

Metadata report for the southwest Pennine Basin and adjacent area 1:250 000 resolution geological model

Geology and Regional Geophysics Programme Open Report OR/14/027

BRITISH GEOLOGICAL SURVEY

GEOLOGY AND REGIONAL GEOPHYSICS PROGRAMME OPEN REPORT OR/14/027

Metadata report for the southwest Pennine Basin and adjacent area 1:250 000 resolution geological model

A G Hulbert, R L Terrington

The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty's Stationery Office. Licence No: 100017897/2012.

Bibliographical reference

HULBERT A G, Terrington R L. 2014. Metadata report for the south-west Pennine Basin and adjacent area 1:250 000 resolution geological model. *British Geological Survey Open Report*, OR/14/027. 14pp.

Copyright in materials derived from the British Geological Survey's work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the **BGS** Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail ipr@bgs.ac.uk. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract.

Maps and diagrams in this book use topography based on Ordnance Survey mapping.

BRITISH GEOLOGICAL SURVEY

The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com

The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.

We publish an annual catalogue of our maps and other publications; this catalogue is available online or from any of the BGS shops.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as basic research projects. It also undertakes programmes of technical aid in geology in developing countries.

The British Geological Survey is a component body of the Natural Environment Research Council.

British Geological Survey offices

BGS Central Enquiries Desk

Tel 0115 936 3143 Fax 0115 936 3276

email enquiries@bgs.ac.uk

Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG

Tel 0115 936 3241 Fax 0115 936 3488

email sales@bgs.ac.uk

Murchison House, West Mains Road, Edinburgh EH9 3LA

Tel 0131 667 1000

Fax 0131 668 2683

email scotsales@bgs.ac.uk

Natural History Museum, Cromwell Road, London SW7 5BD

Tel 020 7589 4090 Fax 020 7584 8270

Tel 020 7942 5344/45 email bgslondon@bgs.ac.uk

Columbus House, Greenmeadow Springs, Tongwynlais,

Cardiff CF15 7NE

Tel 029 2052 1962 Fax 029 2052 1963

${\bf Maclean\ Building,\ Crowmarsh\ Gifford,\ Walling ford}$

OX10 8BB

Tel 01491 838800 Fax 01491 692345

Geological Survey of Northern Ireland, Colby House, Stranmillis Court, Belfast BT9 5BF

Tel 028 9038 8462 Fax 028 9038 8461

www.bgs.ac.uk/gsni/

Parent Body

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU

Tel 01793 411500 www.nerc.ac.uk Fax 01793 411501

Website www.bgs.ac.uk

Shop online at www.geologyshop.com

Contents

Co	tents	2
Sui	ımary	3
1	Modelled volume, purpose and scale	4
2	Modelled surfaces/volumes	6
3	Modelled faults	8
	3.1 Fault Sticks	9
	3.2 Fault Center Lines	
	3.3 Fault contact modelling	9
4	Model datasets 1	0
	4.1 GOCAD® Objects	0
5	Model development log1	2
6	Software Used and Model workflow1	2
	6.1 Software Used	2
	6.2 Model Workflow	2
7	Model limitations1	3
8	Model image1	4
9	References1	4
FIC	URES	
Fig	are 1: Modelled area (in red) Topological Map - Ordnance Survey data © Crown copyright and database right 2014.	4
Fig	re 2: Example structural contour map of the Caledonian Unconformity from the south-west Pennine Basin Subsurface Memoir (Smith et al., 2005)	
Fig	re 3: Modelled Caledonian Unconformity surface (depth range in metres)	5
Fig	re 4: Image of modelled surfaces viewed from the south-west.	6
Fig	Basin and adjacent area	
Fig	re 6: Distribution of the modelled faults for the south-west Pennine Basin Model	8
Fig	are 7: Example from the Northumberland-Solway Model showing the construction of a fault surface (the Closehouse-Lunedale fault) from fault sticks (right image in blue) and the interaction of the fault with the Permo-Trias surface prior to faulting (in green) from Terrington <i>et al</i> (2013).	
Fig	re 8: Example fault contact from the Northumberland-Solway Model between the Ninety Fathom fault (Main) and the Stublick fault (branch) from Terrington <i>et al</i> (2013)	
Fig	rre 9: View of the final fault cut surfaces viewed from the North-East	4

Summary

This report describes the south-west Pennine Basin and adjacent area 1:250 000 model data and workflow. The model is based on the faults and surface contour plots in the map appendix of the following subsurface memoir:

Smith, N J P, Kirby, G A, and Pharaoh, T C. 2005. The structure and evolution of the south-west Pennine Basin and adjacent area. Subsurface Memoir of the British Geological Survey.

1 Modelled volume, purpose and scale

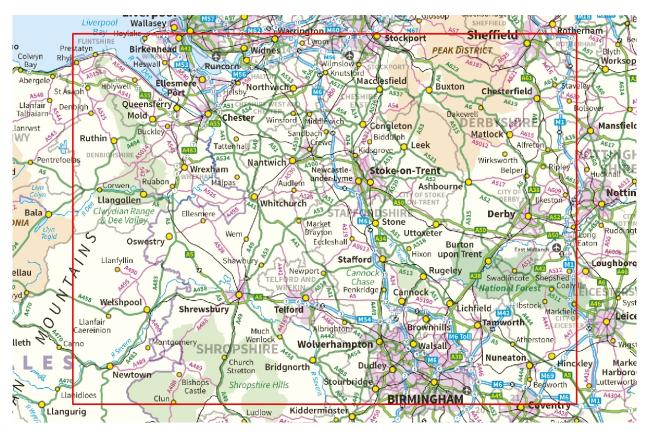


Figure 1: Modelled area (in red) Topological Map - Ordnance Survey data © Crown copyright and database right 2014.

This is a faulted GOCAD[®] regional model extending from north-east Wales in the west to Nottingham in the east and from Birmingham in the south to Manchester in the north (Figure 1). The model was constructed from digital data compiled for the south-west Pennines and adjacent area Subsurface Memoir (Smith et al., 2005). The results of the study are contained in the 1:625 000 scale structure contour, preserved thickness and subcrop maps (Figures 2 and 3) that accompany the Subsurface Memoir, so the data and model generated is regional to national in scale.

The model was developed as part of the Regional UK Lithoframe Programme, the aim of which was to convert the structural data interpreted in the subsurface memoirs into 3D models. Other models in this series include the Craven Basin, the Northumberland-Solway Basin, the East Midlands region of the Pennine Basin and Weald Basin models. The south-west Pennine Basin model provides an understanding of the regional bedrock structure in west central England (particularly for the Carboniferous rocks) and extends from +800 to -7 200m OD.

As the south-west Pennine Basin Model was derived from digital data compiled for the Regional Subsurface Memoir series, tasks such as drawing seismic interpretation to well control have already been performed. This document describes the process of creating a GOCAD® model from derived digital contour data.

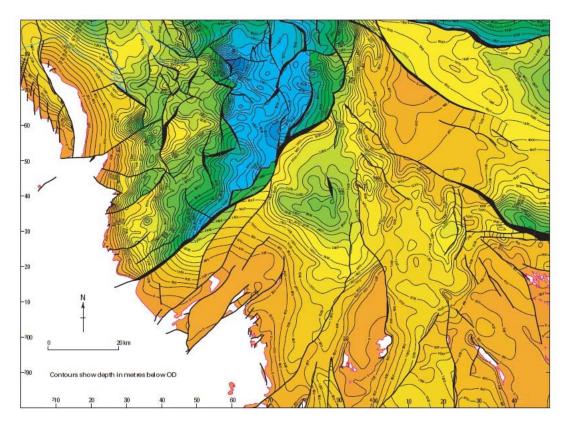


Figure 2: Example structural contour map of the Caledonian Unconformity from the south-west Pennine Basin Subsurface Memoir (Smith et al., 2005)

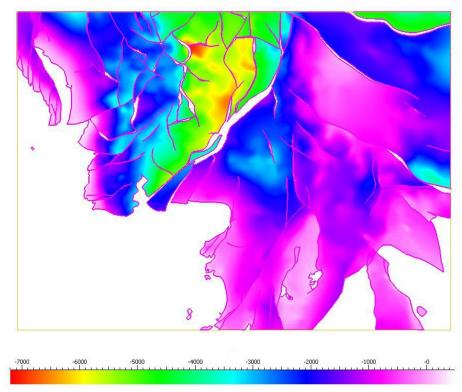


Figure 3: Modelled Caledonian Unconformity surface (depth range in metres)

2 Modelled surfaces/volumes

The surfaces were generated from the structural depth contour plots. Well control was applied after initial surface modelling.

Surfaces modelled are (numbers relate to stratigraphic order):

- 01 Variscan Unconformity
- 02 Base Warwickshire Group
- 03 Top Namurian
- 04 Top Dinantian
- 05 Caledonian Unconformity

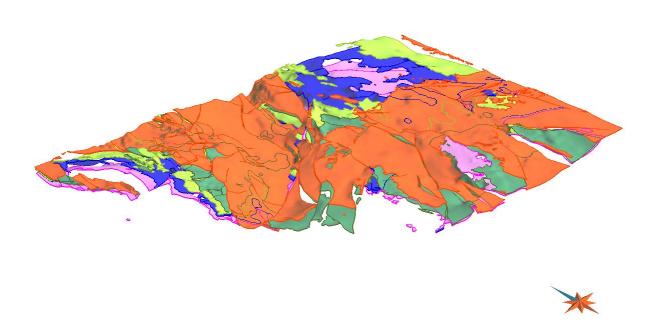


Figure 4: Image of modelled surfaces viewed from the south-west.

The figure below summarises the general stratigraphy of the south-west Pennine Basin from Smith *et al* (2005):

Period			Main Ilthology	Maximum thickness	Tectonics			
Quaternary		Holocene / Pleistocene	Quaternary		Peat, various glacial deposits	100m		
Palaeogene			Tertiary Dykes		Various glacial deposits			Basin inversion, regional uplift and erosion
Jurassic		Early	Lias Group		Mudstone and limestone	615m	Cimmerian unconformity	Thermal
		Late	Penarth Group		Siltstone, mudstone, sandstone	13m		subsidence
Triassic		Middle	Mercia Mudstone Group		Mudstone, siltstone, halite, gypsum	1600m		Rifting
		Early	Sherwood Sandstone Group		Sandstone,conglomerate	1200m		
Permian		Late	Cumbrian Coast Group		Mudstone	100m		
			Appleby Group		Aeolian sandstone	600m		
		Stephanian	Warwickshire Group		Mudstone, sandstone, siltstone	950 m	Variscan unconformity	Basin inversion, regional uplift an erosion
	Silesian	Westphallan	Pennine Coal Measures Gro	up	Mudstone, sandstone, siltstone, coal	100m	Symon unconformity	
			Certyn-	Grit Group	Millstone Grit Group: sandstone, mudstone Cefyn-y-Fedw Fm:			Thermal relaxation
			y- Fedw Fm	Z_	sandstone			
Carboniferous	Dinantian Visean		Craven Clwyd / Peak Limestone Group		Craven Group: mudstone, minor limestone and sandstone	1400m		Rifting
		Toumaisian	aroup	, >	Ciywd / Peak Limestone Group: limestone	4000m		
Devonlan		Late			Conglomerate,sandstone mudstone	150m		
						150-	Acadlan	Basin inversion, regional uplift an
Devonlan		Early			Conglomerate,sandstone, mudstone	150m	unconformity	erosion
Silurian		Ludlow	Temeside Group Upper Ludiow Shales Aymestry Group Lower Ludiow Shales		Mudstone, limestone	700m		Thermal relaxatio
		Wenlock Llandovery	Wenlock Shale Llandovery series			1000m		
		Ashgill Caradoc			Mudebone conductors	1200m	Shelvelan	
Ordovician		Liandello Lianvirn Arenig			Mudstone, sandstone	120011	unconformity	
Cambrian		Tremadoc Late Middle Early	Merioneth St David's Comley		Mudstone Basal Sandstone, mudstone	1000m 400m		Rifting
			Longmyndian Supergroup Uriconian Group	Charnian	Sandstone, mudstone, conglomerate Volcanics and tuffs	6500m+ 2300m+		
Precambrian			Rushton Schists Stanner - Hanter and Primrose Hill Intrusive Schists and complex Gnelsses	Supergroup	Metamorphic rocks/ gabbros			

Figure 5 Summary of the stratigraphy, geological and tectonic events for the south-west Pennine Basin and adjacent area

3 Modelled faults

All of the faults used in the construction of the model were sourced from the south-west Pennine Basin Subsurface Memoir (Smith et al., 2005). These were digitised per surface as ESRI polyline shapefiles as part of the Regional UK Lithoframe programme. As the model was regional in nature, an initial filtering of the faults was applied to ensure that only those that had significant throw/displacement (generally >100 m) were used for the surface construction.

One method of filtering was to select faults that had a length of greater than 10 000 m (a value arrived at by experimentation), as it is recognised that the greater the length of the fault (in 2D space) the greater the throw/displacement (Young-Seog and Sanderson, 2005). By selecting faults over 10 000 m, many of the faults with throws of greater than 100 m are used in the modelling phase.

For shorter faults, finding those that had significant displacement and were worthy of inclusion in the model was a case of manual inspection. This was achieved by taking all of the faults that had a length shorter than 10 000 m, and examining the contour values across and within a buffered distance (usually either 250 or 500 m) in order to estimate the change in elevation across the fault. From the results of this, faults that were less than 10 000 m in length but were found to have a throw greater than 100 m were selected for use in the project.

The total distribution of faults modelled can be seen in Figure 6.

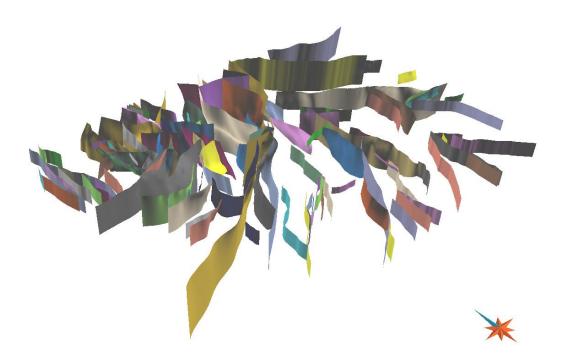


Figure 6: Distribution of the modelled faults for the south-west Pennine Basin Model

Two types of faults were produced using the Structural Modelling Workflow in GOCAD[®]. Some of the faults were produced using the fault sticks method (whereby fault cuts at individual surfaces were combined to produce a fault surface) and the rest used the Fault Centre Line method (a single fault line at a particular level, with a fault dip and direction applied). For both types of faults generated, fault contacts were modelled where individual faults were crossed or truncated by other faults in the model.

3.1 FAULT STICKS

1. Each surface was calculated using the digitised contours to give a raw unfaulted surface.

Last modified: 2014/04/11 15:30

- 2. The fault traces generated were draped onto their respective surface.
- 3. Faults were grouped by their fault location meaning each draped fault trace that corresponded with an individual fault was extracted to a new fault curve object further filtering could be undertaken at this point, as not all draped fault cuts were necessarily required to produce an aesthetically pleasing fault object (Figure 6).
- 4. The grouped fault traces were allocated a *Fault Stick* data type in GOCAD[®] and put through the Structural Modelling Workflow for generating a fault surface. Manual editing of the fault surface was sometimes necessary to smooth out any spikes or anomalous data.

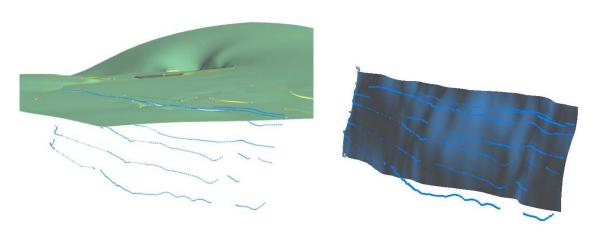


Figure 7: Example from the Northumberland-Solway Model showing the construction of a fault surface (the Closehouse-Lunedale fault) from fault sticks (right image in blue) and the interaction of the fault with the Permo-Trias surface prior to faulting (in green) from Terrington *et al* (2013).

3.2 FAULT CENTER LINES

If the fault trace only occurred on a single surface, or the fault heave over several surfaces was insignificant, the *fault centre line* data type was used in GOCAD[®] Structural Modelling workflow. The *fault centre line* allows the user to specify the elevations of the top and the base of the fault and the dip angle. The fault generated is a simple extrusion of the fault centre line. This fault type is often used where faults displace the outcrop (or subcrop).

3.3 FAULT CONTACT MODELLING

After fault construction, fault intersections need to be modelled and constraints built. This is normally done within the modelling workflow using the "Fault Contact Modelling" dialogue. This works well with relatively simple fault networks. For more complex networks or where individual faults may not always have the same vertical extents, manual construction of fault contacts and constraints produces a better model. To do this, we use the "cut by surfaces" method with the "build constraints" option selected. This fills the fault contact table in the same way that the workflow method does. The fault network for the south-west Pennine model was done in this way.

4 Model datasets

Digital Terrain Model (DTM)

Used as a reference dataset. The DTM source was NextMap at a 200 m cell size resolution. A surface was then created from extracted points. Optimisation was performed to produce more triangles in areas of more detail.

Borehole data

Boreholes used in the model have been extracted from the Stratigraphic Surfaces database. The surfaces described in this report are based on structural contour data from the memoir; they are warped to fit with the borehole data in the latter stages of the modelling process.

Map data

The map data were generated directly from the Subsurface Memoir (Smith et al., 2005) and cross-referenced with DigMap GB 1:50 000.

Mine plan data

No mine plan data were used.

Seismic data

Seismic data were interpreted and used in the generation of the contour data in the Subsurface Memoir (Smith et al., 2005).

Geophysical data

Please see Smith et al (2005)

4.1 GOCAD® OBJECTS

The following objects relate to the project specific data types within the GOCAD® project file. Each of the horizon datasets will have a pre-cursor number to identify it using the schema:

- 01 Variscan Unconformity
- 02 Base Warwickshire Group
- 03 Top Namurian
- 04 Top Dinantian
- 05 Caledonian Unconformity

4.1.1 Pointset – GOCAD® project

• Contains all of the structural contours, derived from the modelled surfaces, as points (e.g. 01_SW_Pennines_Variscan_Unconformity_Structure_Contour_points.vs)

4.1.2 Group - GOCAD® project

- SW_Pennines_boreholes data extracted from the SSD and used for surface fitting.
- SW_Pennines_faults contains all of the fault surfaces generated through the Structural Modelling workflow (e.g. SWPennines_SWPF001N_ts).

• SW_Pennines_Raw_faults - contains the "grouped" fault data used for fault surface creation.

• SW_Pennines_Raw_Data – contains the contour and crop data used for surface modelling and the "pre-grouped" fault cut data used for fault modelling

4.1.3 Surface - GOCAD® project

- Contains those surface horizons that have been clipped to the combined outcrop and subcrop for that horizon (01_ SW_Pennines_Variscan_Unconformity_ts)
- Other datasets include the DTM derived from the NextMap DTM at 200m resolution

5 Model development log

SW_Pennines_v0	DTM Construction	
SW_Pennines_v1	Construction of initial horizon surfaces for fault stick Z values.	
	Construction of fault objects prior to fault surface modelling.	
	Construction of fault surfaces.	
	Surfaces checked prior to fault contact modelling so that faults should	
	intersect correctly.	
	Fault contacts created	
SW_Pennines_v2	All horizons created	
	Horizon/Fault contacts modelled	
SW_Pennines_v4	Horizon/fault contacts refined	
SW_Pennines_v5	Horizons fitted to boreholes	
SW_Pennines_v5	Final model	
	Horizon crossings removed	
	Outcrop/subcrop constrained	

6 Software Used and Model workflow

6.1 SOFTWARE USED

- GOCAD® version 2.5.2 and GOCAD® v2009
- ArcGIS 9.3
- MS Excel

6.2 MODEL WORKFLOW

The following workflow was used to generate the Northumberland-Solway Basin Model:

1. Compiled all raw data into a GIS:

 $W: \label{lem:width} W: \lab$

- 2. Imported all fault traces, outcrop data and structural contours for each horizon into GOCAD[®].
- 3. Additional data added included the NextMap DTM (See Model Datasets Section 4)
- 4. A raw surface (uncut by faults at this stage) for each horizon was modelled using a combination of the structural contours and outcrop which had elevation values applied from the DTM surface data.
- 5. Every fault trace was draped onto its corresponding surface using the 'Transfer Property by Vertical Projection' tool and then following the methodology established in Sections 3.1 and 3.2, the fault plane was constructed.
- 6. Once all of the faults had been constructed, branch contacts were established between the faults using the manual 'cut surfaces with constraints' method.

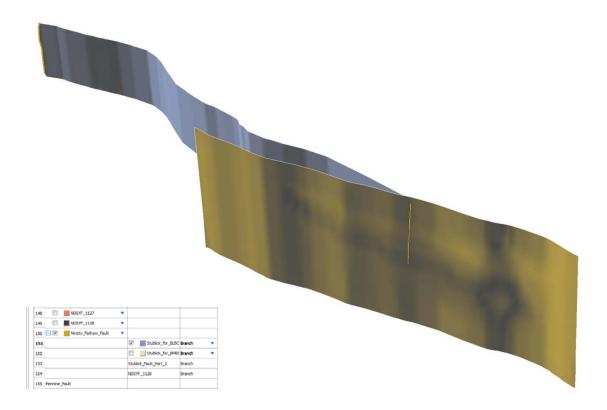


Figure 8: Example fault contact from the Northumberland-Solway Model between the Ninety Fathom fault (Main) and the Stublick fault (branch) from Terrington *et al* (2013)

- 7. The faults were then used to cut the raw surface horizons using the 'Horizon-Fault Contact Modelling' in the Structural Modelling workflow.
- 8. Fault contacts and surface horizons were either edited using the Structural Modelling workflow parameters or manually using the tools available in GOCAD®

7 Model limitations

The modelled surfaces were directly constructed from the structural contours from the south-west Pennines Subsurface Memoir and then warped to fit boreholes. This may result in the modelled surface not matching the original structure contours.

A number of changes/improvements were made to the fault pattern as seen in the subsurface memoir. This was due to the connectivity between faults for different surfaces becoming more apparent in 3D space. This may result in the modelled fault network not matching the original 2D fault patterns.

As part of the modelling process, crossovers may occur between the surfaces. Some of these are directly the result of contours overlapping in vertical space. These have been resolved wherever possible but still may exist in some places.

8 Model image

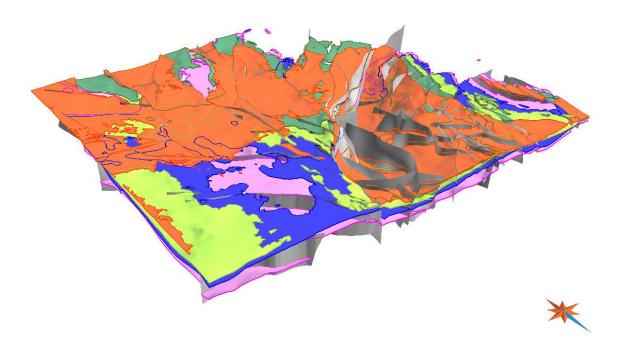


Figure 9: View of the final fault cut surfaces viewed from the North-East

9 References

SMITH, N J P, KIRBY, G A, and PHARAOH, T C. 2005. The structure and evolution of the south-west Pennine Basin and adjacent area. *British Geological Survey*, 129.

TERRINGTON, R L, and THORPE, S. 2013. Metadata report for the Northumberland and Solway Basin 1:250 000 geological model. *British Geological Survey*, OR/13/049 (British Geological Survey).

YOUNG-SEOG, K, and SANDERSON, D J. 2005. The relationship between displacement and length of faults: a review. *Earth Sciecne Reviews*, Vol. 68, 317-334.