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Many studies have modeled the Tohoku tsunami of March 11,2011 as being due entirely to slip on an earthquake
fault, but the following discrepancies suggest that further research is warranted. (1) Published models of tsunami
propagation and coastal impact underpredict the observed runup heights of up to 40 m measured along the coast
of the Sanriku district in the northeast part of Honshu Island. (2) Published models cannot reproduce the timing
and high-frequency content of tsunami waves recorded at three nearshore buoys off Sanriku, nor the timing and
dispersion properties of the waveforms at offshore DART buoy #21418. (3) The rupture centroids obtained by

fsiyr‘:‘;ﬁ?s' tsunami inversions are biased about 60 km NNE of that obtained by the Global CMT Project.

submarine mass failure Based on an analysis of seismic and geodetic data, together with recorded tsunami waveforms, we propose that,
earthquake while the primary source of the tsunami was the vertical displacement of the seafloor due to the earthquake, an
Tohoku additional tsunami source is also required. We infer the location of the proposed additional source based on an
modeling analysis of the travel times of higher-frequency tsunami waves observed at nearshore buoys. We further propose

that the most likely additional tsunami source was a submarine mass failure (SMF—i.e., a submarine landslide). A
comparison of pre- and post-tsunami bathymetric surveys reveals tens of meters of vertical seafloor movement
at the proposed SMF location, and a slope stability analysis confirms that the horizontal acceleration from the
earthquake was sufficient to trigger an SMF. Forward modeling of the tsunami generated by a combination of
the earthquake and the SMF reproduces the recorded on-, near- and offshore tsunami observations well, partic-
ularly the high-frequency component of the tsunami waves off Sanriku, which were not well simulated by pre-
vious models. The conclusion that a significant part of the 2011 Tohoku tsunami was generated by an SMF source
has important implications for estimates of tsunami hazard in the Tohoku region as well as in other tectonically
similar regions.
© 2014 British Geological Survey © NERC 2014. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

The March 11th, 2011 Tohoku earthquake, which struck northeast
Japan at 2:46 pm JST, is the largest instrumentally recorded Japanese
earthquake and one of the world's largest. This extremely large, shallow
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subduction zone event (Fig. 1) caused a highly destructive tsunami,
which devastated the Pacific coast of the Tohoku region between 35°-
43° N. The most recent data published by Japan's National Police Agency
(as of August 8, 2014) show that 18,490 people died (including the miss-
ing) (http://www.npa.go.jp/archive/keibi/biki/index_e.htm). South of
38° 30’ N tsunami runups were up to 20 m, with 10-15 m recorded on
the low-lying Sendai Plain (Mori et al., 2012; see figure at http://www.
coastaljp/ttjt/index.php?plugin=ref&page=FrontPage&src=surveyge.
jpg). Larger wave activity was focused farther to the north, on the coast
of the Sanriku district between 38° 30’ N and 40° 30’ N (Fig. 1b and web
link above), where tsunami waves were highest, with peak flow depths
and runups of 40 m. Because the Tohoku earthquake was an extremely
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Fig. 1. (a) Seismotectonic setting of the March 11, 2011 Tohoku earthquake. Small black
dots are aftershocks (3/11-5/6), which approximate the surface projection of the main
rupture. Green and blue circles are locations of centroids for solutions uploaded to the
SRCMOD database derived from seismic inversions and tsunami inversions, respectively,
and the black dot is the USGS centroid (Table 1). White star is the GCMT centroid, and
red star is the average of the centroids obtained by the tsunami waveform inversions. Pur-
ple square is DART Buoy 21418, and purple diamonds labeled 4, 5, and 6, respectively, are
North Iwate, Central Iwate, and South Iwate GPS buoys, respectively (Locations in Table 2).
Other offshore GPS buoys are shown as black diamonds. The brown polygon approximates
the footprint of Fig. 4. The black rectangle shows the region shown in panel b. (b) Enlarged
view of the rectangle in panel a. Black rectangle is location of Fig. 13a. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this
article.)

damaging event in a nation with extensive networks of seismological,
GPS, tsunami, and other geophysical observatories, many inversions of
these data to infer its source mechanism have been conducted.

Inversion studies generally divide an assumed earthquake fault
plane into numerous subfaults. The Green's functions for unit slip with
delta-function time-dependence on each subfault of the rupture plane
is computed and, subject to regularization, the linear combination
of the Green's functions, weighted by fault displacement (slip vector)
for each subfault, that gives the best overall fit to the observed
data is determined, usually, but not always, as a function of time. Most
inversions analyze only seismic and/or geodetic data of large shallow
subduction zone events, but tsunami waveform data, usually in con-
junction with geodetic data, are also used in studies which we refer to
as “tsunami inversions” (Satake and Kanamori, 1991). The Green's func-
tions for the tsunami waveforms are calculated using an elastic model to
determine the seafloor deformation for each subfault and then a long-
wave model is used for the propagation of the tsunami waves.

Many studies (primarily inversions, but also some forward modeling
studies) of the source mechanism of the Tohoku earthquake analyzed
tsunami waveform data recorded at nearshore and offshore buoys to-
gether with other data (e.g., Fujii et al,, 2011; Gusman et al.,, 2012;
linuma et al., 2012; Levholt et al., 2012; Romano et al., 2012; Grilli
et al., 2013; Satake et al.,, 2013; Yamazaki et al., 2013); however, they
all have encountered two problems. First, they had difficulties in repro-
ducing the concentration of elevated wave activity recorded along the
Sanriku coast (notably between 39° 30’ and 40° 15’ N); second, even
when inverting tsunami waveforms and using dispersive wave Green's
functions, they could not satisfactorily reproduce the timing and high-
frequency content of tsunami waveforms recorded at the nearshore
GPS buoys located in this area, as well as the timing and dispersive
wave train at the “Deep-Ocean Assessment and Reporting of Tsunamis”
(DART) buoy #21418 located 600 km off the coast (buoy locations in
Fig. 1 and waveforms in Fig. 2).

Maclnnes et al. (2013, see their Fig. 2) compared simulations of the
Tohoku tsunami for ten earthquake source models obtained by inver-
sions utilizing seismic and geodetic data and tsunami waveforms.
They found that no model satisfactorily reproduced the amplitude of
the runup north of 39° 00’ N (see their Fig. 4). Grilli et al. (2013)
inverted geodetic data based on a detailed multi-material finite element
model (FEM) of the Japan Trench and forearc and obtained a source
model which they called the “UA source” (see Section 7). They then per-
formed forward tsunami simulations, using the UA source and a three-
dimensional non-hydrostatic model forced by the time-dependent sea-
floor deformation. Their simulation reproduced well the long-wave
tsunami observed at most nearshore GPS buoys and at DART buoy
#21418 as well as the runup and inundation outside of the central
Sanriku area. However, they could not reproduce the elevated tsunami
runups and inundation measured along the central Sanriku coast
between 39° 30’ and 40° 15’ N, nor the large amplitude higher-
frequency waves at the three Iwate GPS buoys located off Sanriku
(Fig. 2d-f; labeled 4, 5, and 6 in Fig. 1b) and the dispersive wave train
at DART buoy #21418 (Fig. 2j). At all four of the above buoys the resid-
uals (the difference between the observed and simulated waves) for the
UA source (Fig. 2d-f; j) clearly suggest a second wave train, 3-5 m in
height with a dominant period of 3-4 min, much shorter than that of
the waves earlier in the record, arriving between 25 and 32 min after
the earthquake. At DART buoy #21418 (Fig. 2j), the 2 m elevation lead-
ing crest can be fully explained by the UA seismic source but the follow-
ing residual wave train, composed of at least six cycles of 3 to 4 min
period waves up to 1.7 min height, cannot. Grilli et al. (2013) concluded
that the residual waves at the buoys could not be explained only by the
displacement of the seafloor caused directly by the slip on the fault
(which we call an “earthquake-only” source) and that an additional,
secondary, tsunami source was also required.

The two most likely mechanisms for a secondary tsunami source are
out-of-sequence (splay) faulting or a submarine mass failure (SMF). Of
these, there is no evidence for out-of-sequence splay faulting in the pub-
lished seismic profiling data for the source region (e.g. Tsuru et al.,
2002); in addition, any splay faulting would have generated seismic
waves that would have been detected by the dense network of GPS re-
ceivers or seismometers in Japan, unless it was very localized (Maclnnes
et al., 2013). There is, however, considerable evidence supporting the
possibility of an SMF. Large slumps are found on the margin of the accre-
tionary prism off the Sanriku coast (Cadet et al., 1987; von Huene et al.,
1994; Tsuru et al., 2002) and data from two ocean bottom pressure
gauge stations TM1 and TM2 off Kamaishi (latitude 39°12’ N) indicate
that at least part of the tsunami source in this region is a narrow area
in the deeper part of the Japan Trench (Maeda et al., 2011). The short-
period waves recorded at nearshore buoys and the offshore DART
buoy #21418 nearest Japan (i.e., the residual waves shown in Fig. 2)
are indicative of an SMF (e.g., Grilli and Watts, 2005; Tappin et al.,
2008) and, as shown by Grilli et al.'s (2013) forward simulations, cannot
be reproduced by an earthquake-only source. The peaked and focused
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Fig. 2. Tsunami waveforms (surface elevations) at buoys near Japan as a function of time. Panels (a) to (i) are 1st-9th GPS stations offshore the coast (for location see Figs. 1,8 and 11 and
Table 2): (a) Kushiro; (b) Tomakomai; (c) Matsu Ogawara; (d) North Iwate; (e) Central Iwate; (f) South Iwate; (g) North Miyagi; (h) Central Miyagi; (i) South Miyagi; (j) DART buoy
#21418 (the black circles show actual data points which have been interpolated by a spline curve). Observed data at GPS buoys and the DART buoy (black) are compared to synthetics
for the UA earthquake source (light blue). The red trace is the residual (the difference between the observed data and synthetic). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

flow depths and runup elevations along the northernmost Sanriku coast
are also characteristic of an SMF-generated tsunami because they are
more directionally focused than would be expected for an earthquake-
only source (Grilli et al., 2002; Enet and Grilli, 2007; Tappin et al., 2008).

A second tsunami source off Sanriku was also suggested by Fujii et al.
(2011, p. 819), on the basis of their tsunami inversion, and Satake et al.
(2013) noted an ~100 km latitude offset between the locations of the
largest fault slip and the maximum coastal tsunami height. Ichihara
et al. (2013) reported an electromagnetic signal that they interpreted
as evidence for a secondary tsunami source near the trench axis located
well to the north of the GCMT centroid, initiating about 1 min after the
earthquake's origin time.

Regarding the likelihood of earthquake-triggered SMFs, marine sur-
veys at the latitude of the earthquake epicenter (~38° N) reveal recent
seabed movement (Fujiwara et al.,, 2011); and Kawamura et al. (2012,
2014) proposed that this is evidence for a major landslide triggered by
the Tohoku earthquake (area approximately delimited by the dashed
white curve in Fig. 3 and white ellipse in Fig. 4) that could be an addi-
tional tsunami source. The region off Sanriku is where the catastrophic
Great Meiji tsunami of 1896 was generated, the source mechanism of
which has been a matter of considerable speculation. The relatively
small magnitude of the 1896 earthquake suggests that the tsunami
was generated either by a ‘slow’ event (Kanamori, 1972) or by rapid up-
lift of the sediment wedge (Tanioka and Seno, 2001); alternatively it

could have been due to a submarine landslide (Kanamori and Kikuchi,
1993).

The primary objective of this study, therefore, is to determine wheth-
er a tsunami generated by a “dual source,” i.e., the combination of an
earthquake and an SMF, can explain the on- and offshore tsunami data
for the 2011 Tohoku event. To do this we proceed as follows. We first
show there is a discrepancy between the centroid obtained by source in-
versions using tsunami data and that obtained using only long-period
seismic waves. We next identify the most likely SMF source location
from backward ray tracing of high-frequency tsunami waves observed
at buoys off Sanriku. We locate and parameterize the most likely SMF
using marine geophysical data, and then validate and test the proposed
SMF mechanism by a simplified slope stability analysis. We simulate
the tsunami waveforms using a dual source (an earthquake combined
with the proposed SMF). We use a three-dimensional (3D) non-
hydrostatic model, forced by the time-dependent sea bottom motion
from the dual source. Tsunami propagation is modeled using a fully non-
linear and dispersive long-wave Boussinesq model. Computations are
performed in a series of nested grids with increasingly fine resolution to-
wards the shore. We validate our results by comparing simulations to
measured onland runup and inundation data and also to tsunami wave-
forms recorded at nearshore buoys and the DART buoy, on which, in ad-
dition, we perform a time-frequency wavelet analysis. Finally, we
compare the observed data to the synthetic tsunami waveforms from
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Fig. 3. Travel paths (solid and dashed yellow lines) computed taking bathymetry into ac-
count, based on linear (dispersive) wave phase velocity (GPS #4-6) or group velocity
(DART #21418; D), for the higher-frequency leading elevation wave, with period T =
4 min, observed at the buoys (time series shown in Fig. 2d-f,j—black line). The proposed
SMF tsunami source is outlined in red; the region of slumping observed in earlier field sur-
veys (Kawamura et al.,, 2012) is outlined in white (dashed). Computed travel times are:
(GPS #4) North Iwate: 33.1 min; (GPS #5) Central Iwate: 25.7 min; (GPS #6) South
Iwate: 25.3 min; DART #21418: 37.6 min. Note that a 198 s triggering delay was assumed
from the start of the earthquake (equal to the end of the SMF motion—see Section 7). Color
scale is bathymetry/topography in km from ETOPO-1 data. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)

our dual source model and to waveforms from other studies for which
we had data.

2. Inversions for earthquake source parameters

Many “seismic inversions” (i.e., inversions whose dataset does not
include any tsunami waveform data) have inferred source models for
the Tohoku earthquake. Of these, the mechanism (centroid and mo-
ment tensor) obtained by the Global CMT Project, (abbreviated as
GCMT below; Nettles et al., 2011) may be regarded as the best overall
representation of the earthquake source, because it is based on long-

Fig. 4. Submarine mass failures (SMFs) in the region off northern Tohoku (Sanriku) coast
from pre-March 2011 JAMSTEC bathymetry. Black ellipses: SMFs. Red square: the location
of the SMF triggered by the March 2011 earthquake (see Fig. 5). White ellipse is the loca-
tion of the submarine landslide identified by Kawamura et al., 2012. The blue dots are the
locations of the sites drilled during ODP leg 186. Highest elevation observed tsunami
runup/inundation (around 39.5° N) along the Sanriku coast is also marked. Approximate
location of this figure shown by brown polygon in Fig. 1a. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)

period (300-500 s) seismic wave data from observatories throughout
the world, and was obtained following procedures that have been
honed over several decades. If the source models obtained by tsunami
inversions accurately represented the overall source of the Tohoku
earthquake, their slip centroids should agree with the centroid obtained
by the GCMT inversion. We now examine whether or not this is the
case.

21 source models for the Tohoku 2011 earthquake have been
uploaded by various researchers to the SRCMOD database (http://
equake-rc.info/srcmod/). Each model specifies the detailed spatial
(and sometimes also temporal) slip history on an assumed fault
plane(s) obtained by a particular study. Multiple models have been
uploaded by some authors, including results for some models catego-
rized as preliminary. With the exception of the GCMT and U.S. Geologi-
cal Survey (USGS) solutions, we do not consider source models which
are not available through the SRCMOD database. Table 1 shows the
computed latitude, longitude and depth of the centroids of the final
slip distribution for each of these 21 models, as well as the GCMT cen-
troid (white star) and the centroid of the USGS solution. A “T” in the
“Type” column of Table 1 identifies a tsunami inversion. The centroids
are shown in Fig. 1, and the average centroid for the eight tsunami in-
versions is also shown in Table 1 and Fig. 1 (red star; see caption for
Fig. 1 for other details). It is notable that the centroids obtained by the
various solutions are widely scattered. This has not been previously rec-
ognized (although Levholt et al., 2012, noted the scatter of other source
parameters obtained by various studies), and suggests that further work
on seismic source inversion methods is needed.

The tsunami inversion centroids shown in Table 1 and Fig. 1 are clus-
tered within a 30 km radius of their average centroid (the red star in
Fig. 1). On the other hand, the red star is about 60 km NNE of the

Table 1
Earthquake source solutions.
No Type® Author Tag" Lon® LAT®  Z
(km)
1 Ammon et al. (2011) 01AMMO  142.51 37.82 19.93
2 0T Fujii et al. (2011) OIFUJl 14290 3803 1858
3 T Gusman et al. (2012) 01IGUSM  143.01 3791 17.04
4 Hayes (2011) O1HAYE 14265 37.98 2439
5 Ide et al. (2011) O1IDEx  142.67 38.09 30.22
6 Lay et al. (2011) O01LAYx 143.03 37.18 14.57
7 T Satake et al. (2013) O1SATA 14292 38.10 17.80
8 Shao et al. (2011) 01SHAO 142,69 3792 16.77
9 Wei and Sladen® O1WEIx 142.84 3845 19.85
10 Yagi and Fukahata (2011) 01YAGI 143.03 3791 20.88
1 T Yamazaki et al. (2011) 01YAMA  143.11 3830 16.11
12 Yue and Lay (2013) O1YUEx 14294 37.86 24.02
13 7T Fujii et al. (2011) 02FUJI  142.88 38.10 19.00
14 T Gusman et al. (2012) 02GUSM 14299 38.05 17.18
15 T Satake et al. (2013) 02SATA 14293 38.11 13.88
16 Shao et al. (2011) 02SHAO 142.68 3799 16.52
17 Wei et al.f 02WEIx  142.83 38.68 19.22
18 T Satake et al. (2013) 03SATA  143.07 38.13 10.93
19 Shao et al. (2011) 03SHAO 14297 3796 20.28
20 Wei et al. (2012) 03WEIx 142.82 38.28 16.65
21 Shao et al. (2011) 04SHAO 143.04 37.84 19.04
22 USGS® - 142.60 3849 10.00
23 GemT! - 143.05 37.52 20.00

Tsunami average 14298 38.09 16.32

2 T indicates tsunami inversion.

b The Tag column gives the ID in the SRCMOD project database. All entries start with
s2011TOHOKU.

¢ Wei, S, Sladen, A,, 2011. Preliminary Result 3/11/2011 (Mw 9.0), Tohoku-oki, Japan.
http://www.tectonics.caltech.edu/slip_history/2011_tohoku-oki-tele/index.html
(last accessed July 1, 2013).

4 Weis§., Sladen, A., and the ARIA group, 2011. Updated Result 3/11/2011 (Mw 9.0),
Tohoku-oki, Japan. http://www.tectonics.caltech.edu/slip_history/2011_taiheiyo-
oki/index.html (last accessed July 1, 2013).

¢ http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic_
c0001xgp_cmt.php.

f http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic_
c0001xgp_gcmt.php.
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GCMT centroid (the white star in Fig. 1). This discrepancy between the
GCMT centroid and the average centroid of the tsunami inversions ap-
pears to be significant, although the heterogeneous nature of the data
precludes a formal statistical error analysis.

The tsunami inversions explain the tsunami waveform data
(e.g., Fig. 2) solely as a direct consequence of displacement of the sea
floor caused by slip on the fault; this could lead to centroids which are
systematically biased to the north if part of the tsunami on the Sanriku
coast (which is well to the north of all of the centroids) was generated
by a secondary source which was not included in the model parameter-
izations used by the tsunami inversions. It is notable that the source
models obtained by the tsunami inversions all require fault slip along
a narrow strip near the trench axis extending north to the Sanriku re-
gion, whereas seismic inversions do not infer significant fault slip
there (see Fig. 4 of Koketsu et al.,, 2011).

3. Initial modeling and identification of a possible SMF location

Omitting details, we found that modeling of the SMF sources identi-
fied by Fujiwara et al. (2011) and Kawamura et al. (2012) (white curves
in Figs. 3 and 4) failed to generate sufficiently large high-frequency
waves and also failed to match the observed relative arrival times at
the three Iwate nearshore buoys and the DART buoy; furthermore, the
tsunami resulting from the earthquake and these SMFs did not repro-
duce the elevated 30-40 m runups along the Sanriku coast. This sug-
gested that the large amplitudes of the higher-frequency residual
waves measured at the GPS buoys required a much larger volume
SMF source which is located further to the north.

A backwards travel time analysis (Fig. 3) was applied to tentatively
locate the SMF, based on wave-ray theory and solving the eikonal equa-
tion (which governs linear wave geometric optic theory) using a fast-
marching algorithm. Assuming that waves generated by the SMF can
be modeled by linear wave theory, we have in water depth h the
phase velocity (Dean and Dalrymple, 1984),

oL o
-

p=1= € tanhkh, (1)

k

where o is the wave angular frequency, k the wavenumber, L = 2m/k
the wavelength, and T = 2m/w the period, and the group velocity is,

1 2kh
%=3% <1 * sinhzkh)' @)

Egs. (1) and (2) include frequency dispersion, which is important for
accurately estimating the travel time of the observed 3-4 min period
waves. If the waves were modeled as traveling at their long-period
wave speed (e.g., such as by Ito et al., 2011), their velocity would be
overestimated, and the location of the SMF tsunami source would be
misplaced too far south (see below).

Fig. 3 shows the wave-ray travel paths computed as a function of ba-
thymetry, based on c,(h) or c,(h), for the three Iwate GPS buoys and the
DART #21418 buoy, respectively, for the first leading elevation residual
wave, with an assumed period T = 4 min. The analysis identifies the in-
ferred area of origin (red ellipse in Fig. 3) of the waves attributed to a
secondary tsunami source, between 39° 6’ and 39° 42’ N (along a longi-
tude of about 144° E), but most probably around 39° 24’ N. The comput-
ed travel times are: (#4) North Iwate: 33.1 min; (#5) Central Iwate:
25.7 min; (#6) South Iwate: 25.3 min; DART #21418: 37.6 min. To accu-
rately reproduce the arrival times at both the GPS and the DART buoys,
we found that a triggering delay of about 198 s after the initiation of
earthquake rupture was required. This time includes both the delay cor-
responding to initiation of SMF motion by seismic waves traveling from
the main rupture area and the duration of SMF motion, when the tsuna-
mi waves, whose travel path we compute, have been fully generated.

The detailed modeling of the SMF tsunami generation presented
below confirms the above estimate of the SMF location. Despite the sig-
nificant amplitude of the residual waves (several meters at the buoys)
and their smaller wavelength than the earthquake-generated waves,
they remain of small steepness. Hence their phase velocity is well repre-
sented by the linear dispersion relationship (Eq. (1)). As discussed
above, including the effect of dispersion is key to the accuracy of
this analysis. Hayashi et al. (2011) used linear shallow water wave
(LSWW) theory to perform a similar ray tracing analysis on the primary
wave crests recorded at underwater pressure gauges (Maeda et al.,
2011; Ito et al., 2011) and GPS buoys. Neglecting dispersion led to
overestimating wave speed and resulted in the origin of the higher-
frequency tsunami waves being sited too far to the south. Indeed, at
the three Iwate GPS buoys, the primary crests of the 3-4 minute period
waves have a threshold depth hsy, for LSWW theory to apply that sat-
isfies kh < m/10, yielding (Dean and Dalrymple, 1984),

L o
Cpsw TR VEh = oo
3)
_ gT? ¢ _ [tanhkh
for h<hgy, = 200 and—fpsw = T <1

where SW refers to the non-dispersive LSWW approximation. Fora T =
180 s period wave, we find hs,, = 795 m. Hence, Hayashi et al.'s analysis
is flawed because, for h >> hgy, (Which is true for most of the propaga-
tion; see Fig. 3), the dispersive Egs. (1) and (2) must be used, yielding
Cp < Cpsw-

4. Evidence for an SMF at the proposed location

We looked for an SMF with evidence of recent seabed movement in
the area of the secondary tsunami source tentatively identified by the
backward ray tracing (Fig. 3). On post-earthquake Multi-Beam Echo
Sounder (MBES) surveys conducted by the Japan Agency for Marine-
Earth Science and Technology (JAMSTEC, 2011), we located a number
of large-volume slumps (Fig. 4) one of which, at a depth of about
4000-5500 m (Fig. 5), correlates with the identified area. This
SMF is w = 40 km wide, with a downslope length from the headwall

Pre- March 11 2011 300

Bathymetry
100

Y

SMF Headscarp
. -100

122 m uplift
-300

Surface

.. / difference
s _.90m. (m)

« downdrop

Fig. 5. Difference in seabed elevation between pre- and post-March 11, 2011 MBES ba-
thymetry. Post-March 11th MBES are the swaths between white dotted lines, with pre-
March 11 bathymetry shown elsewhere. The pre-March 11th bathymetry is from the
Japan Oceanographic Data Center and gridded at 500 m. The post-March 11th data is
12 kHz MBES gridded at 100 m. Note SMF headscarp, downdrop at rear of SMF and uplift
at SMF toe. See Fig. 4 for location. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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b = 20 km. Comparison of the post-earthquake MBES data with pre-
earthquake data from the Japan Oceanographic Data Center (JODC) sug-
gests that the SMF was a short-amplitude rigid slump that was triggered
by the March 11 earthquake (Fig. 5). There were significant seabed eleva-
tion changes, well in excess of the relative error expected for data sets
with different resolutions acquired at different times. The inferred seabed
morphology change is consistent with a short-amplitude, rotational
mechanism, which is characteristic of slump failure. This interpretation
also is consistent with Multichannel Seismic (MCS) data in this area, on
which slumps are present (Tsuru et al., 2002). The maximum uplift on
the trenchward side of the SMF is about 100 m, with a maximum
downdrop at the landward side of about 90 m; values consistent with ro-
tational slumping movement. For slumps, maximum thickness Th is
about 10% of the slump length b (Watts et al.,, 2005 and references there-
in), which yields a maximum thickness Th of about ~2000 m. This thick-
ness is near the upper bound for pre-earthquake slumps identified in the
area (von Huene et al., 1994; Tsuru et al., 2002) and gives an SMF volume
in the order of V ~ 500 km? (assuming a quasi-Gaussian shape with ellip-
tical horizontal footprint; Enet and Grilli, 2007; see details below).

5. Slope stability analysis

To support our hypothesis that the SMF identified as the secondary
tsunami source could have failed as a result of horizontal seismic accel-
eration from the March 11 earthquake, we performed a simplified (first-
order) geotechnical slope stability analysis using the Bishop method
(Bishop, 1955; Turner and Schuster, 1996). To the north and south of
the location of the secondary SMF source estimated by the travel time
analyses (Fig. 3), using pre-earthquake seabed morphology, we selected
5 parallel and equidistant transects spaced at 0.4° in latitude and orient-
ed in direction § = 97° from North (Fig. 6). The transects are 140 km
long and roughly perpendicular to the Japan Trench axis (1-5 in Fig. 6
and Table 3); transects #3 and #4 lie either side of our candidate SMF
(around 39° 30’ N, 144° E Fig. 3). These transects appear realistic be-
cause ~30 km long, 2-3 km thick SMFs are shown in the area of tran-
sects #1-3 in Tsuru et al. (2002, Fig. 6). The region of high seabed
slope along transect #5 (around 38° 50’ N, 144° 40’ E) is where
Kawamura et al. (2012) found evidence of recent slumping (Figs. 3
and 4). Fujiwara et al. (2011) reported landslide debris, 1-2 km across,
farther south at around 38° N.

41°N - 25°
3
20°
40° N
150

100
39° N~

38°N

144° E 146°

142°E

Fig. 6. Pre-earthquake average seafloor slope (degrees) in the SMF source area (for detail
see Fig. 4), with white lines marking the direction (azimuth #) and extent of transects an-
alyzed with the 2D slope stability model Slide (Fig. 7, Table 3). Red segments indicate the
extent of failure surfaces predicted along each transect. The white dashed region shows
the extent of the slumping observed by Kawamura et al. (2012), and the red ellipse
shows the SMF location simulated in NHWAVE. Bathymetry used in the figure is 1’ arc
ETOPO1 data. The yellow dots show the locations of ODP sites 1150 and 1151. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 2

Locations and water depths of the GPS buoys and DART #21418.
Buoy No/letter Name Water depth  Latitude Longitude

(m)

lora Kushiro 50.1 42°54'38" N 144°23' 50" E
2orb Tomakomai 50.7 42°32'39"N  141° 26’ 46" E
3orc Matsu Ogawara 43.8 40°55'30" N 141°25'27"E
4ord North Iwate 125 40°07'00" N  142° 04’ 00" E
S5ore Central Iwate 200 39°37'38"N  142°11"12"E
6orf South Iwate 204 39°15'31” N 142°05' 49" E
7org North Miyagi 160 38°51/28" N 141°53" 40" E
8orh Central Miyagi 144 38°13’57"N  141°41'01"E
9ori South Miyagi 137 36°58'17"N  141°11' 08" E
DART #21418  DART #21418 5700 38°41'7"N  148°46' 09" E

As we lack site-specific geotechnical data, sediment properties were
taken from the Ocean Drilling Project (ODP) Leg 186 sites 1150 and
1151 (Fig. 6) (Suyehiro et al., 2003). The sites are located 60 km to the
west of the slumps we locate on our MBES on the margin of the accre-
tionary prism (Fig. 4). The sediment at the ODP sites is dominantly dia-
tomaceous silty clay and claystone with a typical bulk density of
1.5 g/cm? (unit weight of 14.7 kN/m?) and cohesion of 60 kPa; no
pore pressure data were available. Triggering of the SMFs was assumed
to be through a combination of earthquake-generated, horizontal seis-
mic acceleration (shear waves) and excess pore pressure build-up,
which are mechanisms recognized as significant in driving SMF along
convergent margins by inducing a rapid loss of frictional strength
along a failure surface (Tappin et al., 2008). The Bishop method quan-
tifies the potential for failure of a given slope by computing a balance
of seismic and gravitational forces, together with frictional stability,
for a series of selected potential failure surfaces. For each slope, a Factor
of Safety (FS), defined as the ratio of disturbing (i.e., seismic, gravity, and
pore pressure) to stabilizing (i.e., shear and cohesiveness) forces, is
computed to select the likeliest slip surface and SMF geometry for a
minimum FS value. In the absence of pore pressure data, we performed
an idealized pseudo-static two-dimensional (2D) analysis, with an as-
sumed horizontal seismic load as a trigger. Because the SMF is within
the compressional quadrant of the earthquake (see Fig. 7 in Grilli
et al., 2013), we assumed that positive, earthquake induced, pore pres-
sures decreased the effective stress on the frictional surfaces, thus in-
creasing the potential instability.

Because of the lack of data and the many simplifications, the follow-
ing stability analysis only provides relative results, i.e., it will just
identify which of the transects is likeliest to fail. Should site-specific
field data become available in the future, a more detailed and thorough
slope stability analysis can be performed. Along each transect,
RocScience's model Slide (http://www.rocscience.com/products/8/
Slide) was used to compute slope stability for vertical 2D sections,
with the domain extending 10 km below sea level. An internal friction
angle of 35° is assumed. Simulated annealing is applied in Slide to find
an arbitrary (non-circular) failure surface for each transect. In this auto-
matic mode, Slide computes FS for a large number of failure surfaces and
retains the minimum value. If the minimum FS value for a given 2D

Table 3

Slide 2D stability analyses. Location and geometrical description of five transects #1-5
(Fig. 6) oriented in direction # = 97° from North (Fig. 9); xrand y; mark the center of
the failed surfaces; | and T are SMF length and maximum thickness computed from the
2D stability analysis; factor of safety FS was computed for a seismic loading coefficient
ks = 03.

Transect Xf Yr 1 T FS
(lon) (lat) (km) (m) (ks = 0.3)
#1 144.20 40.30 4.25 320 0.549
#2 144.18 39.90 8.48 477 0.610
#3 144.13 39.51 14.57 569 0.595
#4 144.07 39.12 16.29 644 0.670
#5 143.73 38.75 6.95 419 0.619
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Fig. 7. Vertical cross-section through the center of modeled SMF (red ellipse with center of mass at 39.37° N, 144.00° E in Figs. 3 and 6) in azimuthal direction § = 97° from North (see
Fig. 9). (a) Seafloor bathymetry (upper solid line); assumed SMF failure surface in tsunami simulations (dashed line; for SMF geometry of Eq. (5)); normal fault with headwall angle
« = 12° and subducting Pacific plate with dip angle 3 = 6° (chained lines). (b) Vertical seafloor deformation caused by SMF Ah = h — hy (see Eq. (7)). Distance is measured from

the SMF center of mass.

transect is less than 1, there is failure along the corresponding slip sur-
face. Without seismic loading, all transects were found to be stable
(FS>1).Imposing a seismic loading coefficient of ks = 0.3, correspond-
ing roughly to a peak horizontal acceleration of 0.3 g, a reasonable as-
sumption for the region during the Tohoku event, Slide predicted that
all 5 transects fail with a FS <1 (Table 3). However, the only failures
large enough to generate a significant tsunami, of length, [ = 15-
16 km, are along transects #3 and #4 (Fig. 6). The largest failure, with
nearly the lowest FS value, is between these transects, with a center of
motion at 39° 22’ 12" N, 144° E, a location that correlates with the
SMF identified from the travel time analysis (Fig. 3) and is clearly visible
on the MBES data (Figs. 4 and 5). The SMF on the MBES is larger, but
consistent in length with the prediction from Slide. The FS values
(Table 3) are also low for the other transects, suggesting that, along
these, there would also be SMFs, but that they would be shorter in
length and thus much smaller in volume. If triggered, these SMFs
would contribute little to tsunami generation for the 2011 event; how-
ever, on the MBES we could not identify any other significant failures
along the other transects, except for the failure along transect #5
(Kawamura et al., 2012). As noted above, however, our initial modeling
showed this not to be of sufficient volume to generate a significant tsu-
nami. In summary, the stability analysis, although simplified and “first-
order,” suggests that our proposed SMF was the most likely to fail of all
those in the region off Sanriku under the loading of the 2011
earthquake.

6. Wave propagation modeling-methodology for tsunami simulation

As most large earthquakes generate long-wavelength tsunamis, it
has been widely assumed that dispersive effects are small and, because
of this, they can be accurately simulated using non-dispersive nonlinear
shallow water (NSW) wave equation models such as BMs (e.g., Kowalik
and Murty, 1993; Satake, 1995). More recently, however, it has been
recognized that when the distances traveled are long this assumption
may be incorrect (Glimsdal et al.,, 2013), and that, in the far-field,
earthquake-generated tsunamis may become more dispersive than pre-
viously believed. Thus, dispersive long-wave models have been increas-
ingly used to simulate earthquake tsunamis such as for example, the
2004 Indian Ocean event (Horrillo et al., 2006; Grilli et al., 2007;
loualalen et al., 2007) and others (e.g., Grilli et al., 2010), including

Tohoku 2011 (Levholt et al., 2012; Grilli et al., 2013; Kirby et al.,
2013). For short propagation distances, however, dispersive effects
should be small for earthquake-generated tsunamis, as confirmed by
Grilli et al.'s (2013) near-field simulations of the Tohoku 2011 tsunami
based only on the UA earthquake source. In contrast, in the far-field,
Kirby et al. (2013) found that dispersive effects reached + 60% of the
surface elevation.

Due to their smaller source area, SMF-generated tsunamis have
shorter wavelengths and thus are more dispersive, even in the near-
field. Hence, they are best simulated using dispersive long-wave BMs
(e.g., Wei et al., 1995; Watts et al., 2003; Lynett and Liu, 2005; Lavholt
et al,, 2008; Tappin et al.,, 2008; Fuhrman and Madsen, 2009; Shi et al.,
2012) or other types of models which are both nonlinear and fully dis-
persive (e.g., Grilli and Watts, 1999, 2005; Grilli et al., 2002; Abadie et al.,
2010; Maetal,, 2012, 2013). For the 2011 Tohoku event, as noted above,
short-period, dispersive waves characterize the tsunami waveform
buoy data (e.g., Fig. 2d-f, j); therefore to fully simulate them, a disper-
sive long-wave model, such as a BM, is required, particularly when con-
sidering an additional SMF source.

To accurately model the earthquake-generated tsunami the time-
history of the displacement of the sea floor must be appropriately
accounted for by a space- and time-varying boundary condition, rather
than simply imposing a “hot start” (e.g., Grilli et al., 2013; Yamazaki
et al., 2013). This is especially true for an extremely large event
like the 2011 Tohoku for which seismic inversions (e.g., Ide et al.,
2011; Yue and Lay, 2011) show that the main earthquake rupture
lasted 3-4 min. This type of modeling, in which seafloor deformation
is triggered as a time sequence, had already been found necessary
for accurately simulating tsunami generation for the 2004 Indian
Ocean tsunami, which was also generated by an extremely large earth-
quake with a very long duration (Grilli et al., 2007; Ioualalen et al.,
2007).

We model the Tohoku tsunami generation for the dual source using
the 3D non-hydrostatic model NHWAVE (Ma et al., 2012), in which sea-
floor deformation from the earthquake (UA source) and the SMF is spec-
ified as a time- and space-dependent bottom boundary condition.
NHWAVE solves 3D Euler equations for incompressible flows in a o
(vertical) coordinate framework (i.e., boundary fitted, typically with
3-7 levels), with the simplifying assumption of a single-valued water
surface displacement. NHWAVE has been validated (Ma et al., 2012)
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for highly dispersive landslide tsunami generation by comparing simu-
lated surface elevations to measurements in laboratory experiments
(Enet and Grilli, 2007).

After the initial generation of the waveform in NHWAVE (here at
t = 300 s), the computed surface elevation and depth-averaged hori-
zontal velocity fields are used to initialize FUNWAVE-TVD (Shi et al.,
2012), a fully nonlinear two-dimensional (2D) BM with extended dis-
persive properties, in which waves are propagated to the coast in a se-
ries of increasingly refined nested grids, using a one-way coupling
procedure (details are discussed below).

FUNWAVE was initially developed for coastal wave dynamics (Wei
et al., 1995; Chen et al., 2000, 2003; Kennedy et al., 2000), and later ap-
plied to tsunamis (Watts et al., 2003; Day et al., 2005; Grilli et al., 2007,
2010; loualalen et al., 2007; Tappin et al., 2008). FUNWAVE-TVD (Shi
et al,, 2012; Kirby et al.,, 2013) is a more recent implementation, using
a “Total Variation Diminishing” (TVD) shock-capturing algorithm that
more accurately simulates wave breaking dissipation and coastal inun-
dation; once wave breaking is detected (based on a breaking criterion)
the model is switched to NSW equations in regions where this occurs.
The model was also efficiently parallelized on computer clusters using
the Message Passing Interface (MPI) protocol, allowing for the modeling
of large grids in a reasonable time. FUNWAVE-TVD was validated
against a comprehensive set of analytical, laboratory, and field bench-
marks, as part of the development of tsunami hazard maps for the US
East Coast (Tehranirad et al,, 2011) and was used by Grilli et al. (2013)
and Kirby et al. (2013) to simulate the near- and far-field effects of the
Tohoku earthquake-only tsunami.

7. Tsunami generation and propagation

Most earthquake rupture models used in tsunami studies assume a
superposition of dislocations on faults embedded in either a homoge-
neous or layered elastic domain, having a free surface boundary condi-
tion (e.g., Miyazaki et al., 2011; Ozawa et al., 2011; Shao et al., 2011;
Simons et al., 2011). However, neither a homogeneous nor a layered
elastic system adequately represents the complex geometry and struc-
ture of the Japan wedge and subducting slab. To address this complexi-
ty, Grilli et al. (2013) simulated fault-slip driven elastic dislocation
deformation of the subduction zone, using the Finite Element Method
(FEM) to account for the actual geometry of the Japan Trench and its
forearc, as well as the 3D inhomogeneous structure of material proper-
ties in the subduction zone (i.e., the stiff subducting Pacific Plate and rel-
atively weak forearc and volcanic arc of the overriding plate). As noted
above, we call their solution the “UA source” and the fault slip distribu-
tion from this was estimated by analyzing onshore and offshore geodet-
icdata (Sato et al., 2011) using FEM-based inverse methods (Masterlark
and Hughes, 2008; Kyriakopoulos et al., 2013).

NHWAVE simulations of the dual source are performed up to t =
300 s in a 3D grid with a 1000 x 1000 m horizontal resolution and
five o'layers in the vertical direction (Fig. 8). The earthquake component
of the tsunami is based on the UA source, with the timing of the earth-
quake rupture obtained from Yue and Lay (2011). The space- and time-
dependent triggering of the seafloor deformation from earthquake
faulting is initiated at time t = 0. The SMF motion, detailed below, is
triggered at time t;. The output (surface elevation and horizontal veloc-
ity components at the required depth) is then used to initialize
FUNWAVE-TVD over the same resolution grid. Computations are then
conducted by a one-way coupling procedure in nested 250 m and
50 m grids (Fig. 8), as also used by Grilli et al. (2013): time series of
free surface elevation and currents are computed in a coarser grid, for
many “numerical gauges” along the boundary of the next finer grid
level; computations are then restarted in the finer nested grid, using
the time series as boundary conditions. To represent open boundary
conditions, sponge (absorbing) layers are specified along the offshore
boundary of the coarser 1000 m resolution FUNWAVE-TVD grid.
Because time series computed at “numerical gauges” along the
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Fig. 8. (a) Computational domain boundaries for simulations with FUNWAVE-TVD (large/
medium/small red boxes: 1000/250/50 m grids) and NHWAVE (large red box: 1000 m
grid); numbered dots indicate the location of the GPS (black; #1-9) and DART (white;
#21418) buoys. (b) Bathymetric and topographic data sources in and around the various
computational domains: ASTER—blue (1” arc data used for topography greater than 100 m
elevation or outside of Sanriku region); JODC—ocher (used for bathymetry outside of
Sanriku region); JHA—cyan (used for bathymetry in Sanriku region); GSI—red (50 m res-
olution topography between 0 m and 100 m elevation within Sanriku region); ETOPO-1—
green (1’ resolution bathymetry used for 1 km grid). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

boundary of finer resolution nested grids include reflected waves as
well as incident waves, open boundary conditions are automatically sat-
isfied. Due to the fairly small horizontal extent of NHWAVE's and
FUNWAVE-TVD's computational domains (Fig. 8), Cartesian grids are
used in both models, with distance corrections applied to account for
the Earth's sphericity, based on a transverse secant Mercator projection
(similar to the UTM system, with an origin located at 39° N, 143° E). This
transformation leads to negligible grid distortions.

The generation of SMF tsunamis in NHWAVE is simulated as a time-
dependent seafloor deformation based on specified SMF geometry and
kinematics. Both are idealized to represent the small displacement of a
rigid rotational SMF (i.e., a slump; see, Grilli and Watts, 1999, 2005;
Grilli et al., 2002; Enet and Grilli, 2007), modeled as the center of mass
motion s(t) of a volume of sediment V; moving down a (locally) plane
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slope. Such motion is governed by a balance of gravity, inertia, buoyan-
cy, basal and hydrodynamic friction forces. For a rigid slump with con-
stant basal friction and negligible hydrodynamic drag, we find (Grilli
and Watts, 2005),

0 t<t;
t—t;
S(t) =< So( 1—cos ~ t;<t<t; +mt, (4)
0
2sg ti+mty <t

where to and so denote characteristic time and distance of motion.
Eq. (4) describes a pendulum-like motion for the slump center of
mass. Here, parameters t;, to, and so were all inferred by correlating tsu-
nami observations (i.e., travel time, dominant wavelength and height)
with simulations.

As in Enet and Grilli (2007), we idealize SMF geometry as a quasi-
Gaussian-shaped volume, whose steepness is controlled by a shape pa-
rameter &, with an elliptical footprint of length b, width w, and thickness
Th (Figs. 3, 7 and 9). We similarly use € = 0.717, which yields a fairly
bulky Gaussian shaped volume, that does not taper too much towards
its extremities, similar to actual slumps; this is a reasonable choice in
the absence of sub-bottom seismic data. With these assumptions, the
SMF initial vertical elevation below the pre-earthquake seafloor is
modeled as,

(& 1) = g max(,

ky, = %acosh% (5)

2 1
k, = Wacoshg

sech(k,&)sech(k,, y)—&]

where (§, y) are the local downslope and span-wise coordinates, rotat-
ed to the direction of SMF motion 6 (97°clockwise from north; Fig. 9),

§ = (x—Xxp) cosf—(y—Yy,) sind—s(t) 6)
X = (X—Xp) sinf + (y—y,) cosf

with s(t) given by Eq. (4), and (xo, Yo) the initial SMF center of mass lo-
cation given by the MBES bathymetry. The SMF absolute displacement
parallel to the slope (i.e., runout) is very small (about 1.5%) compared
to its estimated length: s(ty) = sy = 2 so = 300 m, and is derived itera-
tively for tsunami simulations to match the recorded higher-frequency
waves at the buoys (Fig. 2). The displacement duration tf = 1o = 63 s
is also derived from comparing simulations with buoy data. Because
of its large size compared to runout, the SMF essentially moves as

Fig. 9. Geometric parameterization of SMFs moving in transect direction §, with an
azimuth angle 6 from North.

a rigid block. With these parameters, the initial SMF acceleration,
ap = So/t3 = 0.37 m/s?, together with volume, is a first-order control
on the tsunamigenic potential of the SMF (e.g., Grilli and Watts, 2005;
Lynett and Liu, 2005 and see also Watts et al., 2005 for a discussion).

The instantaneous seafloor depth above the SMF is given by
(with, Ah = h — hy),

h(x,y,t) = ho(x,¥) + {{6(x.¥), x(x,y), t} =5 {8(x,¥), x(x,¥), t;} (7)

where hg(x,y) is the local bathymetry (e.g., Fig. 7). This results in a mo-
tion that is nearly equivalent to a translation of part of the seabed paral-
lel to the local average slope. The maximum seafloor uplift caused by the
SMF motion for these idealized SMF geometry and kinematics and fail-
ure parameters, is Ah = 91 m (Fig. 7b). The vertical SMF seafloor
velocity (used in NHWAVE as a bottom boundary condition) is then
computed as

O x,0) = S (AR, 5(0), £ ), ®

which can be obtained by differentiation of Eqgs. (4)-(7).

Through a series of iterative simulations of the dual source tsunami,
we found the SMF-triggering time delay that led to the best match with
the observed arrival time of higher-frequency waves at the GPS and
DART buoys (Fig. 2) to be t; = 135 s. This timing is consistent with the
110 s delay obtained from tsunami inversion (e.g., Takagawa and
Tomita, 2012). It can be explained by the finite time of shear wave prop-
agation from the earthquake hypocenter to the toe of the accretionary
prism (Yue and Lay, 2011), and loss of sediment shear strength from liq-
uefaction along the basal décollement that is normal in SMF. SMF mo-
tion terminates at t = t; + t; = 198 s (3.3 min) from the time of
earthquake rupture; this total time is identical to the delay indepen-
dently found from the simplified travel time analysis of Fig. 3. As seen
in Fig. 7b, there is downward seafloor displacement at the rear of the
SMF and upward at the front, as expected for a rotational failure and
confirmed by the post-earthquake bathymetry of the SMF source
used (Fig. 5). The free surface elevations of the SMF-generated wave
att =300 s are in the range — 10 to 16 m (Figs. 10 and 11). As expected
from similar earlier work (e.g., Day et al., 2005; Tappin et al., 2008), at
this and later times, the tsunami wave train generated by the SMF locat-
ed north of the main earthquake rupture, is more directional than waves
generated by the earthquake source with, despite the cylindrical pattern
of generated waves, higher amplitude waves being generated near the
SMF azimuthal direction of motion (axis). The SMF-generated waves
also are shorter and higher-frequency (thus more dispersive) than
those generated to the south by the earthquake (Figs. 2, 10 and 11).
The results of the dual source tsunami are presented as two videos: an
overall view of the tsunami (hyperlink to Video 1) and a close-up in
the region near the Sanriku Coast (hyperlink to Video 2) (for explana-
tion of video see caption for Fig. 11).

As seenin Egs. (4)-(8), with our idealized tsunami generation meth-
od (Grilli and Watts, 2005), which represents the rigid SMF motion by
that of its center of mass, SMF thickness and volume do not play a direct
role in kinematics and, therefore, on seafloor motion and SMF tsunami
source characteristics. However, as discussed above in the slope stability
analysis, SMF thickness and volume affect some of the physical param-
eters that control sediment failure through sediment stability and thus
indirectly the values of runout and failure time, determined through
modeling (see below), that control Eq. (4).

Within the constraints of seafloor morphology, the SMF site area and
its size (Fig. 5), and reasonable SMF aspect ratios, we refine the SMF
source kinematics and time of failure by iteratively modeling tsunami
generation for several sets of SMF parameters, together with the
UA earthquake source, to better match the tsunami observations.
Doing so, we found s; = 300 m (i.e.,, So = 150 m) and tf = 63 s
(i.e., to = 20 s) and, from these parameters, that the characteristic
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figure is shown in Video 1).
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wavelength of the generated tsunami was initially on the order of twice
the SMF length b, which is as expected, although perhaps slightly larger
because of wave propagation during SMF motion (e.g., Fig. 10 for t =
198 s). The simulation resulted in leading (onshore propagating)
waves generated along the SMF axis with a wavelength L =~ 40 km
when they reach a depth hg =~ 3 km (Fig. 10, § = — 30 km; dashed
line at t = 5 min), while their height (trough to crest) varied propor-
tionally to s; and the delayed timing of failure was t; = 135 s. According
to linear wave theory (Eq. (1)), these L and hg values translate into
T ~ 4 min period waves, which match the higher-frequency waves ob-
served at the three Iwate GPS buoys (nos. 4-6 in Fig. 1; waveforms in
Fig. 2d-f) and DART buoy #21418 (Fig. 2j), which ride over longer,
20-40 min period, earthquake-generated tsunami waves. It should be
noted that the iterative tuning of the parameterization of the SMF in-
volves complex tradeoffs between the various parameters.

To accurately simulate nearshore tsunami propagation, runup, and
inundation along the Sanriku coast, which has a complex topography
with many narrow valleys, we use nested grids of 1000 m, 250 m, and
50 m resolution (Fig. 8a). Bathymetric and topographic data for the
coarser grid were derived from the 1 arc-min (1800 m) resolution
ETOPO-1 database (Fig. 8b). For the higher resolution grids, bathymetric
and topographic data were derived from (Fig. 8b): (i) the 500 m resolu-
tion JEGG500 bathymetry (JODC Expert Grid data for Geography) along
the entire Japanese coastline; and (ii) the 1” arc (about 30 m) ASTER to-
pographic data. Offshore of the area of maximum coastal impact from
37.4° N to 40.0° N along the Sanriku coast, additional bathymetric data
were obtained from the Japan Hydrographic Association's (JHA) 50 m
resolution (M7005) digital maps and topographic data from the
Geospatial Information Authority of Japan (GSI). Data sets from the var-
ious sources were linearly interpolated. Note that the higher resolution
bathymetric and topographic datasets used (ASTER, JHA, GSI) are con-
sistent with the finest resolution grid used in simulations (50 m), and
are thus deemed adequate for the present study. Higher resolution sim-
ulations of coastal inundation (e.g., using 10-30 m grids, which is stan-
dard) could further refine assessments of local tsunami impact but
would require both higher resolution data and finer model grids.

8. Validation of the tsunami simulations

We validate our modeling results for the dual (UA plus SMF) source
using a number of methods: (i) the results of tsunami propagation sim-
ulations (Fig. 11 and videos); (ii) a comparison of simulated tsunami

am

N Lat.

Fig. 12. Tsunami runup and flow depth measured by Mori et al. (2012) in field surveys
(black dots). (a) Runup. (b) Inundation/flow depth at the shoreline. Simulations using
the UA earthquake source alone (blue line) cannot explain data between about 39° N
and 41° N, while the dual UA plus SMF source (red dots) fits the observations to a higher
degree. (For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

runup (maximum onshore elevation; Fig. 12a) and inundation (flow
depth at the shore and extent of landward penetration; Figs. 12b, 13)
with data recorded during post-tsunami field surveys (Mori et al.,
2012); (iii) a comparison of simulated and recorded tsunami wave-
forms (surface elevations) at the GPS and DART buoys (Fig. 14); and
(iv) a wavelet analysis of three nearshore GPS buoys and the offshore
DART #21418 buoy (Figs. 15-18). To further test the validity of our
modeling results we also obtained digital data for synthetic tsunami
waveforms that were computed by other authors using different
models and methods of tsunami generation, to compare with our syn-
thetics and the observed buoy data (Fig. 19).

8.1. Tsunami simulations

Instantaneous surface elevations computed in model simulations
using the 1000 m FUNWAVE grid, for the dual (UA plus SMF) source
show the marked differences in the tsunami wavelengths generated
from the two sources (time series snapshot images shown in Fig. 11
and a simulation in Video 1 ). Most notable are the shorter and more on-
shore-focused, dispersive wave trains generated by the SMF source in
the north, compared to the longer wavelength and long-crested, non-
dispersive, earthquake-generated tsunami waves to the south. The na-
ture of these waves from still snapshots is emphasized on large-scale
(Video 1) and coastal close-up (Video 2) video files of these simulations.

8.2. Onshore field survey data

Tide gauges at the coast were mostly destroyed by the tsunami, so
onshore runup and flow depth data were obtained from post-tsunami
field surveys (Mori et al., 2012). Tsunami runup (maximum onshore el-
evation) and inundation (flow depth at the shore and penetration) data
were measured at more than 5300 individual locations during post-
event surveys along a 2000 km stretch of the Japanese coast. Flow
depths were obtained from watermarks on trees, walls, and buildings,
and detided for the time of tsunami impact. In the area between 39.2°
and 40.4° N, the maximum flow depth and runup elevations computed
by the simulations for the dual (UA plus SMF) source are 37 and 45 m
respectively, as compared to 6 and 15 m for the earthquake-generated
tsunami alone (Fig. 12). In contrast, on the Sendai Plain to the south,
the dual-source simulation results do not differ significantly from
those for the earthquake-only source, a difference explained by the
high directionality of the largest tsunami waves generated by the SMF
that results in a high degree of focusing along the central Sanriku
coast. The agreement between simulations using the dual (UA plus
SMF) source and the field observations is very good along the entire
Sanriku coast, unlike the UA earthquake source alone which significant-
ly underpredicts the observations of runup and flow depth in the central
area. Similarly, in this area there is again good agreement between the
model simulations from the dual (UA plus SMF) source and the mea-
sured extent of inundation penetration (Fig. 13).

8.3. Time series analysis

An analysis of the time series of surface elevation observed and sim-
ulated at the GPS/DART buoys (Fig. 14) was performed to determine
whether the proposed dual (UA plus SMF) source reproduces the timing
of the waves and their frequency content at the buoys. We used data
from the 9 GPS NOWPHAS (Nationwide Ocean Wave information net-
work for Ports and Harbors; http://nowphas.mlit.go.jp/info_eng.html)
buoys moored near the Japan coast, and the offshore DART buoy
#21418 (Table 2; Fig. 2; locations marked in Figs. 1, 8 and 11). The
NOWPHAS buoys are moored 10-20 km offshore in water depths of
100 to 300 m. The DART buoy is located 600 km offshore in 5700 m
water depth. The observed time series of surface elevations were ob-
tained by applying a low-pass filter with a moving average technique
(Yamazaki et al., 2011).
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Fig. 13. Tsunami inundation penetration along the Sanriku coast (a: entire; b: zoom around Miyako): measured in field surveys (small black dots); and from model simulations with the
dual UA + SMF source (red line). Numbered black dots mark locations of GPS buoys (Fig. 3): (5) Central Iwate; (6) South Iwate. Note that there was a breakwater at the entrance of Miyako
Bay (39.65° N) that reduced tsunami inundation (Tomita and Yoem, 2012). Black rectangle in (a) is location of (b). See Video 2 for a simulation of the tsunami inundating this region. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Overall, the dual-source model produces accurate predictions of tsu-
nami elevations measured at the nearshore buoys (Figs. 14a-i), and
DART buoy #21418 (Fig. 14j); it is instructive to compare these results
with those in Fig. 2 for the UA earthquake source only. The results for
the UA seismic source alone and the dual (UA plus SMF) source are
nearly identical, except at the three Iwate buoys (Figs. 14d-f) and
DART buoy #21418 (Fig. 14j), where the dual (UA plus SMF) source
is required to explain the observations. This confirms the highly
focused nature of SMF-generated waves along the central part of the
Sanriku coast, where the best agreement, between the simulations
and the observed data, is clearly obtained from the dual (UA plus
SMF) source.

The three central Iwate buoys are located off of the region of the
largest coastal runups (from 39.2°-40.4° N) (Fig. 12). The SMF
source generates large amplitude, higher-frequency waves (with
trough to crest wave heights of 5.3 to 7 m) that ride on the longer wave-
length, lower frequency earthquake-generated tsunami waves. The
leading, shorter-period, waves of between 3 and 4 min duration are
consistent with the SMF characteristic wavelength. Although the
periods of the SMF-generated waves are much shorter than those of
the dominant, earthquake-generated tsunami (20-40 min), they are
comparable in amplitude, although these are even higher at some
locations.

At the DART buoy #21418, the simulated wave progression matches
the recorded wave sequence reasonably well (Fig. 14j). Because DART
buoys use a bottom mounted pressure sensor and compute surface ele-
vation assuming hydrostatic pressure, in the model-data comparison a
correction is applied to account for non-hydrostatic (dispersive) effects
in shorter wavelength surface waves (for which the water depth to
wavelength ratio, h/L > 1/20). Specifically, given a computed surface el-
evation time series 1)(t) in water depth h (i.e., 5700 m for the DART buoy
#21418), a Fourier transform is applied to determine the elevation 7))
in the frequency domain. Wavenumbers k are then found for each

frequency from the linear dispersion relationship Eq. (1). The
pressure-corrected elevation is found asf} (®) = 7)(w)/ cosh(kh). Finally,
we apply an inverse Fourier transform to 7/ (), to determine the
corrected time series 1)(t), which are plotted for simulations with vari-
ous sources and compared to observations (Fig. 14j). The SMF source
creates a high-frequency, oscillatory dispersive wave tail (also clearly
seen in Fig. 11f), with the period of the highest first wave in the tail ap-
proximately 4 min, followed by shorter wavelength and lower ampli-
tude waves.

8.4. Wavelet analysis

For the nearshore GPS buoys North, Central and South Iwate, and
DART buoy #21418, we performed a wavelet analysis on the observed
and simulated time series of surface elevation, to identify whether a
higher-frequency SMF signal was present (Figs. 14 and 15-18). We
used the continuous wavelet transform (Farge, 1992) based on a Morlet
wavelet, implemented in the frequency domain. Complex wavelet
transforms were constructed based on a resampled frequency resolu-
tion of 1 Hz for both modeled and recorded signals, and for 500 frequen-
cies evenly spaced in the range 0 < f < 750 mHz. We separately applied
the analysis to simulations using the earthquake UA source and the dual
UA plus SMF source, with the SMF triggered at t = 135 s. In the recorded
data at North Iwate (Fig. 15a) there are two pulses of high-frequency
energy; the first at around 0.55 h after the start of the earthquake,
with maximum power between 4 and 5 mHz, and the second around
0.90 h with maximum power at a slightly lower frequency of about
3 mHz. These components of the signal are present in the UA plus
SMF source (Fig. 15b), where the simulation produces the two distinct
high-frequency peaks, with localization in both time and frequency
agreeing well with the recorded data, although they are each shifted
to slightly lower frequency. They are absent, however, in the simulation
based on the UA earthquake source alone (Fig. 15c). Similar results are



\v—c’OL\/g_ 0

356 D.R. Tappin et al. / Marine Geology 357 (2014) 344-361
(m) (m)
a 24—t -t a t } t } b 2 i = i t }
1E i 1.57] b
0 t  0.54 b o
E P N
)

-0.5+

100 110

60
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(Note that the black circles in panel j show the actual data points which have been interpolated by a spline curve.) Green curves are results for the dual UA plus SMF source simulation.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

also seen at the Central and South Iwate buoys (Figs. 16 and 17), where
a single dominant high-frequency peak persists for about 0.2 h. The
main elements of the recorded GPS buoy data, therefore, are simulated
by the UA plus SMF source (Figs. 15b-17b), but not by the UA

f(mHz) < f(mHz) &

f(mHz) ©

earthquake source alone, for which the corresponding high-frequency
signal content is absent (Figs. 15c-17c).

In the data recorded at DART buoy #21418 (Fig. 18a) there is a
prominent ridge of high-frequency energy, which gradually increases
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Fig. 15. Modulus of continuous wavelet transform for North Iwate GPS buoy corresponding to time series shown in Fig. 2d (x axis in hours). (a) Observed GPS data, and simulation based
on: (b) UA plus SMF source, (c) UA source alone. Location in Fig. 1 and Table 2.



D.R. Tappin et al. / Marine Geology 357 (2014) 344-361

357

a T T T T T T

. ]

3 e = .
1.4 16 1.8 2

b T T T

- i

I o

E

- —— |
14 1.6 1.8 2

C T ) T T T T T T T

§6

€ 4

=2 — ——>

0.2

1 1.2 1.8 2

14

1.6

Fig. 16. Modulus of continuous wavelet transform for Central Iwate GPS buoy corresponding to time series shown in Fig. 2e (x axis in hours). (a) Observed GPS data, and simulation based

on: (b) UA plus SMF source, (c) UA source alone. Location in Fig. 1 and Table 2.

from 3 to 5 mHz, between 0.55 to 0.65 h after the start of the earth-
quake. This high-frequency wave signature indicates the presence of a
highly dispersive wave train in the signal that cannot be explained by
the UA earthquake seismic source alone, where the energy is concen-
trated at much lower frequencies (Fig. 18c). Only the dual UA plus
SMF source (Fig. 18b) captures the structure of this high-frequency dis-
persive tail, although it is shifted slightly later in time.

Overall, it is clear from this analysis of the buoy data that the consid-
erable amount of energy at frequencies above 3 mHz observed in the re-
corded data is inconsistent with the UA earthquake source alone. In
contrast, the high-frequency signal is simulated relatively well with
the addition of the proposed SMF source. For the earthquake UA source
the simulated surface elevations uniformly lack high-frequency content
above 3 mHz. The absence of this high-frequency content is notable in
simulations for GPS buoys facing the Sanriku coast and DART buoy
#21418. In contrast, simulated GPS/DART buoy wave elevations for
the dual (UA plus SMF) source result in time-frequency signatures
which match the observed high-frequency content above 3 mHz and
which localize this content correctly in space and time.

8.5. Comparison with synthetics for other models

We compare both our synthetic waveforms (blue lines) for the dual
(UA plus SMF) source and those computed by four other studies to

observed data (black lines) at the three Iwate GPS buoys and DART
buoy #21418 (Fig. 19). The four other studies are (i) linuma et al.
(2012; yellow lines), whose model is based on the seafloor displace-
ment field calculated from the estimated seismic interplate slip distribu-
tion; (ii) Gusman et al. (2012; green lines) whose model is based on a
joint inversion using a combination of tsunami waveforms, GPS data
and seafloor crustal deformation data (the crustal deformation is
based on a model from Tanioka and Seno, 2001); (iii) Romano et al.
(2012; red/brown lines) who use a joint inversion of earthquake-only
rupture from static on- and offshore geodetic data in combination
with on- and offshore tsunami waveform data (they adjust the offshore
GPS buoy data to fit the first higher-frequency waveform peaks record-
ed at the Iwate buoys); and (iv) Satake et al. (2013; purple lines), whose
model was obtained by inversion of onshore GPS data and tsunami
waveforms at offshore buoys.

As we already illustrated in panels d-f and j of Fig. 14, the synthetics
for our dual source model fit both the initial pulse and the later high-
frequency arrivals at these four stations. By contrast, from Fig. 19 it
can be seen the synthetics of linuma et al. (2012) do not fit the first
pulse at any of the three GPS buoys; they fit the first pulse at the
DART buoy to some extent, but not the later high-frequency arrivals.
The synthetics for the other three studies have large components of
very high-frequency noise at the three GPS stations, but these are not
present in the observed data. (Note that Gusman et al. did not compute
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Fig. 17. Modulus of continuous wavelet transform for South Iwate GPS buoy corresponding to time series shown in Fig. 2f (x axis in hours). (a) Observed GPS data, and simulation based on:

(b) UA plus SMF source, (c) UA source alone. Location in Fig. 1 and Table 2.
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Fig. 18. Modulus of continuous wavelet transform for DART buoy #21418 corresponding to time series shown in Fig. 2j (x axis in hours). (a) Observed GPS data, and simulation based on:

(b) UA plus SMF source, (c) UA source alone. Location in Fig. 1 and Table 2.

a synthetic for Iwate North, in panel a). The red/brown trace (Romano
etal, 2012) and purple trace (Satake et al., 2013) fit the first two cycles
of the data well in panel d of Fig. 19, but the green trace (Gusman et al.,
2012) does not.

9. Estimation of seismic wave generation by the SMF from Centroid
Single Force (CSF) strength

Our estimated SMF has a volume on the order of 500 km> and hence
one should ask whether seismic waves generated by the SMF could
have been detected within the larger seismic waves caused by the
earthquake. The centroid single force (CSF), as defined by Kawakatsu
(1989), is the equivalent body force for an SMF or other landslide
source, just as the moment tensor gives the equivalent body force for
slip on a fault plane. Comparing the CSF amplitude to the scalar moment
can be used to roughly quantify the relative amplitude of the seismic
waves generated by the SMF, as compared to those generated by the
earthquake. The scalar strength of an SMF source is characterized by
its CSF defined as

CSF = pV,sy, 9)

where p; denotes the sediment bulk density, Vi the SMF volume, and s,
the SMF runout (or distance traveled).

Our proposed SMF tsunami source, as discussed above, has an as-
sumed elliptical footprint on the seafloor (Fig. 9) of width w = 40 km
and downslope length b = 20 km; runout is sy = 300 m over a time
tr = 63 s. The SMF is assumed to have a Gaussian (axisymmetric)
shape defined by Eq. (5), with shape parameter ¢ = 0.717; hence SMF
volume is given by, Vs = 0.2983 b w Th (Enet and Grilli, 2007). While
the SMF footprint can be estimated with relatively good accuracy,
based on the ray tracing and geological analyses, as indicated above,
the SMF thickness is subject to a larger uncertainty; based on geology,
we estimate it could range between Th = 700 to 2000 m, which for
the maximum thickness, yields a volume V; = 477.3 km?>. The bulk den-
sity obtained from cores in the region is p; = 1500 kg/m?; thus Eq. (9)
yields a scalar CSF = (0.7-2.15) 10'7 kg m. As indicated above, the cen-
ter of the SMF is at 39.37° N and 144.00° E, and the slump moves in az-
imuthal direction + 97° from north (so the CSF vector is —83° from
north), down a slope of about 1:15 or 3.81°, so the force vector is
opposite.

The CSF calculated here is 2-3 times less than the value calculated
for the Kalapana slide by Kawakatsu (1989), but the Tohoku
earthquake's scalar seismic moment is about 200 times larger than

that reported for the Kalapana M7.2 earthquake. So, whereas long-
period seismic waves generated by the present SMF could have been
on the same order of magnitude as those for the Kalapana slide, they
would have been much smaller than seismic waves generated by the
Tohoku earthquake, as compared to the Kalapana earthquake. It thus
seems clear that whereas the SMF is found to have a significant effect
in enhancing tsunami amplitudes in northernmost Tohoku, it will not
have a significant effect on seismic or geodetic observations, although
its effects might be detectable through a detailed study of seismograms
recorded at observatories in the Sanriku region.

10. Conclusions

The source of the exceptionally high tsunami runups of up to 40 m
recorded along the central Sanriku coast between 39.2° N and 40.2° N
on March 11, 2011 has not previously been satisfactorily explained.
Here we demonstrate that these high runups can be accounted for by
an additional tsunami source, namely an SMF located almost directly
east of the central Sanriku coast (Figs. 4 and 12). The SMF contributes
to high runups, and extensive inland penetration and inundation
(Fig. 13). Along the central Sanriku coast, the tsunami runup and inun-
dation generated by the dual (UA plus SMF) source also reproduce the
field observations quite well, whereas the UA seismic source alone se-
verely underpredicts them (Fig. 12). This coast has many deep and nar-
row valleys of complex topography, which likely amplified the tsunami
impact. Hence, in this area, it might have been desirable to use an even
finer nested grid level than the 50 m grid, perhaps a 20-30 m grid; but
unfortunately no higher resolution topographic data were available to
us. Notwithstanding, we compared separate simulations, in the same
nested grid system, of tsunami generation and coastal impact for the
UA seismic source alone and the dual (UA plus SMF) source, to inunda-
tion and runup observations (Fig. 12). These comparisons showed that
results for the dual source predict inundation and runup in Sanriku
quite well, whereas results for the earthquake-only source do not,
confirming the validity of using the 50 m resolution grid of the present
study to illustrate the requirement of the proposed SMF to explain the
tsunami impact along the central Sanriku coast.

Our modeling of tsunami waveform data at offshore GPS buoys and
the DART buoy shows that the observed higher-frequency waves can be
best explained by a combination from our SMF triggered with a 135 s
delay, a time consistent with the propagation of seismic waves from
the main rupture area, and longer waves generated from an earthquake
with a main rupture farther south (Figs. 2 and 14). The backward travel
time analysis of the high-frequency component of the waveforms
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Fig. 19. Simulated and recorded surface elevations at buoys near Japan as a function of
time, with simulations from earthquake rupture derived from seismic, geodetic and/or
tsunami waveform inversion. (a, b and c) are North, Middle and South Iwate buoys, re-
spectively, and (d) is DART buoy #21418 (see Table 2 and Fig. 1 for buoy locations).
Black line is recorded data. (Note that the black circles in panel d show the actual data
points which have been interpolated by a spline curve.) Blue line is for dual (UA plus
SMF) model presented in this paper. Green line (not shown in panel a) is a joint inversion
from tsunami waveforms, GPS data and seafloor crustal deformation (Gusman et al.,
2012). Yellow line is from seafloor displacement field calculated from the estimated seis-
mic interplate slip distribution (linuma et al., 2012). Red/brown line is a joint inversion of
tsunami waveform data and GPS earthquake rupture (Romano et al., 2012). Purple line is
from waveform inversion (Satake et al., 2013). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

recorded at the GPS/DART buoys identified the most likely SMF tsunami
source (Fig. 3). A simplified slope stability analysis confirmed that the
SMF could have failed by earthquake loading (Fig. 6). The comprehen-
sive dataset of MBES bathymetry in the vicinity of the earthquake rup-
ture and offshore of the tsunami-inundated coastline validated the
presence of a large SMF (of up to ~500 km?) at the location estimated
from the travel time analysis, with vertical motions on the order of
100 m, consistent with an SMF failing as a rigid slump with a short
runout (Figs. 4 and 5). On the bathymetry, near our source SMF we
also identify a number of other large-scale SMFs, but these pre-date
the 2011 earthquake (Fig. 4).

Comparison of the observed wave elevations at near and offshore
buoys near Japan with our group's tsunami simulations for an
earthquake-only source (Grilli et al., 2013) as a function of time

(Fig. 14), and by wavelet analysis (Figs. 15-18) demonstrates that the
tsunami from the earthquake-only source cannot generate the high-fre-
quency components seen in the observed data (Fig. 2). These high-fre-
quency components, however, can be reproduced by an SMF located
at the northern boundary of the earthquake rupture zone, as identified
by the backward ray tracing. Comparison of our simulations for the
dual source with those for other published models based only on an
earthquake source, or ones somewhat modified, demonstrates that
the dual source is more successful in reproducing the high-frequency
components of the observed GPS and DART buoy data (Fig. 19). The
CSF results reveal that the proposed SMF, despite its large size, would
not have caused a large seismic signal, as compared to the much larger
seismic waves generated by the earthquake. So, the presence or absence
of an SMF source would not significantly affect the seismic data.

11. Implications for hazard estimation

Our results have important broader implications for the mechanism
of tsunami generation, both in Japan along the Tohoku coast, and else-
where (Harbitz et al., 2013; Wei et al., 2014). Anomalous tsunamis,
with 40 m runups focused along a narrow coastal corridor, have oc-
curred in the past in Tohoku, most notably the Great Meiji tsunami of
1896 in which 26,000 people perished. This tsunami has been attributed
to a slow “tsunami” earthquake (Tanioka and Seno, 2001) or to large-
scale slip near the trench axis (Tanioka and Satake, 1996). On the
basis of our results, however, we suggest that this event may have
been caused, at least locally, by an SMF, as proposed previously by
Tanioka and Seno (2001). In the MCS lines off of Sanriku shown by
Tsuru et al. (2002, e.g., Figs. 4 and 6) there are numerous SMFs that cor-
relate with many of the slumps mapped from MBES in our Fig. 4. Some
of these SMFs are near the inferred rupture area of the 1896 earthquake
(Tanioka and Satake, 1996). Significantly, there are reports that for the
1896 event, the sea initially withdrew, and that the tsunami had a lead-
ing depression wave; both observations supporting the possibility of a
tsunami generated in large part by an SMF (Grilli and Watts, 2005).
The initial Tohoku 2011, earthquake-generated, tsunami wave was pos-
itive with two pulses (Fujii et al., 2011; Maeda et al., 2011) and inundat-
ed the Sendai coast as a surge (Tappin et al., 2012). As we show in our
dual source modeling (Figs. 11 and 12), both the earthquake- and
SMF-generated waves would arrive near the shore almost simulta-
neously, thus their combined elevations impacting the coast together
would explain an absence of an initial ocean drawdown and sea with-
drawal despite the SMF component.

Evidence for large-scale SMFs is only seen off the northeast Pacific
Coast of Honshu Island (Figs. 1 and 4). This concentration suggests a
major, and insufficiently appreciated, tsunami hazard from SMF in this
region. Along other convergent margins, few hazardous SMF-sourced
tsunamis have as yet been definitely proven, although there is strong
evidence for dual, earthquake-SMF events in Alaska, 1946 (Fryer et al.,
2004), Flores Island, 1994 (Tsuji et al., 1995) and Java, 2006 (Fritz
et al., 2007). One definite recent example, however, is the 1998 Papua
New Guinea tsunami (Tappin et al., 2001, 2008; Synolakis et al.,
2002), where a delayed, earthquake-triggered, submarine slump caused
2200 deaths from a tsunami with maximum coastal flow depths of
16 m, and a focused runup along a limited length of coast. The identifi-
cation in the present study of the 2011 Tohoku event of a second major
SMF-generated tsunami, especially one associated with a M9 earth-
quake, is therefore important in guiding future research that contributes
to the improved forecasting and mitigation of the tsunami hazard from
large megathrust plus SMF events, both in Tohoku and globally. It seems
highly likely that the other large SMFs we identified on the MBES data
off Sanriku could have generated significant tsunamis and therefore
should be considered in analyses of the tsunami hazard in Japan. Our re-
sults also suggest a potential pitfall in the use of tsunami waveform in-
version from tide gauges and buoys to estimate the size and spatial
characteristics of earthquake rupture. If the tsunami source has a
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significant SMF component such studies may over-estimate the magni-
tude of the earthquake. It also would be desirable to extend real-time
tsunami warning systems (e.g., Gusman and Tanioka, 2014) to include
the effects of SMFs, although realizing this goal will involve formidable
technical challenges.

The question of how future earthquake hazards should be estimated
in general remains open. Thirty or forty years ago it was widely believed
that “characteristic earthquakes” occurred more or less periodically, and
that this could be used as the basis for making hazard estimates. How-
ever, statistical tests have refuted the characteristic earthquake hypoth-
esis (Kagan et al,, 2012) and hazard maps made using the characteristic
earthquake hypothesis fail to agree with subsequent seismicity (Stein
et al., 2012), so it appears that new methods are required. As for the
past tsunami history in Tohoku, a paleo-tsunami study by Minoura
et al. (2001) found that in addition to the very large tsunami in 869
(during the “Jogan era,” in Japanese history), the Sendai Plain had also
experienced two other similar tsunamis in the past 3000 years. The
size of these three tsunamis was generally comparable to that of the
2011 event (Mori et al., 2012). Paleo-tsunami studies further to the
north have not been made, due mainly to the lack of preserved tsunami
deposits, so the spatial extent of the Jogan event and the two earlier
events found by Minoura et al. (2001) remains unclear. The need for
new approaches to hazard estimation, the uncertainties regarding the
past events, and the possibility of SMF-generated secondary tsunamis
are all challenges that must be addressed in future studies.
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