being identified as a top predator within the fish assemblages of the Antarctic 

(Pakhomov et al., 2006), Macrourus species are major prey items for both Patagonian 

toothfish (Disosstichus eleginoides) and Antarctic toothfish (D. mawsoni). Dissostichus 

eleginoides in the Maquarie Island fishery has been shown to consume 3401t 

Macrouridea per annum (Goldsworthy et al., 2001) and identified in the diets of fish on 
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the Argentinean slope (García de la Rosa et al., 1997). For D. mawsoni in the Ross Sea 

Macrourus species have been identified in 37% of stomachs (Fenaughty et al., 2003), 

making it a significant component of the Antarctic ecosystem. 

4.2 Morphological Identification 

The initial molecular results raised a question over the widely accepted morphological 

identification and distribution of these species. Therefore, a better understanding of the 

morphological distinction was required to gain a fuller understanding of the genus. The 

type specimens (holotypes) for each of the four species described for this genus were 

obtained for examination. Macrourus carinatus, Ma. holotrachys and Ma. whitsoni are 

held at the British Museum of Natural History, London. The type specimen for Ma. 

berglax is held at the Muséum National d’Histoire Naturelle, Paris and could not be 

provided on loan but photographs were supplied on request.  
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A  

B  

C   

D  

Fig 4-3 Type specimen for (A) Ma. berglax (B) Ma. holotrachys, (C) Ma. carinatus and 

(D) Ma. whitsoni. Images B, C & D courtesy of the British Museum of Natural History, 

London. Image A courtesy of the Muséum National d’Histoire Naturelle, Paris. 
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Sample Collection for Molecular Analysis 

The samples collected for use in this study (682 samples, see Table 4-2) were identified 

by scientific observers onboard vessels, using the key given in Figure 2-4. There was no 

predominant species found within the collection, with 27% identified as Ma. carinatus, 

29% as Ma. holotrachys and 33% as Ma. whitsoni. Accurate identification is made 

difficult, particularly for juvenile specimens, by the overlapping ranges of taxonomic 

characters used and therefore, some of the specimens (11%) were initially only 

identified to genus level. 
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Table 4-2 Collections of Macrourus specimens and species as identified by morphology 

at time of collection. 

   Species identified at collection 

Location Year Collection Ma. carinatus Ma. 
holotrachys Ma. whitsoni Genus 

only 
South 

Georgia 2002 Dorada    7 

South 
Georgia 2003 Dorada 29 29 36 3 

South 
Georgia 2003 Commercial   6 55 

South 
Georgia 2003 Viking Bay 7 57   
South 

Georgia 2003 Dorada 1   7 

South 
Georgia 2003 Cisne Verde  67   
South 

Georgia 2003 Isla 
Alegranza  10   

South 
Georgia 2003 Isla 

Alegranza   15  
South 

Georgia 2003 Isla 
Alegranza 10    

South 
Georgia 2006 JCR BioPearl   1  
South 

Georgia 2009 San Aspiring   29  
South 

Georgia 2011 CCAMLR 17 17 16 2 

South 
Sandwich 

Islands 
2009 San Aspiring   50  

South 
Sandwich 

Islands 
2010 Argos 

Froyannes   15  

Ross Sea 2006 Argos 
Georgia 85  11  

Ross Sea 2009 Argos 
Georgia   10  

Ross Sea 2010 Argos 
Froyannes   34  

Falkland 
Islands 2010 ZDLTI 36    

Falkland 
Islands 2012 ZDLC2  20   

TOTAL 185 200 223 74 
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4.3 Molecular Identification and Phylogenetics 

Molecular methods were used to examine and confirm the species identity of these 

specimens. Two mitochondrial gene regions were selected for this purpose. The first 

was the ribosomal RNA subunit16S, which is commonly used for phylogenetic studies. 

The second was the Cytochrome Oxidase I, the standard gene used for species 

identification and DNA barcoding in fish (Ward et al., 2009). The COI gene is more 

variable and therefore offers better resolution at the species level. In the analysis, the 

results from each of these markers were analysed separately. Two outgroups were 

selected for use in the analysis; Muraenolepis orangiensis or Muraenolepis marmoratus 

(from this study) and Merluccius paradoxus (voucher DAAPV F8) sequence obtained 

from GenBank (GU324141; GU324176). 

Species names have been assigned to the phylogenetic trees. These were applied post-

analysis for clarity of the results. The method used to determine the correct species 

name to assign to each branch, based on morphology and geographic location, is 

detailed after the phylogenetic results. 

16S Data 

The 16S gene region was sequenced for 417 samples. The sequences were edited to 

remove poor quality data and a 500bp read length was successfully obtained for 392 

(94%) of the samples. These sequences were aligned using Geneious and four unique 

haplotypes (individuals with identical sequence grouped together) were identified.  

These four haplotypes were tested to ensure there was no evidence for compositional 

heterogeneity using Chi-square test (PAUP; P>0.999) and mismatched-pairs test for 

symmetry (SeqVis; x% at p-value<0.05 and 0.01), making them suitable for use with 

standard phylogenetics programs. The sequences were analysed using standard methods 
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of heuristic searches using unweighted maximum parsimony (PAUP), heuristic searches 

using maximum likelihood with DNA substitution models (GARLI; substitution model 

TMP2+G) and Bayesian inference substitution models (MrBayes; substitution model 

HKY). 

The haplotype was also analysed for Bayesian inference using PHASE with the 

program mcmcPHASE, GTR+G substitution model, and the results processed in 

SUMMARIZE to obtain the majority rule tree (Figure 4-4). Full details of the analysis 

methods are given in Chapter 2. 

 

Figure 4-4 Majority rule phylogenetic tree for Macrourus 16S data showing PHASE 

branch posterior probability support values, haplotype frequencies (in parenthesis) and 

species included within each clade. 

This phylogenetic tree shows two main branches (29% of samples and 71% of samples), 

each with a single sample branch. The posterior probabilities showed the node between 

branches was well supported (1.0) and the nodes within branches were poorly supported 

(0.69 and 0.55) There were three variable sites (0.6%), two of which were single 

nucleotide polymorphisms relating to the two outliers. Obviously, this variation was not 
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GARLI       65 
PHASE    0.66 
MrBayes  0.69 

PUAP      100 
GARLI    100 
PHASE    1.0 
MrBayes  1.0 

 

PUAP         -
GARLI       65 
PHASE    0.65 
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Ma. holotrachys   
Ma. berglax 

Ma. carinatus  
Ma. whitsoni    
Ma. caml 
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sufficient to resolve the species identification; therefore a more variable gene region 

was required. 

COI Data 

The COI region is more variable than 16S and a more informative marker for species 

identification and phylogenetics. After editing to remove poor-quality data, a 420bp 

sequence for the COI gene region was obtained for 596 individuals (unfortunately, the 

‘Ross Sea 2006’ samples failed to produce quality sequence data). Alignment of the 

sequence data in Geneious and identification of identical sequences resulted in 11 

unique haplotypes being identified. 

As for the 16S data, the haplotypes were checked for evidence of compositional 

heterogeneity. The values obtained for the Chi-square test were within acceptable limits 

(P>0.999), however, the mismatched-pairs test for symmetry revealed a level of 

heterogeneity (x%=0.1538 at p-value <0.05; x% 0.1282 at p-value<0.01). The data were 

analysed as above but the resultant phylogenetic trees gave poor support values for both 

bootstrap percentage and posterior probabilities for a number of branches, and these 

results varied between analysis methods. 

The initial attempt the resolve this issue using RY-coding (Phillips et al., 2004) resulted 

in reduced heterogeneity to within acceptable levels but also resulted in a significant 

loss in variation. Converting the data to AGY coded format proved to be more 

successful, reducing the heterogeneity to within accepted limits (P=1.000; x%=0.0000; 

x%=0.0000) while maintaining a higher level of variability. 

The original haplotype data were analysed in PHASE using the program mcmcPHASE 

and THREESTATE substitution model, a general time-reversal AGY model. A majority 
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rule tree with Bayesian posterior probability support values was produced using 

SUMMARIZE (Figure 4-5).  

 

 

 

 

Figure 4-5 Phylogenetic tree for Macrourus COI data showing bootstrap percentages 

and branch posterior probabilities for all analysis methods (*AGY coded). Species 

names as identified by COI data with haplotype frequencies in parenthesis. Geographic 

sample locations for each clade are displayed on the right. 

As expected, the COI region was more informative than 16S, with 16 variable sites 

along the read region (4%). In contrast to the 16S tree topography, COI provided four 

main branch groups, which was sufficient variation to resolve the species identification. 

The lower branches were well supported by PHASE posterior probabilities (<0.95). The 

variation between some higher branches was insufficient to obtain support values 
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greater than 0.5. The support values are low for analysis methods that do not account for 

the level of heterogeneity. 

Assigning species names 

Although there are four described species for this genus, the molecular and phylogenetic 

results did not agree with the expected result: 

• North Atlantic species Ma. berglax was genetically identical to Southern Ocean 

species Ma. holotrachys for both 16S and COI, suggesting that they are the same 

species. However, further work is required to verify this. 

• Ma. whitsoni did not form a single group but two separate branches, suggesting 

the presence of a new species, which has now been formally identified as Ma. 

caml (McMillan et al., 2012). 

Designation of species names to the main branches required careful consideration of 

both fish morphology and catch location, including data observed from each of the four 

species Type specimens, and catch location (Figure 4-5). 

The first clade, from Falkland Islands and South Georgia, contains samples of which 

90% were identified by morphology as Ma. carinatus and so all samples within this 

clade are designated as Ma. carinatus by COI data.  

Specimens of both Ma. berglax from the North Atlantic and Ma. holotrachys from 

Falkland Islands and South Georgia, identified by morphology, formed a single clade 

for both 16S and COI data. As this study is concerned with species present in the 

Southern Ocean, morphological data were not available to accompany the genetic 

samples for the North Atlantic Ma. berglax so there could be no further consideration 

on the species designations from this data. However, if North Atlantic Ma. berglax and 
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Southern Ocean Ma. holotrachys are confirmed as one species Ma. holotrachys would 

be the junior synonym. For simplicity of representation of the results, this branch has 

been designated Ma. holotrachys. 

The final two clades, one from South Georgia and the South Sandwich Islands, the other 

from the South Sandwich Islands and Ross Sea, were both identified as Ma. whitsoni by 

morphology. The two clades are sufficiently distinct to indicate the presence of two 

species. To be able to designate one of these as a new species required re-examination 

of the type specimen and consideration of where specimens were collected. The type 

specimen was collected off Coats Land, on the continental shelf of the Weddell Sea 

(Regan, 1913). The two groups identified in this study showed a distinct geographic 

separation. One group comprised mainly of samples from South Georgia, with fewer 

numbers from the South Sandwich Islands and Ross Sea. The second group were the 

predominant species in the Ross Sea and southern part of the South Sandwich Island 

chain. The latter samples were shown to be a closer match, both geographically and 

morphologically, so were given the designation Ma. whitsoni, and the other branch 

designated a new species. 

During the course of this study, Macrourus species were also examined genetically as 

part of an initiative to DNA barcode all species from the Southern Ocean during the 

International Polar Year 2008 (Smith et al., 2011). The results of this independent study 

concurred with the findings presented here and the name Ma. caml was assigned to this 

new species in recognition of the Census of Antarctic Marine Life (CAML) project 

(McMillan et al., 2012). This nomenclature will be used for the presentation of the 

results. 
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4.4 Morphological Data 

The species collections were corrected for molecular identification. Species 

identification was by COI sequence data. Ross Sea 2006 samples which failed to 

produce sequence data of sufficient quality and were identified by HRMA technique as 

described in Chapter 2. 
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Table 4-3 Macrourus collections with species identification by COI sequence. 

Information in parenthesis show misidentification by morphology at collection (C - Ma. 

carinatus; H – Ma. holotrachys; Wc – Ma. caml). 

   Species identified by COI sequence  
Location Year Collection Ma. 

carinatus 
Ma. 

holotrachys 
Ma. 

whitsoni  Ma. caml Failed 

South 
Georgia 2002 Dorada 5 1  1  
South 

Georgia 2003 Dorada 26 (1H) 30 (2C)  
41 

(2C;2H)  
South 

Georgia 2003 Commercial*  54 (1W)  7  
South 

Georgia 2003 Viking Bay  62 (5C)  2 (2C)  
South 

Georgia 2003 Dorada 4   4  
South 

Georgia 2003 Cisne Verde  55  12 (12H)  
South 

Georgia 2003 Isla 
Alegranza  10    

South 
Georgia 2003 Isla 

Alegranza    15  
South 

Georgia 2003 Isla 
Alegranza 8 1 (1C)  1 (1C)  

South 
Georgia 2006 JCR 

BioPearl    1  
South 

Georgia 2009 San Aspiring    29  
South 

Georgia 2011 CCAMLR 11 (1H) 16 (1C)  23 (6C) 2 

South 
Sandwich 

Islands 
2009 San Aspiring   

17 
(17Wc) 33  

South 
Sandwich 

Islands 
2010 Argos 

Froyannes    15  

Ross Sea 2006 Argos 
Georgia   

4 
(2C;2Wc) 84 (76C) 9 

Ross Sea 2009 Argos 
Georgia    10  

Ross Sea 2009 Argos 
Froyannes   

15 
(15Wc) 15 4 

Falkland 
Islands 2010 ZDLTI 35 1 (1C)    

Falkland 
Islands 2012 ZDLC2  20    

TOTAL 89 250 36 293 15 
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Since the molecular results revealed complexities in species identification, with the 

discovery of a new species, it was decided to re-examine the morphology. This was 

only possible for specimens where morphological measurements were recorded: South 

Georgia 2003 Dorada collection and South Sandwich Islands 2010, Argos Froyannes. 

This incorporated the three species: Ma. carinatus, Ma. holotrachys and Ma. caml. 

Unfortunately there was no morphological data available for Ma. whitsoni. The results 

for the key morphological features are given in Table 4-4. 

 
Ma. carinatus 

(n=24) 
Ma. holotrachys 

(n=30 ) 
Ma. caml 

(n=37 ) 
Pelvic fin rays 8-9 (8-9) 8-9 (8-9) 7-9 (7-9) 

Pyloric caeca count 14-21 (13-21) 9-16 (8-16) 20-36 (18-28) 
Scales from anus to 

lateral line 18-27 (<27) 20-28 28-37 (>27) 

Scales on underside of 
snout Y (Y) N (N) Y (Y) 

Position of second 
dorsal fin to anus 

in line, some 
slightly anterior 
(slightly anterior) 

Anterior, some in 
line (anterior) In line (in line) 

Table 4-4 Summary of key morphological features used for identification updated using 

data from South Georgia 2003 Dorada collection and South Sandwich Islands 2010, 

Argos Froyannes. Information in parenthesis shows the range expected for the species 

(Iwamoto, 1990, Cohen, 1990). 

The morphological data were shown to be within the expected range for the species with 

the exception of pyloric caeca count for Ma. caml. This extended beyond the expected 

range (Iwamoto, 1990, Cohen, 1990). 

A common trend found among grenadiers is for the females to grow to a larger size then 

males (Laptikhovsky, 2005). For the South Georgia (Dorada) 2003 collection the total 

length and weights were recorded (Table 4-5). The log length was plotted against the 
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log weight for both male and female specimens of all species to examine any trends in 

size distribution (Figure 4-6). 

 Ma. carinatus Ma. holotrachys Ma. caml 

 
Male 

(n=13 ) 
Female 
(n=11 ) 

Male 
(n=12 ) 

Female 
(n=9 ) 

Male 
(n=13 ) 

Female 
(n=24 ) 

Total length (mm) 225-623 377-751 217-450 470-630 350-638 410-700 
Weight (g) 34-1228 224-2309 42-495 94-1422 210-1204 380-2072 

Table 4-5 Length and weight ranges for males and females for each species, from South 

Georgia 2003 Dorada collection. 
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Figure 4-6 Graphs showing the relationship between length and weight for the three 

species of Macrourus from South Georgia 2003 (Dorada) collection. 
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For all three species, the distribution was for females to be larger than males; however 

there was considerable overlap between ranges. The length to weight distribution was 

similar for all three species. 

It has also been proposed that in the Ross Sea, Ma. caml grows slower but to a larger 

size than Ma. whitsoni (Pinkerton et al., 2013). The total length and weight were 

recorded for these specimens from South Georgia 2003 (Dorada), South Sandwich 

Islands 2009, South Georgia 2009 and Ross Sea 2010. This data are summarised in 

Table 4.6. 

 Ma. caml Ma. whitsoni 

 
Male 

(n=32 ) 
Female 
(n=79 ) 

Male 
(n=10 ) 

Female 
(n=40 ) 

Total length 
(mm) 350-638 135-755 416-554 288-721 

Weight (g) 210-1204 369-2364 400-1100 290-1400 

Table 4-6 Length and weight ranges for males and females for each species, from South 

Sandwich Islands 2009 and South Georgia 2009 San Aspiring collections.     

 

Figure 4-7 Graph showing the relationship between length and weight for Ma. whitsoni 

from South Sandwich Islands 2009 and Ross Sea 2010 collections. 
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The graph in Figure 4-7 shows similar length to weight distributions for both species. In 

general, females are larger than males for both species and the size range for Ma. caml 

does extends further than for Ma. whitsoni.  

In summary, all graphs show a trend for smaller males and larger females. There is no 

difference in the length-weight relationship between species at South Georgia (Ma. 

carinatus, Ma. holotrachys and Ma. caml). However the data suggest a difference in 

length-weight relationship between Ma. caml (R2=0.9347) and Ma. whitsoni 

(R2=0.8614) with Ma. caml growing to a larger size. 

4.5 Geographic Distribution 

Having clearly defined the identity of the Macrourus species, using molecular 

barcoding, the different species distributions were plotted to visualise any potential 

spatial separation/habitat preference. 
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Figure 4-8 Map showing geographic distribution of the four Macrourus species, as 

identified by mtDNA COI sequence data. 

It can be seen in Figure 4-8 that both Ma. carinatus and Ma. holotrachys are distributed 

from the Falklands to the South Georgia region of the Scotia Arc but not south of the 

Southern Boundary Front. By contrast, Ma. whitsoni has a distribution from the South 

Sandwich Islands to the Ross Sea but appears to be confined within the Southern 

Boundary Front. Ma. caml also ranges from the Scotia Arc to the continental shelf of 

the Ross Sea but extends north across the Southern Boundary Front on the Scotia Arc.  

The main study area of the Scotia Arc was examined in closer detail. 
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Figure 4-9 Map showing the distribution of the four Macrourus species, as identified by 

mtDNA COI sequence, in the Scotia Arc region. 

On the Scotia Arc, Figure 4-9, the distribution of species is shown to change with 

latitude. In the north the species found were limited to Ma. carinatus and Ma. 

holotrachys. Ma. caml is present to the north of South Georgia (Shag Rocks) but the 

samples from this area are still shown to be predominantly Ma. carinatus and Ma. 

holotrachys. Further south, Ma. caml becomes the predominant species. Neither Ma. 

carinatus nor Ma. holotrachys were caught south of the Southern Boundary Front. 

Macrourus caml was the only species found around the northern islands of the South 

Sandwich Island chain. It was also found in the south but in smaller numbers in 

comparison to Ma. whitsoni. 
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4.6 Population Genetics 

Following molecular and morphological integrated species identification (including the 

new species) and revised distribution patterns the population structure of the studied 

Macrourus species was tested in AMOVA using the haplotype frequencies. The data 

were first partitioned by species to remove the effect of species composition within 

populations from the statistical analysis. The data set was then further partitioned by 

geographic location and year. Data were discounted where insufficient numbers of 

samples were present (n<5) as governed by Arlequin requirements.  

For Ma. carinatus this was South Georgia 2003 (three populations, depth 900-600m), 

Falkland Islands 2010 (depth 330-300m), and South Georgia 2011 (depth 1400-730m). 

There was no differentiation between populations (exact p value =0.00000+/-0.00000). 

 

     Macrourus carinatus populations 

Figure 4-10 Maps showing Ma. carinatus population locations for haplotype frequency 

comparisons. 
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For Ma. holotrachys the populations were South Georgia 2003 (three populations, depth 

900-600m) and Falkland Islands 2012 (depth 1550m). There was no differentiation 

between populations (exact p value =0.00000+/-0.00000). 

 

     Macrourus holotrachys populations 

Figure 4-11 Maps showing Ma. holotrachys population locations for haplotype 

frequency comparisons. 

For Ma. caml, it was South Georgia 2003 (four populations, depth 900-600m), South 

Georgia 2009 (depth 1450-800m), South Sandwich Islands 2009 (depth 1700-1125m), 

South Sandwich Islands 2010 (depth 1220m), Ross Sea 2010 (1430-790m), and South 

Georgia 2011 (two populations, depth 1400-730m). There was no differentiation 

between populations (exact p value =0.00000+/-0.00000). 

114 
 



 

     Macrourus caml populations 

Figure 4-12 Maps showing Ma. caml population locations for haplotype frequency 

comparisons. 
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For Ma. whitsoni the populations considered were South Sandwich Islands 2009 (depth 

1450-1280m) and Ross Sea 2010 (1430-790m). There was no differentiation between 

populations (exact p value =0.00000+/-0.00000). 

 

 

Figure 4-13 Maps showing Ma. whitsoni population locations for haplotype frequency 

comparisons. 

For all four species there was no evidence of population structuring inferred from the 

haplotype, however, this is due to the limited number of haplotypes present and the low 

level of variability between haplotypes. Analysis with highly variable markers will be 

required to determine any structuring of populations. 
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4.7 Discussion 

At the beginning of this study it was generally accepted that there were globally four 

species of Macrourus, with Ma. berglax in the North Atlantic and, Ma. carinatus, Ma. 

holotrachys and Ma. whitsoni in the Southern Ocean. All three Southern Ocean species 

were reported around South Georgia and samples were available for this study. Six 

samples of Ma. berglax were also included to enable phylogenetic analysis of the 

complete genus. Additional sampling opportunities in the Southern Ocean, occurring 

during the progress of this study, allowed the inclusion of material from the South 

Sandwich Islands and the Ross Sea. The initial aim of the study was to use molecular 

methods to clarify the key used for distinguishing the three Southern Ocean species by 

morphology. Morphological similarity between species and overlapping ranges made it 

difficult to accurately distinguish between the species. This was further complicated by 

specimen damage caused during capture (particularly for trawled fish), which removed 

key taxonomic features such as scales under the snout and distorted features from 

expanding swim bladders. Correct species identification was essential before any 

phylogenetic analysis or microsatellite studies can be carried out and therefore detailed 

morphological analysis were conducted in parallel to the molecular work. 

During the course of this study and confirmed by a separate parallel study (Smith et al., 

2011), this problem with what had been the standard taxonomic key was emphasised by 

the discovery of that Ma. whitsoni was actually two species, now named Ma. whitsoni 

(high Antarctic species) and Ma. caml (subAntarctic species). This research has shown 

that Ma. berglax (a North Atlantic species) and Ma. holotrachys (a Southern Ocean 

species) are genetically identical for the COI gene region, usually sufficient for DNA 

barcoding and species identification purposes, which raises the question of whether or 

not they are the same species.  
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Initially, this study was concerned only with the species present around South Georgia 

(CCAMLR area 48.4 ground fish survey). However, as a result of discovering 

unexpected species complexities and hearing about parallel research being carried out, 

the geographic range of this study was extended to include the South Sandwich Islands 

and the Ross Sea, to determine the geographic ranges for these species. 

Species Identification and Geographic Range 

The first aim of this study was to establish whether using molecular methods to identify 

the species could be used to clarify the morphological key for this genus. This involved 

DNA sequencing of two regions of the mitochondrial genome commonly used for 

phylogenetic analysis, 16S and cytochrome oxidase I (COI). The 16S region is usually 

informative at the generic level but can be limited for species level differentiation. The 

COI region has a higher rate of mutation and is commonly used for species 

identification (Dettai et al., 2011, Grant et al., 2011). 

For the Macrourus species, the level of interspecies 16S variation was insufficient to 

resolve all the species present. The COI marker was shown to be more informative and 

identified four species with low intraspecific variation. However, the four species 

identified did not concur with the results expected from morphological analysis and thus 

required further investigation of the morphological features and geographic locations.  

Macrourus carinarus 

The only species that could be easily matched for both morphological taxonomy and 

molecular identification was Ma. carinatus, with, at collections, 98% of the samples 

being correctly identified by morphology. Where samples had been misidentified, they 

had been attributed to Ma. holotrachys, but these specimens were juvenile fish. In 
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Macrourus, juveniles, the taxonomic features are not fully developed, which creates a 

particular problem for species identification (Laptikhovsky, 2005, Morley et al., 2002).  

Macrourus carinatus is thought to have a subAntarctic distribution, shown in figure 4-

14. This was confirmed here in this study, with samples identified from Burdwood Bank 

and South Georgia, but was not present in any of the samples collected south of the 

Southern Boundary Front. Genetically identified specimens have also been recorded 

from Prince Edward Island, southern Australia, South Tasman Rise, South Pacific 

Ocean (New Zealand, Pacific-Antarctic ridge) and a single specimen from the Ross Sea  

(McMillan et al., 2012).  

On the Falklands shelf, the geographic distribution of Ma. carinatus varies with age, 

with juvenile fish dominant in the north (41˚S to 50˚S) and adults in the south (50˚S to 

54˚S), with seasonal migration related to reproduction (Laptikhovsky, 2011). The eggs 

and larvae are pelagic, remaining in the epipelagic and mesopelagic zones. Distribution 

potential is dependent on oceanographic currents, utilising the Falkland Current (500-

1000m depth) for transport of eggs and larvae north to the nursery grounds 

(Laptikhovsky, 2011).  Adults have been observed to spawn all year round, with an 

autumn peak and lesser spring peak, with both spawning animals and juveniles found 

over the Falkland slope and Burdwood Bank, from 257 m to 1097 m (Laptikhovsky et 

al., 2008) 

Females have been found to dominate shallow waters (above 400m) and males deeper 

waters (below 800m), with the maximum age for fish collected at 37 years  

(Laptikhovsky et al., 2008). Macrourus carinatus is thought to grow more slowly and to 

a smaller size than Ma. whitsoni (van Wijke et al., 2003). As with other macrourid 

species, size has been shown to increase with depth (Coggan et al., 1996).  
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The length-weight relationship has been found to be statistically significant for 

individuals from Macquarie Island, and Heard and MacDonald Islands; however, this 

may be attributed to seasonal and reproductive variation (van Wijke et al., 2003). The 

length-weight relationship, examined here for this study, also displays the trend for 

females to be larger than males. Data for this analysis were only available from the 

South Georgia 2003 Dorada collection so it was not possible to do a comparison 

between geographic regions. However, there was no significant difference in length-

weight relationship between any of the three species in this area. 

B  

Figure 4-14 Distribution maps for (A) Ma. carinatus and (B) Ma. whitsoni taken from 

FAO Species Catalogue (Cohen, 1990). 

Macrourus whitsoni and Macrourus caml 

The original data set for Ma. whitsoni (as was the classification at the time) was from 

the South Georgia 2003 collections. From these data, 77% of the samples had been 

correctly identified by morphology. The main error was from a single collection where 

the majority of samples were Ma. holotrachys and all samples within the collection had 
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been designated as the same species. With the removal of that data set, the correct 

identification increases to 91%, suggesting that as with Ma. carinatus, the species 

morphological keys are sufficient. 

The results of the South Sandwich Islands 2009 data set revealed a fourth haplotype for 

COI, suggesting the presence of a previously un-described species. Obtaining further 

sub-samples from specimens caught in the Ross Sea confirmed the presence of this new 

species within the High Antarctic waters. Unfortunately data relating to the morphology 

of these specimens, i.e. number of pyloric caeca, pelvic fin rays and scales was not 

available so morphological comparisons with the other species could not be made.  

In parallel, the discovery of this fourth Antarctic species was also made by Smith et al 

(2011) and their examination of whole specimens revealed morphological taxonomic 

differences to distinguish between the previously cryptic species and Ma. whitsoni. The 

taxonomic features are based on colour, number of pyloric ceaca, pelvic fin rays and 

dentition. One morphotype was found be pale in colour, with 9 (rarely 10) pelvic fin 

rays and a single row of long teeth, while the other morphotype was a dark in colour, 

with 8 (rarely 7) pelvic fin rays and two or more rows of short teeth. The morphological 

data from specimens used in this study and re-examination of the Ma. whitsoni type 

specimen in this study allows the pale morph to concur with Ma. whitsoni and the dark 

morph as the new species. This new species has now been formally described as Ma. 

caml (McMillan et al., 2012). 

The current documented species distribution for Ma. whitsoni (figure 4-14) comprises 

the combined distribution for both Ma. whitsoni and Ma. caml. Both species have a 

circum-Antarctic distributions and are found within the same depth range in the Ross 

Sea, with no observed differences in distributional patterns (McMillan et al., 2012). In 
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contrast, this study found distinct distribution patterns. In the Scotia Arc differences 

were observed between the two species, with Ma. whitsoni restricted to the southern 

islands of the South Sandwich Islands, where it was the predominant species. 

Macrourus caml was identified from all areas of the South Sandwich Islands, but in 

greater numbers in the north where Ma. whitsoni was not recorded. Macrourus caml 

was also recorded around South Georgia and Shag Rocks, being the predominant 

species in collections off the south of South Georgia. Both species were recorded from 

the Ross Sea, where the main species found was Ma. whitsoni. Where both species were 

recorded, they were present at the same depth. Pinkerton et al. (2013) found some 

evidence to suggest that the proportion of Ma. whitsoni increases with depth. 

Differences in size have been reported between the two species, with Ma. caml growing 

more slowly and to greater lengths, but reaching sexual maturity at a shorter length than 

Ma. whitsoni (Pinkerton et al., 2013). Age estimates were 27 years for Ma. whitsoni and 

35-39 years for Ma. caml (Marriott et al., 2006, Pinkerton et al., 2013). The growth rate 

appears to be similar for males and females in juvenile fish (Marriott et al., 2006), but 

faster for adult females, growing to a larger size than males, in adult fish (Marriott et al., 

2003). Comparison of length-weight relationships for the two species for the data 

collected in this study found Ma. caml to have a greater size distribution. For both 

species there was a trend for females to be more abundant within catches and be larger 

in size than males. 

Reproductive strategies are similar for both species, Ma. whitsoni and Ma. caml females 

with Ma. caml reaching maturity at 46cm and Ma. whitsoni females at 52cm (14-16 

years for both species), with spawning thought to take place over the summer period, 

from December to January (Pinkerton et al., 2013, Marriott et al., 2006, Prut'ko and 

Chimilevskii, 2011, Prut'ko, 2012). They are thought to be batch spawners, with one to 
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four batches, and a relatively low fecundity of 9000-41,000 eggs (Alekseev et al., 

1992). The eggs are pelagic, possibly bathypelagic, approximately 4 cm in diameter 

(Prut'ko, 2012). 

Macrourus holotrachys and Macrourus berglax 

During this research, results which required further investigation was the discovery that 

Ma. holotrachys from the Southern Ocean and Ma. berglax from the North Atlantic 

were genetically identical for both the 16S and COI mitochondrial gene regions. This 

result has also been confirmed by Smith et al. (2011). According to literature sources 

(Iwamoto, 1990, Cohen, 1990), the morphological data for Ma. holotrachys specimens 

used in this study were within the expected species ranges. The Ma. berglax samples 

supplied for this study were not accompanied by morphological data which prevented a 

direct comparison of the two species.  

The geographic range for the two species is shown in figure 4-15. The range for Ma. 

berglax extends from approximately 37˚ north to 82˚ north along the continental shelf of 

North America and northern Europe (Cohen, 1990). Macrourus holotrachys, has a 

range of approximately 40˚ south to 60˚ south along the continental shelf of South 

America and along islands of the Scotia Arc. This southern distribution overlaps with 

that of Ma. carinatus, but the two species are separated by depth distribution, with Ma. 

holotrachys being the dominant species below 1000 m (Iwamoto, 1990, Laptikhovsky, 

2005). 

123 
 



A  B  

Figure 4-15 Distribution maps for (A) Ma. holotrachys and (B) Ma. berglax taken from 

FAO Species Catalogue (Cohen, 1990). 

A complete review of the genus re-examined the morphology of both Ma. berglax and 

Ma. holotrachys specimens (McMillan et al., 2012) and concluded that, although 

morphologically similar, Ma. berglax has a lower number of scales in a diagonal row 

between the anus and lateral line, and the range for the number of pyloric caeca 

overlapped but extended higher. These key diagnostic features used for morphological 

identification, do suggest that these two species should still be regarded as distinct 

species despite the genetic similarity for 16S and COI gene regions. This appears to be 

an interesting anomaly where standard barcoding genes do not work and therefore 

further work is required. By using a more variable gene regions, such as the control 

region of the mitochondrial genome or nuclear microsatellite markers, it should be 

possible to determine the extent of the genetic similarity between these two species. 

(Laptikhovsky, 2005). (Morley et al., 2004).  

Macrourus holotrachys demonstrates the trend for females to be larger than males, with 

females larger and males smaller than found for Ma. carinatus, and this is thought to be 

a strategy for maximising fecundity (Laptikhovsky, 2005). Spawning females have been 
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found at depths of 1200m (Laptikhovsky, 2011) and they are thought to be either batch 

spawners or have a prolonged annual spawning period, with a fecundity of 22,000 to 

260,000 oocytes (Morley et al., 2004). Macrourus holotrachys is thought to live in 

excess of 30 years, reaching maturity at about 9 years (Morley et al., 2004). 

For comparison, Ma. berglax, found in the North Atlantic, occupies habitats along the 

shelf from depths of 100m to 1000m, with the main concentration at 300m to 500m 

(Cohen, 1990), although the specimens have been recorded as deep as 1638m (Baker et 

al., 2012). The growth of males and females has been found for be similar for juvenile 

fish (up to 9 years), with male growth rates then slower and larger size classes 

predominantly female (Murua, 2003). Maturity is estimated at 15 to16 years, with a low 

fecundity of 8,522 to 61,844 oocytes (Murua, 2003) This would suggest a delayed 

maturity and lower fecundity that has been found for Ma. holotrachys, but with similar 

patterns of growth rates for males and females, as is common for macrourid species 

(D'Onghia et al., 2000). 

Diet 

All five species are generalist feeders altering feeding strategies in accordance with prey 

abundance, but show a preference for benthic prey such as Amphipoda and Decapoda, 

as well as pelagic prey such as euphausiids and myctophid fish (Morley et al., 2004, 

Laptikhovsky, 2005, Pinkerton et al., 2012). Prey preference was also shown to vary 

with depth and seasonality, in response to prey availability and abundance. Macrourus 

carinatus has been shown to have a preference for pelagic prey, whereas Ma. 

holotrachys was found to have a preference for benthic prey, thereby reducing 

interspecific competition where depth ranges overlap (1000m) (Laptikhovsky, 2005).  
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A comparison of the differing dentition and mouth shapes for Ma. caml and Ma. 

whitsoni suggested that the smaller, more subterminal mouth of Ma. caml is more likely 

to be a benthic feeder (McMillan et al., 2012, McLellan, 1997) as did a study of the 

intestine shape and a small number of stomach contents (Pinkerton et al., 2013). 

 A larger study of prey preference for all species would be informative to examine the 

role diet and interspecific competition has in determining geographic distribution of the 

four Southern Ocean species, particularly in areas where the species ranges overlap. 

Combined with a better knowledge of life cycles, spawning grounds, distribution of 

eggs and larvae in the water column and the role of oceanographic currents as both 

means of distribution and barriers to distribution, will allow us to understand the roles 

of both physical and ecological factors in determining species distribution. 

Phylogenetic Evolution 

The second aim of this study was to examine the phylogenetic relationships of the 

species and test for any evidence of population structuring. The level of genetic 

variation was very low, with only 0.6% variation for the 16S gene region and 4% for the 

COI gene region. The 16S region contained insufficient variation to discriminate 

between species and displayed only two clades; one incorporating Ma. berglax and Ma. 

holotrachys, the other Ma. carinatus, Ma. caml and Ma. whitsoni (Figures 4-2). The 

higher level of variation for the COI region identified four clades which related to Ma. 

carinatus, Ma. holotrachys/Ma. berglax, Ma. caml and Ma. whitsoni (Figure 4-3). The 

first node of the general consensus phylogenetic tree separated Ma. carinatus from the 

other species and was well supported by all analysis methods used. All other branches 

received poor support values, suggesting this phylogeny is not well resolved. This is a 

result of the low level of variability for the COI region and a more variable region such 
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as the control region of the mitochondrial genome would strengthen this data and help 

to clarify the phylogeny. 

Population Structure 

Analysis of the haplotype data did not show any statistical evidence for population 

structure either over the geographical range or temporal range of the sample collection. 

However, this was expected given the low level of intraspecific variation in the COI 

region for all four species. Analysis using highly variable markers is required to define 

structuring within populations of recently evolved species and will be essential for 

fisheries monitoring studies. 

4.8 Summary of Results 

This study has examined both morphological and molecular descriptions for the genus 

Macrourus and conclusively demonstrated that four species exist to date. This has 

included the discovery that two previously described species are genetically identical 

and what was previously thought to be a single species comprises two separate species 

with differing geographical ranges. 
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Figure 4-16 Summary of the species proposed for the genus Macrourus and the 

outcome of this research. 

 Ma. carinatus Ma. holotrachys Ma. caml 
Pelvic fin rays 8-9  8-9  7-9  

Pyloric caeca count 14-21  9-16  20-36  
Scales from anus to 

lateral line 18-27  20-28 28-37  

Scales on underside 
of snout Y  N  Y  

Position of second 
dorsal fin to anus 

in line, some 
slightly anterior  

Anterior, some in 
line  In line  

Table 4-7 Key proposed by Iwamoto (1990) with edited in respect of the findings from 

this research. Ma. whitsoni is not included due to lack of morphological data.  
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CHAPTER 5 

Phylogenetic Inference for the Order Gadifomes 

5.1 Introduction 

The order Gadiformes (Anacanthini) belongs to the Teleost fishes, with species found 

throughout the World’s oceans, predominantly in temperate and cold marine waters 

(Cohen, 1990). The order comprises ten families; Bregmacerotidae (codlets), 

Euclichthyidae (Eucla cods), Gadidae (true cods), Lotidae (rocklings), Macrouridae 

(grenadiers), Melanonidae (pelagic cods), Merlucciidae (merluccid hakes), Moridae 

(morid cods), Muraenolepididae (eel cods) and Phycidae (phycid hakes) (Cohen, 1990). 

Gadiformes are thought to have originated in the Late Cretaceous period, moving into 

deeper water in the Early Eocene (Nolf and Steurbaut, 1989). Antarctic fossil evidence 

has been found to suggest Gadiformes were present on the Gondwanan shelf in the Late 

Eocene (Eastman and Grande, 1991, Kriwet and Hecht, 2008), an exception amongst 

the modern Antarctic fauna, which are not represented in the Antarctic fossil record 

(Eastman, 1993c).  

The two genera considered in this study, Muraenolepis (Muraenolepididae) and 

Macrourus (Macrouridae: Macrourinae) are thought to have very different evolutionary 

histories to each other.  

Muraenolepididae is regarded as a distinct monophyletic group of nine described 

species but its relationship to other gadiform families is disputed. Based on morphology 

it has been classed as either a ‘higher gadoid’ with the families of Macruronidae, 

Bregmacerotidae, Phycidae, Lotidae, Merlucciidae and Gadidae, and placed in the 
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suborder Gadoidei (Howes, 1990) or a sister group to Bregmacerotidae (Markle, 1989). 

Genetic markers (12S and 16S mitochondrial ribosomal RNA and RAG1 nuclear genes) 

did not support this placement in the Gadoidei and maintained Muraenolepidoidei as a 

separate suborder and sister group to all other Gadiformes, although the positioning was 

weakly supported (Roa-Varón and Orti, 2009).  

Similarly, the evolutionary origin is unclear. Andriashev (1965, in Chui et al, 1990) 

suggested the species are typically Antarctic, where as DeWitt (1971, in Chui et al, 

1990) proposed they had recently invaded Antarctic waters, with the possible exception 

of Mu. microps having Antarctic shelf origins.  

In contrast to the Muraenolepididae, the family Macrouridae is the largest family of 

Gadiformes with over 300 species divided into 35 genera. The genera can be grouped 

into four subfamilies; Bathygadinae, Macrouroidinae, Trachyrincinae and the largest 

subfamily, Macrourinae. (Iwamoto, 1990, McLellan, 1997). Fossil records suggest the 

origin of the macrourids is in the high southern latitudes in the middle to late 

Palaeogene (40-30 mya) with migration into the South Atlantic (Kriwet and Hecht, 

2008). 

Following on from the results of Chapter 3 and Chapter 4, it was decided to examine the 

implied phylogenetic relationship of Muraenolepis (Muraenolepididae) and Macrourus 

(Macrouridae: Macrourinae) with other gadiform species from the data obtained in this 

study.  

5.1 Methods 

The 16S and COI sequences available for other gadiform fish present in the same 

geographic regions were downloaded from Genbank (listed in Appendix II) and aligned 

130 
 



with the species identified from this data. The data from this study identified only four 

of the possible nine described species of Muraenolepis, therefore the 16S data for five 

Muraenolepis specimens and COI data for 12 Muraenolepis specimens which were 

available on Genbank were also included (Table 5-1).  

 

16S Genbank Data 
Accession 
Number 

Species name at 
collection Location Collection Reference 

FJ215174 
Muraenolepis 
marmoratus 

Not recorded on 
publication NIWA 

Roa-Varon and Orti,. 
2009 

FJ215175 
Muraenolepis 

microps 
Not recorded on 

publication NIWA 
Roa-Varon and Orti., 

2009 

JX974419 
Muraenolepis 

microps Unknown Unknown 
Rehbein, 

Unpublished 

FJ215176 
Muraenolepis 
orangiensis 

Not recorded on 
publication NIWA 

Roa-Varon and Orti., 
2009 

FJ215177 Muraenolepis sp. 
Not recorded on 

publication 
Chiba University, 

Japan 
Roa-Varon and Orti., 

2009 

COI Genbank Data 
EU326374 Muraenolepis sp. Scotia Sea BOLD Rock et al., 2008 
EU326375 Muraenolepis sp. Scotia Sea BOLD Rock et al., 2008 
EU326376 Muraenolepis sp. Scotia Sea BOLD Rock et al., 2008 
EU326377 Muraenolepis sp. Scotia Sea BOLD Rock et al., 2008 

EU326378 
Muraenolepis 
marmoratus Scotia Sea BOLD Rock et al., 2008 

EU326379 
Muraenolepis 
marmoratus Scotia Sea BOLD Rock et al., 2008 

EU326380 
Muraenolepis 
marmoratus Scotia Sea BOLD Rock et al., 2008 

JN640702 
Muraenolepis 
marmoratus 

Not recorded on 
publication 

Australian National 
Fish Collection Smith et al., 2012 

HQ713082 Muraenolepis sp. 
Dumont d'Urville 

Sea 
CEMARC 
Campaign Dettai et al., 2011 

 HQ713083 Muraenolepis sp. 
Dumont d'Urville 

Sea 
CEMARC 
Campaign Dettai et al., 2011 

HQ713084 Muraenolepis sp. 
Dumont d'Urville 

Sea 
CEMARC 
Campaign Dettai et al., 2011 

HQ713085 Muraenolepis sp. 
Dumont d'Urville 

Sea 
CEMARC 
Campaign Dettai et al., 2011 

Table 5-1 Accession numbers and collection details for Muraenolepis data obtained 

from Genbank.  

 

For 16S, the Macrourus specimens from this study could not be resolved to species 

level and are identified to genus only (see Chapter 4). Dissostichus eleginoides (Order 
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Perciformes; Family Notothieniidae) and Zeus faber (Order Zeiformes; Family Zeidae) 

were selected as out-groups. Data were analysed as for the previous data sets and full 

details are given in Chapter 2.  

 

5.2 Results 

For 16S, 15 Gadiform sequences were downloaded, with an overlapping region of 

285bp. For COI, 84 gadiform sequences (38 of them unique) were downloaded, with an 

overlapping region of 359bp. The results are presented as majority rule phylogenetic 

trees to display the inferred relationship between species with an indication of 

evolutionary time frames, and as cladograms to clarify the relationship between families 

inferred from the data sets. 
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Figure 5-1 Majority rule phylogenetic tree showing the relationship between gadiform 

species as inferred by COI data. Branch lengths are to scale with posterior probability 

support values from PHASE displayed. Data from this study are highlighted in bold and 

have been allocated the full species name, or to genus where species resolution was not 

possible. For Muraenolepis Genbank data, the accession numbers are given with the 

species identification at collection in parenthesis. 
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Figure 5-2 Cladogram showing the relationships between gadiform families as implied 

by 16S data, with posterior probability values from PHASE. Data from this study are 

highlighted in bold and have been allocated the full species name, or to genus where 

species resolution was not possible. For Muraenolepis Genbank data, the accession 

numbers are given in parenthesis.  
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Figure 5-3 Majority rule phylogenetic tree showing the relationship between gadiform 

species as inferred by COI data. Branch lengths are to scale with posterior probability 

support values from PHASE displayed. Data from this study are highlighted in bold. For 

Muraenolepis Genbank data, the accession numbers are given with the species 

identification in parenthesis. 
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Figure 5-4 Cladogram showing the relationship between gadiform families as inferred 

by COI data, with posterior probability values from PHASE. Data from this study are 

highlighted in bold and have been allocated the full species name, or to genus where 

species resolution was not possible. For Muraenolepis Genbank data, the accession 

numbers are given in parenthesis. 

The difficulty in correctly identifying the species from morphology is evident from the 

sample data downloaded from Genbank. Samples identified and submitted to Genbank 

as Mu. microps, Mu. marmoratus and M. orangiesis were shown to be genetically 

identical using 16S sequence data.  

5.4 Discussion 

Muraenolepis 

The results of this analysis using two mitochondrial genes placed the four Muraenolepis 

species as a monophyletic group within Gadiformes, rather than a sister group or 

ancient branch (Figure 5-1 to Figure 5-4). Both the 16S and COI gene regions infer that 

the closest family is Merlucciidae, with Moridae also being shown as more closely 

related than the other gadiform families. The longer branch length for this family with 

shorter branches between species would suggest an early separation of the family from 

the other Gadiformes followed by more recent speciation events. Combined with the 

evidence of Gadiformes in the Antarctic fauna fossil record (Eastman and Grande, 

1991), this lends support to the hypothesis that Muraenolepis may have been an early 

inhabitant in Antarctic waters.  
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Within the Muraenolepididae, these tree topologies (Figure 5-1 and Figure 5-3) would 

suggest that if the Family Muraenolepididae could be separated into two genera that 

would comprise Mu. orangiensis and Mu. microcephalus as one genus and Mu. 

marmoratus and Mu. evseenkoi as the other. This would coincide with general body 

shape (elongate or short) and number of vertebrae and rays in the dorsal and anal fins, 

which would separate the groups into “few-rayed” moray cods (Mu. marmoratus, Mu. 

kuderskii, Mu. trunovi and Mu. evseenkoi) and “multi-rayed” moray cods (Mu. 

orangiensis, Mu. microcephalus, Mu. andriashevi, Mu. pacifica) (Balushkin and 

Prirodina, 2010b).  

It has been proposed that the “multi-rayed” cods originate from the Pacific sector, west 

of the Antarctic Peninsula, with Mu. microcephalus (Notomuraenobathys) as the basal 

group, and the “few-rayed” cods evolved in the Atlantic sector, east of the Antarctic 

Peninsula, after isolation of the two oceanographic regions by the formation of the ACC 

(Howes, 1990, Balushkin and Prirodina, 2013). Unfortunately, due to the absence of 

morphological data for the two species tentatively identified as Mu. microcephalus and 

Mu. orangiensis, the data from this study cannot provided any further clarification on 

the origins of these species. 

Data for the additional described species and further work with nuclear genes and the 

more variable regions of the mitochondrial genome is required to fully resolve the 

phylogenetic relationships and clarify the origins of this family. 

Macrourus 

The low level of genetic variation for both 16S and COI suggests that this is a recently 

evolved genus. This is supported by comparative data available for other gadiform fish 

from the same geographic regions, which, as expected, place the Macrourus as a 
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monophyletic group within the family Macrouridae, sub-family Macrourinae. Both 16S 

and COI place Macrourus as a recently evolved sister genus to Coelorinchus, within the 

Coelorinchus clade (Figure 5-1 to Figure 5-4). Analysis of gadiform taxa using 

concatenated mitochondrial and RAG 1 genes also places Ma. carinatus and Ma. 

berglax within the Coelorinchus clade, suggesting these morphologically similar species 

are very closely related (Roa-Varón and Orti, 2009). 

Interestingly, by analysing this larger data set of Gadiformes, the topology of the 

Macrourus clade was altered, with the second branch separating Ma. holotrachys from 

Ma. whitsoni and Ma. caml (Figure 5-3). These branches were better supported than the 

topology achieved with just the COI data set, possibly as a result of higher variability 

between genera and species across the Order providing higher weight to statistical 

analysis. This also concurred with phylogenetic results using a 650bp region of the COI 

gene (Smith et al., 2011). The separation of Ma. carinatus and Ma. holotrachys from 

Ma. whitsoni and Ma. caml is also supported by the differing morphology of the 

species, with Ma. whitsoni and Ma. caml morphologically very similar and having 

overlapping geographic distributions.  

The bipolarity of the genus, with an absence of genetic variation between Ma. 

holotrachys and Ma. berglax, and greatest variation between the subAntarctic species in 

the phylogenetic trees, supports the theory of origin in South Atlantic waters followed 

by radiation into the North Atlantic and recent divergence in Antarctic waters (Eastman, 

1993c, Kriwet and Hecht, 2008).  

Evolutionary studies for other Macrourinae species also suggest a recent evolution of 

this family. For Coryphaenoides species, the radiation time between abyssal and non-

abyssal species has been estimated at 3.2-7.6 mya, between the Miocene and Pliocene 
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(Morita, 1999). Within the Southern Ocean, the coastal nototheniod subfamily 

Trematominae, species divergence has occurred over the last 10 my, when Antarctic 

icesheets were re-established, with the main divergence dated ay 3.4 mya (based on 

mitochondrial DNA mutation rates) (Lautrédou et al., 2012). Species divergence linked 

with glaciation events can also be shown for other Antarctic fauna, such as the limpet 

Nacella concinna (Gonzalez-Weaver et al., 2013), and octopus Pareldone turnqueti 

(Strugnell et al., 2012), where availability of refugia during the during the Pliocene and 

Pleistocene glacial maxima played a crucial role in species radiation. Comparison of 

phylogeographic patterns for a number species, both vertebrate and invertebrate, 

combined with an understanding of the geographic and climatic history of the 

environments, evolutionary origins and life histories will provide a greater insight into 

the forces which drive speciation and adaptation to climate change. 
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CHAPTER 6 

Macrourus microsatellite markers 

6.1 Introduction 

The grenadier genus Macrourus (Family: Macrouridae) was thought to comprise four 

species; one in the North Atlantic (Ma. berglax) and three in the South Atlantic and 

Southern Ocean (Ma. carinatus, Ma. holotrachys and Ma. whitsoni). This research, 

carried out towards this Ph.D. (Chapter 4), and confirmed by other groups (Smith et al., 

2011, McMillan et al., 2012), has highlighted a new species, Ma. caml, previously 

identified as Ma. whitsoni, which is present in the Southern Ocean. These two species 

were found to be genetically distinct for both 16S and COI mitochondrial gene regions. 

Re-examination of the morphology has also identified that, although similar, there are 

clear taxonomic differences between the two species. 

This research on the genetics of Ma. berglax and Ma. holotrachys has also shown that 

they are identical for both the 16S and COI gene regions. These two species have been 

regarded as distinct species based on their geographic location. Ma. holotrachys is 

found around the sub Antarctic islands of the Scotia Arc and along the continental shelf 

of southern Argentina (Iwamoto, 1990). By contrast, Ma. berglax is found across the 

North Atlantic, from the continental shelf of Canada to Norway and Greenland (Cohen, 

1990). The mitochondrial genes usually found to be sufficient to determine species 

identity and phylogenetics in fish (Ward et al., 2009) are, in this case, not sufficiently 

variable to provide information regarding population structuring within the Southern 

Ocean or a definitive answer to whether or not Ma. berglax and Ma. holotrachys are the 

same species. This is a problem that is gradually being highlighted on other taxa (Dettai 
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et al., 2011, Van de Putte et al., 2009). Further work using more variable markers is 

required to resolve these issues. 

Microsatellite markers were selected for use because of their highly variable nature with 

a non-coding, neutral mode of inheritance. They are found in nuclear DNA and are 

particularly abundant in teleost fish, having a higher level of genetic diversity than other 

loci. (Carvalho, 1995, Ferguson et al., 1995, Frankham, 2002, O'Reilly and Wright, 

1995). Regions suitable for use as microsatellite markers have to be isolated for each 

new species and complementary primers designed. Markers can be used successfully 

across closely related species (Carvalho, 1998, Gaffney, 2000). 

Initially the intention for this study was to isolate potential microsatellites for each of 

the three Southern Ocean species that have been described in the chapters above (Ma. 

carinatus, Ma. holotrachys and Ma. whitsoni) and develop a suite of markers that could 

be applied to all three species. This work is detailed in Appendix I. The discovery that 

Ma. berglax and Ma. holotrachys were genetically identical for both mitochondrial 

regions used led to a change of approach. Microsatellite markers had been isolated and 

designed for Ma. berglax as part of an ongoing population genetics study of Ma. 

berglax across the North Atlantic (Helyar, 2010). These markers had been successfully 

cross-amplified on eight other macrourid species found in the North Atlantic and so 

were expected to be successful for all the Southern Ocean species. Rather than ‘re-

inventing the wheel’ these were applied in preference to continuing the microsatellite 

development work. This also provided an opportunity to produce a data set for a bi-

polar population genetics study (ouside of the scope of thos Ph.D.), comparing the data 

for the Southern Ocean species with Ma. berglax in the North Atlantic. This study is 

only concerned with testing the suitability of these primers on the four Macrourus 

species found along the Scotia Arc and Falkland Islands. 
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6.2 Methods 

The DNA used for this project had previously been extracted for species identification 

and phylogenetic analysis (detailed in Chapter 2) and diluted to a standard concentration 

of 20ng/µl. All samples had been screened by COI sequencing or HRM analysis to 

verify the species identity (details available in Table 6-1). 

Table 6-1 Sample collections used for testing of microsatellite primers and species 

identified by COI sequence or HRM analysis. 

 

   Species identified by COI sequence 

Location Year Collection Ma. 
carinatus 

Ma. 
holotrachys 

Ma. 
whitsoni  Ma. caml 

South 
Georgia 2002 Dorada 5 1  1 

South 
Georgia 2003 Dorada 26  30   41 

South 
Georgia 2003 Commercial*  54   7 

South 
Georgia 2003 Viking Bay  62  2 

South 
Georgia 2003 Dorada 4   4 

South 
Georgia 2003 Cisne Verde  55  12  

South 
Georgia 2003 Isla 

Alegranza  10   
South 

Georgia 2003 Isla 
Alegranza    15 

South 
Georgia 2003 Isla 

Alegranza 8 1  1 

South 
Georgia 2009 San Aspiring    29 

South 
Sandwich 

Islands 
2009 San Aspiring   17 33 

South 
Sandwich 

Islands 
2010 Argos 

Froyannes    15 

Ross Sea 2006 Argos 
Georgia   4 84 

Falkland 
Islands 2010 ZDLTI 35 1   

TOTAL 78 214 21 247 

143 
 



Eight of the published microsatellite markers were found to be polymorphic for Ma. 

berglax and were selected for testing compatibility with the Southern Ocean species 

(Table 6-2). 

Locus 
name 

Repeat 
Motif 

Number of 
alleles 

Range 
(bp) 

Primer 
Name 

Mbe01 (TG)18 6 325-337 B12a 
Mbe02 (CA)15 9 111-135 C04 
Mbe03 (TG)34 10 218-242 C08 
Mbe04 (ATGG)7+ 4 175-197 D01 
Mbe05 (GT)55 9 427-443 E09 
Mbe06 (GA)19 4 138-162 E10a 
Mbe08 (GT)18 8 408-434 G12a 
Mbe10 (GGT)9(GGA)2(GGT)13 11 475-507 H11 

Table 6-2 Microsatellite markers developed for Ma. berglax. 

The microsatellite markers were initially tested individually for compatibility with the 

Southern Ocean species using conventional PCR and shown to have a high success rate 

for all four species. Three samples of Ma. berglax, previously scored (Helyar, 2010), 

were included as positive controls. 

To obtain data for all of the microsatellite primers sets, three reactions were required; 

two multiplex reactions and a single reaction. Each of these had been optimised for the 

combination of primer concentrations and annealing temperatures. The forward primer 

of each primer pair was fluorescently labelled (Applied Biosystems, UK) and primers 

were diluted to a concentration of 10nmol before use. Primer sequences are labelled as 

given in (Helyar, 2010), which also contains the full details of the primer sequences. 
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Multiplex 1: 57˚C annealing temperature. 

0.1µl each of E10A F & E10A R (NED labelled) 

 0.3µl each of C04 F & C04 R (VIC labelled) 

0.2µl each of C08 F & C08 R (NED labelled) 

0.2µl each of D01 F & D01 R (PET labelled) 

Multiplex 2: 60˚C annealing temperature. 

 0.2µl each of B12A F & B12A R (6FAM labelled) 

 0.15µl each of G12a F & G12a R (NED labelled) 

 0.2µl each of H11 F & H11 R (VIC labelled) 

Single-plex: 60˚C annealing temperature. 

 0.4µl each of E09 F & E09 R (6FAM labelled) 

The conditions for all three reactions were 5µl of buffer with primer volumes as above, 

and made up to 10µl total volume with deionised H2O. Reactions were carried out on a 

DNA Engine2 (Genetic Research Instrumentation Ltd, UK) with a ramp speed of 2˚C 

per second and the thermal profile of 95˚C for 15 minutes followed by 39 cycles of 

95˚C for 45 seconds, 57˚C or 60˚C for 1 minute and 72˚C for 45 seconds, then a final 

extension step of 72˚C for 45 minutes. The PCR product was sent to the sequencing 

facility at the University of Oxford, either Liz500 or Liz600 (Applied Biosystems, UK) 

size standards were added and the product run on an ABI 3130 sequencer. 

The microsatellite data obtained was screened using Peak Scanner Software Version 1.0 

(Applied Biosystems, UK). The size ranges obtained for each locus exceeded the range 
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expected for Macrourus berglax and quality varied between both species and loci so 

automatic sizing was not possible. Therefore the data were scored by eye to determine 

the optimal scoring for each locus and each species. The data were partitioned by 

species and checked for scoring errors resulting from stuttering and problems such as 

null alleles and short allele dominance using MicroChecker (Van Oosterhout et al., 

2004). 

6.3 Results 

The size ranges obtained for each locus exceeded the range expected for Macrourus 

berglax and stutter peaks were a particular problem for loci Mbe02, Mbe03 and Mbe06. 

There was also an issue with excess fluorescence in Multiplex2 for loci Mbe10, 

compensated for by diluting the reactions, which potentially resulted in drop out of 

weaker alleles for other loci in the multiplex.  

Markers were successfully amplified for all species and were polymorphic, with the 

exception of loci Mbe04 for Ma. carinatus (Table 6-3). 

 
Mbe01 Mbe02 Mbe03 Mbe04 Mbe05 Mbe06 Mbe08 Mbe10 

Ma. carinatus P P P M P P P P 
Ma. holotrachys P P P P P P P P 
Ma. caml P P P P P P P P 
Ma. whitsoni P P P P P P P P 

 

Table 6-3 Amplification of Ma. berglax primers across other Macrourus species, 
P=polymorphic, M=monomorphic. 

The size ranges obtained for each loci were compared to the expected result from the 

Ma. berglax data (Table 6-4). Additional scoring problems were caused by overlapping 

ranges of alleles in the multiplex reaction and weak alleles being masked by baseline 

pull-up from stronger adjacent alleles. 
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Table 6-4 Table showing the number of alleles and range of sizes (bp) obtained for each 

loci and each species (n= total number of individuals). Ma. berglax data from literature 

(Helyar, 2010). 

Analysis of the data in MicroChecker found no evidence for large allele drop out in any 

of the data sets. For Ma. carinatus, loci Mbe01, Mbe03 and Mbe06 showed evidence of 

possible mis-scoring caused by to stutter peaks, due to a lower than expected number of 

heterozygotes with a single repeat unit separation between alleles. A similar problem 

was evident for Ma. holotrachys with loci Mbe05 and Mbe06. There was no evidence of 

scoring errors because of stutter peaks within the Ma. caml and Ma. whitsoni data sets. 

Ma. berglax (n=48) 
     Mbe01 Mbe02 Mbe03 Mbe04 Mbe05 Mbe06 Mbe08 Mbe10 

6 9 10 4 9 4 8 11 
325-337 111-135 218-242 175-197 427-443 138-162 408-434 475-507 

      Ma. carinatus (n=77) 
     Mbe01 Mbe02 Mbe03 Mbe04 Mbe05 Mbe06 Mbe08 Mbe10 

5 35 9 1 4 8 6 18 
306-322 118-201 244-260 201 434-450 160-178 396-410 428-542 

      Ma. holotrachys (n=145) 
     Mbe01 Mbe02 Mbe03 Mbe04 Mbe05 Mbe06 Mbe08 Mbe10 

8 13 19 3 12 5 10 11 
314-336 114-142 220-258 193-201 412-450 150-164 410-436 456-501 

      Ma. caml (n=146) 
     Mbe01 Mbe02 Mbe03 Mbe04 Mbe05 Mbe06 Mbe08 Mbe10 

16 29 20 4 10 7 11 26 
314-370 120-180 288-270 173-201 400-428 160-174 398-436 423-528 

      Ma. whitsoni (n=17) 
     Mbe01 Mbe02 Mbe03 Mbe04 Mbe05 Mbe06 Mbe08 Mbe10 

4 9 7 3 4 4 6 6 
324-352 126-158 234-248 185-201 404-432 138-164 418-438 468-492 

147 
 



The data sets were also analysed for the level of homozygosity for each loci to check for 

the likelihood of null alleles. An excess of homozygotes was evident for Ma. carinatus 

loci Mbe01, Mbe02, Mbe03 and Mbe06, Ma. holotrachys loci Mbe03, Mbe05, Mbe06 

and Mbe10, and Ma. caml loci Mbe02, Mbe03 and Mbe04, which suggested null alleles 

may be a problem for these loci. The only evidence of homozygote excess for Ma. 

whitsoni was for Mbe05. The expected and observed values of homozygosity are shown 

in Table 6-5. There was no evidence for significant deviations from Harvey-Weinberg 

equilibrium for any of the data sets. 

 

 Table 6-5 Expected homozygosity (He) and observed homozygosity (Ho) for each loci 

(n=number of individuals). Loci where Ho significantly exceeded He are highlighted in 

bold. 

Null alleles were confirmed for loci Mbe10 in one of the populations analysed for Ma. 

berglax (Helyar, 2010). These data suggest a similar problem with that locus for Ma. 

holotrachys but not the other three species. Investigation of null alleles for Mb05 found 

a possible second allele within the 534bp to 558bp ranges. This is outside the maximum 

  
Mbe01 Mbe02 Mbe03 Mbe04 Mbe05 Mbe06 Mbe08 Mbe10 

Ma. carinatus 
         

 
n 46 69 76 76 72 76 49 49 

 
He 0.505 0.043 0.206 1 0.349 0.243 0.316 0.048 

 
Ho 0.695 0.174 0.355 1 0.372 0.315 0.347 0.102 

Ma. holotrachys 
         

 
n 104 135 134 135 130 135 103 99 

 
He 0.235 0.268 0.138 0.544 0.187 0.511 0.177 0.129 

 
Ho 0.24 0.296 0.201 0.57 0.379 0.74 0.194 0.212 

Ma. caml 
         

 
n 83 142 144 141 106 144 84 82 

 
He 0.18 0.05 0.072 0.773 0.146 0.634 0.634 0.048 

 
Ho 0.253 0.127 0.139 0.851 0.151 0.673 0.643 0.085 

Ma. whitsoni 
         

 
n 14 15 15 15 15 15 14 14 

 
He 0.173 0.075 0.113 0.873 0.4 0.813 0.135 0.109 

 
Ho 0.071 0.067 0.067 0.867 0.6 0.8 0 0.071 
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expected range of 450bp for this locus and requires further investigation to establish if it 

is a true allele. For Mbe02, preferential amplification of the first peak occurred, 

particularly for Ma. carinatus samples, and the second peak was difficult to distinguish 

from raised baseline. This was further compounded by an overlap in range with Mbe03 

and raised baseline due to pull-up from Mbe03 fluorescence. Preferential amplification 

of the first allele was also shown in loci Mbe03 and Mbe05. 

Although the microsatellites were successfully amplified for all samples, there was 

varying success in the number of loci amplified and the quality of results. For samples 

that had been problematic to sequence due to degraded DNA, there was a higher failure 

rate for loci and a greater problem with stutter peaks that for high quality DNA samples. 

6.4 Discussion 

The microsatellite markers tested in this study have previously been applied to samples 

from eight other genera belonging to the family Macrouridae, found in the North 

Atlantic, where they were found to produce at least one polymorphic locus for each 

species. However, no maker was successful for all species and many loci were 

monomorphic (Helyar, 2010). This study obtained a considerably higher success rate for 

the closely related Southern Ocean species from the same genus as Ma. berglax, with all 

loci being successfully amplified and all polymorphic, with the exception of Mbe04 for 

Ma. carinatus.  

However, despite successful amplification, there were a number of issues with the data 

obtained. Poor peak morphology and multiple stutter peaks with di-nucleotide repeats 

caused by slippage during PCR (Shinde et al., 2003) made scoring difficult, particularly 

for homozygous alleles. Preferential amplification of one allele, extended size ranges 

than those expected from Ma. berglax results, and overlapping size ranges resulting in 
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difficulty identifying both alleles and created a potential problem with null alleles or 

short allele dominance (Wattier et al., 1998, Van Oosterhout et al., 2004). 

Any analysis of genetic variation relies on accurate, representative data which can be 

reliably scored (Queller et al., 1993, Selkoe and Toonen, 2006). Microsatellites have 

been commonly used in population genetic studies for fish species, with the high levels 

of polymorphic alleles making them ideal markers (O'Reilly et al., 1996, DeLeon et al., 

1997, O'Reilly and Wright, 1995, Rico et al., 1996). The high level of variability is able 

to resolve population structure where populations are large and there thought to be few 

barriers to gene flow, such as the marine environment (O'Reilly et al., 2004). 

One of the main problems with the use of microsatellites is the requirement to isolate 

markers for the target species. Conserved flanking regions can allow them to be used 

successfully across closely related species or taxa (Moore et al., 1991, Jarne and 

Lagoda, 1996). However, they should be used with caution as null alleles are a 

particular concern when amplifying across taxa and can bias further analysis (Roques et 

al., 1999, Shaw et al., 1999). 

The high incidence of null alleles for this data set can generally be attributed to the poor 

data quality and difficulties with accurate scoring. Null alleles were confirmed for 

Mbe10 in one population of Ma. berglax (Helyar, 2010) and for Mbe02 in this data set. 

It is also possible that the homozygote excess and any deviation from Hardy-Weinberg 

equilibrium may result from subpopulation structure (the Wahlund effect) (O'Reilly and 

Wright, 1995). This may be the case for locus Mbe04 in Ma. caml as there is no 

evidence for excess homozygosity for any of the other species and this locus is a 

tetranucleotide repeat free of artefacts such as stutter bands. There was no evidence for 

preferential amplification of one allele in Ma. caml or any of the other species for locus 
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Mbe04. By partitioning the data set by geographic location, the excess homozygosity 

was revealed to be restricted to the South Georgia populations. This was not attributable 

to depth or temporal structuring and may be an effect of finer scale population structure 

around South Georgia. Though unfortunately, the sample numbers for each catch 

location were insufficient to investigate this further.  

Some of the issues can be attributed to the larger sample numbers and variable DNA 

quality increasing the likelihood of erroneous results. For example, the individuals from 

the Ross Sea 2006 collection that had failed to sequence successfully for COI did 

produce scorable microsatellites. However, the data were of poor quality and many loci 

were deselected for morphology or low peak height. Also, the increase in number of 

possible alleles within a locus (particularly for Ma. caml) may make some markers sub-

optimal for future population genetic analyses where population size is limited by 

sample availability (O'Reilly and Wright, 1995, Selkoe and Toonen, 2006, Carvalho and 

Hauser, 1994).  

Further optimisation of the reactions to reduce the incidence of stutter bands and 

preferential amplification of alleles is required to produce a data set which is robust 

enough for reliable population genetic analysis. The microsatellites isolated for the 

Southern Ocean species (Appendix I) can also be revisited and development continued 

if the Ma. berglax markers are cannot be optimised. Data can then be used to provide 

insights into population structuring and other valuable information such as migration 

rates, evolutionary history of the genus, species and populations, population dynamics 

and dispersal potential. Of particular interest will be the comparison of the Antarctic 

data set with the North Atlantic data set (a collaborative project, outside this research) 

as this should reveal divergence times and any present day connectivity between the two 

geographic regions. This information can then add to the increasing knowledge on 
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evolution and population structuring of Antarctic fish – a valuable tool for fisheries and 

conservation management. 
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CHAPTER 7 

Discussion and conclusions 

Species Identification 

This study has demonstrated the value of comparing of morphological data and 

molecular analysis for species identification. For Muraenolepis, the data from this 

combined approach has been able to resolve conflicts over the identity and distribution 

of the species described to date. It supports the presence of Mu. marmoratus at both 

South Georgia and Kerguelen Islands, and the absence of Mu. microps in both of these 

regions base on both morphological and genetic data. The species detected in the Ross 

Sea based on COI sequence data was matched to the recently described species, Mu. 

evseenkoi (Balushkin and Prirodina, 2010b), using the morphological data recorded. 

Similarly, the Macrourus molecular data has allowed a new species, Ma. caml, to be 

identified from South Georgia and the Ross Sea, which has subsequently been fully 

described in terms of morphology (McMillan et al., 2012). 

In both of these cases, the genetic confirmation of species identification has allowed the 

range of measurements for morphological characters to be redefined and the 

morphological keys used for species identification to be refined and adopted by 

fisheries observers. Correct morphological identification is essential for the validity of 

any further study, be it ecological, biogeographical or genetic, as this is the main 

method of identification on fisheries surveys and underpins all fisheries quota 

calculations and conservation measures. New molecular techniques, such as HRM 

analysis (Fitzcharles, 2012), are providing simplified methods of genetic screening to 

confirm species identification. Whilst these approaches can ensure accurate 
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identification, they will not replace the more traditional methods of identification by 

morphological features, particularly in field and ship-borne research where genetic 

methods are not readily available, but could easily be implemented in basic fisheries 

laboratories in the more remote stations.  

Caution should always be taken however in interpreting the molecular results as stand-

alone data, which is where the combined approach with traditional taxonomy 

(integrative taxonomy) has its value (Will et al., 2005, Dayrat, 2005, Riedel et al., 2013, 

DeSalle et al., 2005). The COI gene region, has become regarded as the barcoding gene 

for species identification (Dettai et al., 2011, Grant et al., 2011) and has been used 

extensively in campaigns such as FISH-BOL (Ward et al., 2005, Ward et al., 2009). 

The discovery that Ma. holotrachys and Ma. berglax were genetically identical for the 

COI gene region has led to the speculation that they may be the same species with a bi-

polar distribution. Bipolarity has been recorded for a number of taxa (Kuklinski and 

Barnes, 2010, Darling et al., 2000), including grenadier, or rattail, species such as 

Coryphaenoides armatus, Antimora rostrata (Cohen, 1990), and Merluccius australis 

(Arkhipkin et al., 2010), and a record of the Patagonina toothfish, Disosstichus 

eleginoides, off the coast of Greenland (Moller et al., 2003). This has raised questions 

regarding the connectivity, both past and present, of the World’s oceans.  

However, in the case of Ma. holotrachys and Ma. berglax there is additional anecdotal 

evidence to suggest that in spite of identical COI genes, these are still two separate 

species (McMillan et al., 2012). Indeed, the COI region has been found to be unable to 

discriminate between some morphologically similar fish species, such as two species 

pairs of Trematomus species (Dettai et al., 2011, Van de Putte et al., 2009) and four 

species of the North Atlantic redfish, Sebastes (Bentzen et al., 1998). The differences in 
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morphology between Ma. holotrachys and Ma. berglax, combined with the low level of 

intraspecific variation in the COI region for all Macrourus species, supports the theory 

that these are recently evolved species which cannot be resolved by the COI gene rather 

than being the same species and therefore more work is required to identify unique 

molecular markers for conservation identification in these species.  

On a more academic level, this still raises the questions regarding gene flow and the 

timing of speciation events. Divergence times can be estimated using the molecular 

clock, where assumptions are made that the rate of amino acid substitutions are constant 

and accumulation of mutations is proportional to time (Thorpe, 1982). However, studies 

of Antarctic fish are limited. The only fossil record available for Antarctic fish for 

calibration of the molecular clock is for the notothenioid Proeleginops 

grandeastmanorum, dated at 40 million years ago, which dates the clade of antifreeze 

glycoprotein bearing Nototheniodes at 24.1+/-0.5 Ma, at the time of the formation of the 

Antarctic Circumpolar Current and prior to the establishment of polar conditions (Near, 

2004). The most recent common ancestor of the two Dissostichus species has been 

estimated at 14.5+/-0.5 Ma (Near, 2004). However, phylogenetic analysis of the 

Macrouridae genus, Coryphaenoides, has suggested a much more recent radiation time 

between the abyssal and non-abyssal species at 3.2 to 7.6 Ma, with the abyssal species 

as the basal group (Morita, 1999) and indicates that this species re-colonised the 

Antarctic after the opening of the Drake Passage and the formation of the ACC. For the 

limpet, Naccella concinna, it has been proposed that recolonisation of maritime 

Antarctic has occurred from refugia at South Georgia following the Last Glacial 

maxima (Gonzalez-Weaver et al., 2013). 
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Evolution and Biogeography 

There are a number of factors that influence the evolution and distribution of species. 

The availability of suitable habitats for colonisation, changes in environmental 

conditions, availability of prey species, life history and reproductive strategies, as well 

as dispersal mechanisms and the dynamics of the environment all play a part. 

Understanding how species have evolved and the population dynamics requires 

consideration of all of these factors. 

Both the genera considered in this study are bathypelagic deep sea fish with geographic 

species ranges that include the temperate regions off South America and New Zealand, 

the sub Antarctic islands and the seas off the Antarctic continental shelf. Both 

demonstrate the separation of species by geographic location as well as depth and useful 

insights into the evolution and distribution of Antarctic fish can be gained by examining 

the similarities and differences between these two genera and other Antarctic fauna. 

The low level of intraspecific genetic variation for both genera would suggest that there 

have been relatively recent speciation events. Low levels of variation have also been 

found for other Antarctic fish, including the Antarctic toothfish, Dissostichus mawsoni 

(Smith and Gaffney, 2005). The phylogenetic analysis infers that Macrourus, as a 

genus, has recently evolved within the family Macrouridae, where as the genus 

Muraenolepis (family Muraenolepididae) has an earlier separation from the other 

gadiform families, with the subsequent evolution of the four species identified in this 

study. These inferred relationships should be treated with caution as they are both from 

mitochondrial DNA sequence data and not reflective of the nuclear genome, particularly 

for Muraenolepis where only half of the described species are represented. However, 

similar patterns in geographic distribution and similar levels of intraspecific and 
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interspecific genetic variation suggest there may be commonalities between the factors 

governing the speciation and distribution patterns. 

Both genera are slow growing, long lived species with growth rates slowing after 

maturity, particularly for male fish, leading to the trend of adult females being larger 

than males. They also demonstrate the deeper-larger trend common among deep sea fish 

(Coggan et al., 1996). Muraenolepis species are thought to reach maturity at 4 years and 

reach a maximum age of 9 to 12 years (Kompowski and Rojas, 1996, Kompowski, 

1993). In contrast, Macrourus species are thought to reach maturity at 9 to 15 years 

(Morley et al., 2004, Pinkerton et al., 2013) and reach a maximum age of 27 to 39 years 

(Laptikhovsky et al., 2008). While Muraenolepis species produce a greater number of 

eggs, the overall fecundity is reduced by Muraenolepis being a semelparous spawner, 

with differing spawning periods for the different species (Prut'ko and Chimilevskii, 

2011). Macrourus is a batch spawner with a low oocyte numbers but a prolonged, 

possibly continuous, spawning period (Alekseev et al., 1992). Both have pelagic eggs 

and larvae which remain at depth in the water column rather than rising to the surface 

waters (Merrett and Barnes, 1996). 

The species distribution patterns for both genera are very similar. The high Antarctic 

species have no identifiable geographic structure within the Ross Sea but there is a clear 

boundary to the distribution along the Scotia Arc at the South Sandwich Islands. This 

suggests there is a boundary to distribution between the South Sandwich Islands and 

South Georgia for this true Antarctic species. This species limitation at the South 

Sandwich Islands has also been shown (Figure 7-1) for D. mawsoni and D. eleginoides, 

the Antarctic and Patagonian toothfish, where the Weddell Front divides the two water 

masses of the Weddell-Scotia Confluence and the Weddell Gyre (Roberts et al., 2011).   
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A B  

Figure 7-1 (A) Distribution and abundance (catch per unit effort) for D. mawsoni and D. 

eleginoides around the South Sandwich Islands, and (B) position of oceanographic 

fronts (WF-Weddell Front, SB-Southern Boundary of Antarctic Circumpolar Current, 

SACCF-.Southern Antarctic Circumpolar Current Front) (Roberts et al., 2011). 

Oceanographic currents and fronts play a pivotal role in the dispersal of pelagic eggs 

and larvae. Fronts with a steep hydrological gradient, such as the Sub Antarctic Front 

act as a barrier to larval dispersal (Koubbi et al., 2009). Gyres and retention zones 

around islands and coastal currents can limit the dispersal potential, retaining the larvae 

on the shelf where food sources are more abundant (Koubbi et al., 2009). For some 

species, oceanographic currents transport the larvae from adult spawning areas to 

nursery grounds, as can be seen for Ma. carinatus on the Falkland’s shelf 

(Laptikhovsky, 2011). Larval distribution of D. eleginoides around South Georgia, Shag 

Rocks and Burdwood Bank provides evidence of juveniles migrating inshore (North, 

2002). Oceanographic models capable of the fine scale resolution required for these 

localised currents can help to understand the mechanisms for dispersal and connectivity 
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between regions (Young et al., 2011) and can utilise known information live-cycle 

variables and genetics to predict larval dispersal patterns (Galindo et al., 2010). 

Competition for prey is another factor that can influence species ranges. Where the 

toothfish species overlap, diet studies revealed no difference in trophic niches, with the 

main prey being fish, the Macrourus and Muraenolepis species in particular (Roberts et 

al., 2011). In contrast, where the range overlaps for Macrourus species, Ma. carinatus 

was shown to switch to predominantly pelagic prey while for Ma. holotrachys the prey 

items were benthic species, reducing the level of competition between the species and 

allowing for geographic overlap (Laptikhovsky, 2005). A difference in prey preference 

has also been indicated where Ma. caml and Ma. whitsoni distributions overlap in the 

Ross Sea (McMillan et al., 2012). Diet studies where the three species, Ma. carinatus, 

Ma. holotrachys and Ma. caml overlap would be a valuable addition to the 

understanding of the species dynamics, as would a comparison of Ma. caml and Ma. 

whitsoni from the South Sandwich Islands where the species ranges appear to be 

limited. 

The level of intraspecific variation obtained from mitochondrial genes sequenced from 

both genera was insufficient to provide detailed genetic analysis such as population 

structure. For Muraenolepis, haplotype frequencies suggested population structuring 

between South Georgia and Kerguelen populations, however it was not highly 

significant due to the low level of variation and small population size for Kerguelen. 

Further investigation with the more variable control region of the mitochondrial genome 

or highly variable nuclear microsatellite markers (as isolated for this study, Appendix I) 

would provide further evidence for any structuring that may be present. There was no 

evidence for population structure for any of the Macrourus species due to the low level 

of variation in the COI gene region. It is hoped that further optimisation of the 
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microsatellite markers tested (Chapter 6) or isolated (Appendix I) in this study will 

provide a means for examining any fine scale population structure and help understand 

the divergence of these species in the Southern Ocean and provide valuable data for 

CCAMLR and fisheries quotas. 

7.3 Conclusions 

The integrative taxonomic approach adopted here to examine both morphological and 

molecular identification has provided resolution to a number of issues regarding 

confusions over the correct identification of both Muraenolepis and Macrourus species.  

• Muraenolepis marmoratus has been identified and is present at Kerguelen Island 

and South Georgia, as well as Burdwood Bank. 

• Muraenolepis microps is a synonym of Mu. marmoratus and confusion over its 

presence at South Georgia has resulted from subsequent literature describing a 

different species.  

• The species mistakenly identified as Mu. microps in the Ross Sea region is now 

identified as Mu. evseenkoi. 

• The range for Mu. marmoratus and Mu. evseenkoi was only found to overlap at 

the South Sandwich Islands, where it was caught at different depths, suggesting 

depth distribution patterns.  

• Muraenolepis marmoratus showed some evidence for population structuring 

between South Georgia and Kerguelen Islands.  

• Two other species were identified from the molecular markers: Mu. orangiensis, 

with a temperate distribution from Burdwood Bank and New Zealand; and a 

fourth species tentatively assigned as Mu. microcephalus, from the Ross Sea. 
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• Macrourus whitsoni was discovered to be two separate species differing in both 

molecular and morphological identification. These have now been identified as 

Ma. whitsoni and Ma. caml. 

• Macrourus holotrachys (Southern Ocean) and Ma. berglax (North Atlantic) are 

genetically identical for both 16S and COI mitochondrial gene regions. 

Morphological characteristics do not support the hypothesis that they are the 

same species. 

• Both Muraenolepis and Macrourus species show similar species distribution 

patterns, which concur with the distribution patterns for toothfish species, 

Dissostichus eleginoides and D. mawsoni, This suggests commonalities in 

factors, such as bathymetry and oceanography, governing the geographic 

distribution of these species. 

• Oceanographic fronts as barriers to dispersal, availability of shelf areas as 

nursing grounds and oceanographic currents as modes of larval transport are all 

possible influencing factors. 

Further work is required for both genera to fully resolve the issues under 

investigation here. It is hoped that continuation of the microsatellite work for 

Macrourus will provide clarification of Ma. holotrachys and Ma. berglax species 

question. The microsatellite markers are also expected to provide insight into the 

process of speciation and population dynamics for all Macrourus species. 

Further sampling for Muraenolepis is required, particularly to target the geographic 

regions for the species that were not included in this study. It is hoped that this will 

be achieved in collaboration with CCAMLR and NIWA. If sufficient samples can 
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be collected, there is the option of continuing the work on microsatellite 

development for these species. 

For both genera, additional investigation on their life-cycle, such as identifying 

spawning and nursery grounds, establishing the period of pelagic egg dispersal and 

larval development, and migration patterns of developing adults, both with depth 

and geography, will help understand the dynamics of these fish within the Antarctic 

ecosystem. Of particular interest would be the trophic ecology and identifying 

changes in prey species with seasonal variability and niche overlap of species.  

Previous physiological and ecological studies on these species have unfortunately 

been based on species identification which may be incorrect in light of the new 

findings, particularly for Macrourus whitsoni and Ma. caml, and all of the 

Muraenolepis species. Molecular identification can play an essential role to confirm 

the correct identification at the basis of any study, and quick, easy techniques such 

as HRM Analysis offer a practical solution. 

All of these factors are essential for successful fisheries management and effective 

conservation management. Understanding the ecology of species, population 

dynamics and identifying any environmental common factors between taxa will 

provide reliable input to any policy decisions such as locations of Marine Protected 

Areas (MPAs) and allowable catch quotas for both target and by-catch species for 

fisheries. The biodiversity of the Southern Ocean, as with all of the World’s seas 

and oceans, must be protected and any part scientific research can play in that 

process is of great importance. 
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APPENDIX I 

In-house Microsatellite Isolation for Macrourus and Muraenolepis Species 

This appendix describes the in-house isolation of microsatellite sequences from 

Macrourus and Muraenolepis 

Introduction 

Microsatellites are tandem repeats of DNA sequence motifs of 1 to 6 base pairs in 

length, and up to 300bp in total length.  They are non-coding and usually have a neutral, 

co-dominant, Mendelian mode of inheritance making them suitable for use as genetic 

markers.  Mutation is thought to be a result of slipped-strand mispairing or unequal 

crossover during replication (Carvalho 1995; O’Reilly 1995). 

Microsatellites are particularly abundant in teleost fish and they have a higher level of 

genetic diversity per locus than other DNA markers.  Mutation rates are dependent on 

the size and type of repeat unit.  Di-nucleotide repeats are more common and more 

variable than tetra-nucleotide repeats and longer repeats are more variable (Carvalho 

1995; Ferguson, Taggart et al. 1995; Frankham 2002). In general, microsatellites need 

to be isolated and new primers designed for each species, although they may be used 

across closely related species (Carvalho 1998; Gaffney 2000). 

 

Methods 

The isolation method used was based on the Fast Isolation by AFLP of Sequences 

Containing Repeats (FIASCO) protocol developed by (Zane, Bargelloni et al. 2002)).  

The 250 ng of DNA required for this reaction was obtained by combining DNA 
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extractions from three individuals for each of the three species, which was then ethanol 

precipitated and re-suspended in 17 µl deionised water to concentrate the DNA solution.   

The resulting FIASCO-generated PCR products were ligated into the pGEM-T Easy 

cloning vector using T4 DNA ligase (Promega, UK) following manufacturer’s 

instructions.  This ligation mix was then transformed into bacterial cells using 

Stratagene Gold ultra competent cells, following manufacturer’s instructionsand 

transformed clones selected on TYE agar plates containing ampicillin.  Individual 

clones were picked into 100µl TB media in 96-well microtitre plates. Two plates of 

clones were isolated for each species. 

DNA was transferred from the clones into PCR medium using 69-pin replicators. The 

selected clones were amplified using limited dilutions of dNTPs and primers with M13 

short primers (5’-GTA AAA CGA CGG CCA G-3’ and 5’-AAC AGC TAT GAC CAT 

GAT-3’) under the following conditions: 20µl reaction, 0.28 µl dNTPs (2mM each 

dNTP), 2 µl 10X PCR buffer, 0.6 µl MgCl2 (50mM), 0.25 µl each primer (10mM), 0.01 

µl Taq and 16.5 µl dH2O (all reagents, Bioline, UK).  The reaction was carried out on 

an MJ Research DNA Engine 2 tetrad thermal cycler: 96˚C for 2 minutes, 35 cycles of 

96˚C for 20 seconds, 49˚C for 20 seconds and 72˚C for 45 seconds, followed by 72˚C 

for 5 minutes.  PCR product was diluted by adding 30 µl dH2O and products run on a 

1.5% agarose gel to ensure for variability in the size of inserts. 

The diluted PCR product was used directly in the sequencing reaction. Sequencing was 

carried out using M13F long (5’-GTA AAA CGA CGG CCA GTG AAT-3’) and M13R 

long (5’-AAC AGC TAT GAC CAT GAT TAC G-3’) primers. Reaction conditions 

were 6 µl PCR product, 4 µl BigDye terminator mix (Applied Biosystems) and 0.5 µl 

10 µM primer. Thermal cycling conditions were 25 cycles of 95˚C for 20 seconds 
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followed by 60˚C for 2 minutes 20 seconds. Products were cleaned by ethanol 

precipitation and re-suspended in 10µl MegaBACE loading solution (Amersham 

Bioscience, GE Healthcare, UK).  Sequences were visualised using a MegaBACE 1000 

capillary DNA sequencer and Sequence Analyser version 3.0 software (Amersham 

Bioscience, GE Healthcare, UK). Sequences were checked visually for microsatellites 

using Chromas LITE version 2.01 (Technelysium Pty Ltd). 

Results 

For the genus Macrourus, 94 potential microsatellites were identified: 21 M. carinatus, 

46 M. holotrachys and 27 for M. whitsoni. These were predominantly dinucleotide 

repeats, both pure and interrupted, and a small number for 3 to 7 base repeat motifs. Of 

these, 19 for M. carinatus, 38 for M. holotrachys and 23 for M. whitsoni contained 

flanking regions suitable for primer design. Primers were designed using Primer3 

(Rozen 2000), checked for self-complimentarity using Operon Oligo Analysis Tool 

(http://www.operon.com/tools/oligo-analysis-tool.aspx) and examined by eye to 

determine the best primer options. Consideration was given to designing primers with 

similar annealing temperatures and varying product length to allow for potential 

multiplex reactions after primer selection. Where possible, multiple primer pairs were 

designed for a single microsatellite marker to generate products of differing sizes. 

Details on the microsatellites selected and primers designed are shown in Table 1 (M. 

carinatus), Table 2 (M. holotrachys) and Table 3 (M. whitsoni). 

For the genus Muraenolepis, 52 potential microsatellites were identified, and 44 

contained flanking regions suitable for primer design. These were also predominately 

dinucleotide repeats, both pure and interrupted, with a small number of three to seven 

base motifs. Details on the microsatellites selected and primers designed are shown in 

Table 4. 
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It was decided not to continue this work within the scope of this PhD after obtaining the 

species identification and phylogenetic analysis results. For Macrourus species an 

opportunity became available to collaborate with a research group at University College 

Dublin who were working on Macrourus berglax from the North Atlantic. This work is 

detailed in Chapter 2 and Chapter 6. For the genus Muraenolepis, further work is 

required to resolve this family before the microsatellite analysis can be carried out. It is 

intended to secure grant funding in collaboration with NIWA to increase the samples 

numbers and geographic range for all possible species before continuing this work.  
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Table 1: Microsatellites identified and primers designed for Macrourus carinatus. 

Name Microsatellite Repeat Fragment 
Length 

Primer 
Size (F) 

Primer 
Size (R) 

Primer 
Tm 

Mcar01 17CA-G-8CA 161 22 24 61 
Mcar02 10CCT 347 20 25 60 

 10CCT 207 21 26 60 
Mcar03 21GT 144 22 24 61 
Mcar04 2GT-C-6TG-G-7GT-GAGATATC-12GT-G-

2GT-GAGATATC-11GT 
203 22 19 59 

Mcar05 11TG-C-12GT 296 23 26 58 
 11TG-C-12GT 152 22 24 58 

Mcar06 7CA 585 21 21 59 
 7CA 520 22 21 61 
 7CA 247 22 21 59 

Mcar07 5CAA 156 21 18 60 
 5CAA 129 23 19 60 
 5CAA 228 24 18 60 

Mcar08 9GA-TA-9GA 130 20 22 60 
 9GA-TA-9GA 210 19 23 59 

Mcar09 15GT-CT-9GT 102 20 18 60 
 15GT-CT-9GT 187 20 18 61 
 15GT-CT-9GT 367 20 23 61 

Mcar10 11CA-C-4CA-CGACAGTATATAAA-6CA No suitable primers found 
Mcar11 3GT-ATAT-5GT-AT-3GT-

AGGTTGACTGTTTGTAT-6GT 
158 24 24 61 

Mcar12 20GT No suitable primers found 
Mcar13 8GT-CG-4GT 130 20 20 59 
Mcar14 9GT-ATAATAT-11GT 159 23 18 58 
Mcar15 9CA 177 18 21 62 

 9CA 232 18 23 58 
 9CA 344 19 23 59 
 9CA 394 23 19 59 

Mcar16 12AC 177 25 20 60 
 12AC 202 25 18 59 
 12AC 296 21 20 60 
 12AC 338 23 21 61 
 12AC 383 23 18 60 

Mcar17 10CA-TACATA-7CA 109 26 24 58 
 10CA-TACATA-7CA 199 18 20 60 

Mcar18 12CA 139 27 19 59 
 12CA 113 20 19 60 
 12CA 162 18 19 60 

Mcar19 8GA 305 19 21 61 
Mcar20 8GT 156 27 21 58 
Mcar21 41GT 179 21 20 58 178 
 



Table 2: Microsatellites identified and primers designed for Macrourus holotrachys. 

Name Microsatellite Repeat Fragment 
Length 

Primer 
Size (F) 

Primer 
Size (R) 

Primer 
Tm 

Mhol01 6GT 156 24 21 59 

 6GT 272 24 21 59 

 6GT 366 20 21 59 
Mhol02 9AT 159 22 26 58 
Mhol03 18GT-TT-7GT 156 25 19 59 

Mhol04 
3GA-TA-4GT-GAGACA-4GT-CA-4GA-
CA-4GA-TA-3GA-CG-4GA-CAGACA-
4GA-TA-4GA-CAGACA-6GA-CA-6GA 

470 24 24 60 

Mhol05 11GT-A-12TG 135 21 20 60 

 11GT-A-12TG 220 19 20 61 
Mhol06 15GT-T-3TG-CA-9TG 133 24 25 60 
Mhol07 9GT 113 23 18 62 
Mhol08 17GT 141 23 18 60 
Mhol09 8GT 103 24 20 59 

 8GT 182 25 18 61 
Mhol10 32GT 190 23 20 60 

 32GT 243 23 20 60 

 32GT 314 25 19 60 
Mhol11 5TAA No suitable primer found 

Mhol12 4GT-A-24GT-CGTGCACACAC-5GT-
GC-2GT-C-5TG 224 24 23 57 

Mhol13 9GT-G-6GT 306 23 19 58 

 9GT-G-6GT 364 25 18 60 
Mhol14 9GT Too close to vector site for R primer 
Mhol15 30GT 204 23 19 59 
Mhol16 7GT-TT-17TG-C-10TG Too close to vector site for R primer 
Mhol17 5GT-A-45TG 250 24 22 60 

 5GT-A-45TG 374 23 22 61 

 5GT-A-45TG 495 22 22 60 
Mhol18 7CA 116 22 18 61 
Mhol19 6CA 102 18 20 63 

 6CA 238 23 21 60 

 6CA 185 18 22 60 
Mhol20 5AGG-5GAA 263 20 20 60 
Mhol21 9CT 100 20 18 58 
Mhol22 55GT 212 25 22 59 
Mhol23 6GT-AT-9GT-AT-6GT-G-10GT 271 22 22 58 

 6GT-AT-9GT-AT-6GT-G-10GT 182 22 22 61 
Mhol24 10GT 255 21 21 58 
Mhol25 48GT-T-9GT 528 25 24 59 
Mhol26 6AC 146 23 22 60 
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 6AC 267 23 22 60 
Mhol27 8CT-GA-6GT 157 18 21 61 

 8CT-GA-6GT 199 18 20 57 

 8CT-GA-6GT 350 23 20 59 

 8CT-GA-6GT 394 19 20 60 
Mhol28 15AC 112 18 24 59 
Mhol29 12CA 117 21 21 58 
Mhol30 14GT-AT-4GT 217 20 20 61 
Mhol31 13TG 246 23 23 60 

 13TG 198 23 19 59 

 13TG 143 24 18 58 
Mhol32 17CA 208 20 28 59 
Mhol33 9CCT 114 21 21 59 
Mhol34 7CA 119 24 24 61 
Mhol35 12GT 144 22 18 61 
Mhol36 9GT No suitable primer found 
Mhol37 5TAAAA Too close to vector site for F primer 
Mhol38 13TG No suitable primer found 
Mhol39 9GT No suitable primer found 
Mhol40 8CAA 150 24 18 63 
Mhol41 33GT-t-9gt 299 22 21 59 
Mhol42 10CA 159 21 20 59 
Mhol43 6AGC Too close to vector site for R primer 
Mhol44 23GT 310 23 23 58 
Mhol45 19GT 100 20 21 60 

 19GT 291 23 22 60 
Mhol46 10GT 195 20 22 59 
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Table 3: Microsatellites identified and primers designed for Macrourus whitsoni. 

Name Microsatellite Repeat Fragment 
Length 

Primer 
Size (F) 

Primer 
Size (R) 

Primer 
Tm 

Mwhit01 6CA 110 20 21 58 
Mwhit02 9GT-G-38GT 203 24 18 59 
Mwhit03 9CTG 116 20 25 59 
Mwhi04 13GT No suitable primers found 
Mwhit05 6CA 149 24 24 61 
Mwhit06 3GT-AT-23GT Too close to vector site for R primer 
Mwhit07 6GT-A-6GT 180 22 20 58 

 6GT-A-6GT 128 24 18 60 
Mwhit08 31GT 129 24 24 60 
Mwhit09 25GT 190 22 18 61 
Mwhit10 12GT-CGTGTTTTATGC-18GT 271 25 22 58 
Mwhit11 24GT 150 22 26 58 

 24GT 203 21 26 57 
Mwhit12 11CA 130 24 22 59 
Mwhit13 6TA Too close to vector site for R primer 
Mwhit14 7GA 109 21 22 60 
Mwhit15 7GT 170 24 23 57 

 7GT 129 24 24 59 
Mwhit16 35AC 323 20 24 59 

 35AC 273 20 24 59 
Mwhit17 26TG-T-12TG 189 25 18 59 
Mwhit18 28GT Too close to vector site for F primer 
Mwhit19 7GT-GA-6GT 173 24 18 61 
Mwhit20 11CA-C-6CA Too close to vector site for F primer 
Mwhit21 18GT 120 23 22 60 
Mwhit22 12AC 112 22 20 58 
Mwhit23 8GT-CTA-39GT 214 22 20 59 
Mwhit24 6AGG 177 20 22 61 
Mwhit25 13GT-CTGTCTGTCGTA-13TG 273 26 21 60 
Mwhit26 17TG-G-20TG-T-16TG 195 20 19 59 
Mwhit27 7GT-GC-10GT 131 18 26 61 

 7GT-GC-10GT 132 18 24 58 

 7GT-GC-10GT 209 21 24 58 

 7GT-GC-10GT 307 22 24 59 
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Table 4: Microsatellites identified and primers designed for Muraenolepis sp. 

Name Microsatellite Repeat Fragment 
Size 

Primer 
Size (F) 

Primer 
Size (R) 

Primer 
Tm 

Mur 1 12GA No suitable primer sites 
Mur 2 11GA-A-12AG-T-4AG-T-18AG 202 21 27 62 
Mur 3 5TG-C-7GT No suitable primer sites 
Mur 4 33CT-T-6CT 160 19 27 61 

 33CT-T-6CT 262 21 21 58 
Mur 5 49GA 211 22 22 59 

Mur 6 
22CT-G-CT-GT-3CT-G-CT-GT-

10CT-T-2CT-2GT-15CT-CC-9CT-
CC-6CT 

254 25 20 59 

Mur 7 15CA 108 21 20 61 
Mur 8 6CA-ACA-25AC 282 22 21 60 
Mur 9 6GT-C-13GT 182 21 19 59 
Mur 10 5GTT 168 18 22 61 
Mur 11 20GT 152 18 23 58 
Mur 12 10AC-G-4CA 156 24 21 58 

 10AC-G-4CA 226 27 21 58 
Mur 13 5TAA Too close to vector site for reverse primer 
Mur 14 6CA 100 23 22 60 
Mur 15 9CA 327 23 20 59 

 9CA 171 22 23 61 
Mur 16 11GT No suitable primer sites 
Mur 17 8GT 155 22 20 58 
Mur 18 7GT 105 20 23 58 

 7GT 176 20 23 59 
Mur 19 7GT 109 20 24 62 

 7GT 190 19 25 58 
Mur 20 11GT 185 23 21 59 

 11GT 261 23 21 62 
Mur 21 10AG 291 22 21 58 
Mur 22 7CA 210 20 20 61 

 7CA 154 20 22 61 
Mur 23 5TAA Too close to vector site for reverse primer 
Mur 24 7AC Same microsatellite as 22 
Mur 25 54GT 401 20 21 60 

 54GT 329 20 18 60 
Mur 26 7GT-CTTA-8GT 100 23 23 62 
Mur 27 46GT-TTGCGTGCGTG-10GT Too close to vector site for reverse primer 
Mur 28 6CA 229 24 20 60 

 6CA 132 24 19 60 
Mur 29 7AAC 244 21 20 60 

 7AAC 152 21 22 60 
Mur 30 6CCA 182 22 19 61 
Mur 31 11AC-TC-8AC-G-7AC 301 18 26 58 
Mur 32 11GT 135 21 18 60 

 11GT 161 18 21 61 
Mur 33 8AC-G-2CA-CG-2CA-CG-7CA No suitable primer sites 
Mur 34 5CTGT 114 20 19 60 

Mur 35a 5AAC 169 21 23 58 
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Mur 35b 11GT 110 24 20 61 
Mur 35c 6GGAT 126 18 24 61 
Mur 36 6TTG 135 20 19 62 

 6TTG 181 23 21 60 

Mur 37 7GT-A-19TG-C-3GT-CT-2GT-CT-
11GT 296 25 27 58 

Mur 38 8AC 226 20 21 60 

 8AC 334 18 21 59 
Mur 39 25CA 107 20 22 58 

 25CA 210 20 23 61 
Mur 40a 7GTCCTCT 170 21 22 60 
Mur 40b 16GT 157 26 19 61 
Mur 41 16CT-G-9CT 176 20 24 61 
Mur 42 7TG-C-9GT 311 19 26 58 

 7TG-C-9GT 198 19 18 58 
Mur 43 6GT 107 21 25 58 

 6GT 262 20 28 58 
Mur 44 36CT 201 22 18 60 
Mur 45 7CA 153 20 21 61 

 7CA 209 20 19 61 
Mur 46 17CA 113 23 23 61 

 17CA 287 24 22 62 
Mur 47 5GGT 133 18 20 59 

Mur 48a 4TGAGAGA 267 20 21 61 

 4TGAGAGA 338 23 23 60 
Mur 48b 4GT-TC-12GT-GA-5GT-TT-15GT 149 24 28 61 

 4GT-TC-12GT-GA-5GT-TT-15GT 235 26 28 59 

 4GT-TC-12GT-GA-5GT-TT-15GT 298 23 28 60 

 4GT-TC-12GT-GA-5GT-TT-15GT 347 24 28 60 
 

 

 

 

 

 

 

 

 

183 
 



Cited Literature 
 

Carvalho, G. R. (1998). Molecular Ecology: Origins and Approaches. Amsterdam, Netherlands, 
IOS Press. 

Carvalho, G. R., Pitcher, T.J. (1995). Molecular Genetics in Fisheries. London, Chapman and 
Hall. 

Ferguson, A., J. B. Taggart, et al. (1995). "The application of molecular markers to the study 
and conservation of fish populations, with special reference to Salmo." Journal of Fish 
Biology 47: 103-126. 

Frankham, R., Ballou, J.D.,  Briscoe, D.A. (2002). Introduction to Conservation Genetics. 
Cambridge, University Press. 

Gaffney, P. M. (2000). "Molecular tools for understanding population structure in Antarctic 
species." Antarctic Science 12(3): 288-296. 

O’Reilly, P., Wright J.M. (1995). "The evolving technology of DNA fingerprinting and its 
application to fisheries and aquaculture." Journal of Fish Biology 47(Suppliment A): 29-
55. 

Rozen, S., Skaletsky, H.J. (2000). Primer3 on the WWW for general users and for biologist 
programmers. Bioinformatics Methods 

and Protocols: Methods in Molecular Biology. S. Krawetz, Misener, S. Totowa, NJ, Humana 
Press: 365–386. 

Zane, L., L. Bargelloni, et al. (2002). "Strategies for microsatellite isolation: a review." 
Molecular Ecology 11(1): 1-16. 

 

 

  

184 
 



APPENDIX II 

Accession numbers for sequences from Genbank with outgroups highlighted in 
bold. 

Species Name 
Genbank Accession Number 

16S COI 
Antimora rostrata   JF265150; KC015196; EU148075 
Bathygadus macrops FJ215101   
Bathygadus melanobranchus FJ215102   
Coelorinchus braueri   JF493233; JF493234; JF493235 
Coelorinchus caelorhincus   JQ774515; JQ774516 
Coelorinchus fasciatus   EU074373; EU074374 

Coelorinchus marinii   EU074382; EU074383; EU074384; 
EU074385 

Coryphaenoides subserrulatus     
Coryphaenoides serrulatus FJ215124; FJ215125   
Coryphaenoides armatus   FJ164497; EU148117 
Cynomacrurus piriei   JN640619; HQ712959; JN640888 
Dissostichus eleginoides AM180545 EF609344 
Gadella imberbis   KC015367; KC015368 

Halargyreus johnsonii AY947851 
KC015433; JQ354111; GU806155; 
JF265170; EU869815; FJ164639; 
EU148182 

Hymenocephalus italicus FJ215147   
Lepidion ensiferus FJ215152 JX437968; JX437969; JX437970 

Macruronus magellanicus GU324139; EU348300; 
DQ274028 EU074460 

Malacocephalus laevis   HQ945850; JQ774539; JF493860 
Malacocephalus occidentalis   KC015622 
Merluccius australis   EU074468 

Merluccius capensis   JF493884; GQ988405; JF268620; 
HQ611082; HM007692 

Merluccius hubbsi EU348299 GU702480; JQ365421; GQ988401; 
GU324174; EU074478 

Merluccius paradoxus EU348302; GU324141 JF493889; GQ988407; JF268613; 
HM007689; GU324176 

Merluccius polli   GQ988410 
Mora moro AY392148 EF609410 

Muraenolepis marmoratus FJ215174 EU326378; EU326379; EU326380; 
JN40702 

Muraenolepis microps FJ215175; JX974419   
Muraenolepis orangiensis FJ215176   

Muraenolepis species FJ215177 
HQ713082; HQ713083; HQ713084; 
HQ713085; EU326374; EU326375; 
EU326376; EU326377 

Pseudophycis bachus EU848440 EF609444 
Pseudophycis barbata EU848441   
Salilota australis   EU074580 

Tripterophycis gilchristi  
JF494750; JF494751; JF494752; 
JF494753; JF494754 

Urophycis brasiliensis   GU702419; JQ365617; JQ365618; 
JQ365619 

Zeus faber AF221896 EU869851 
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