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14 Abstract 

 
15 

 
16 In this special issue we present papers based on data from the UK’s Acid Waters Monitoring Network 

 
17 (UK AWMN) and other UK acid waters.  The AWMN was set up in 1988.  It was designed to monitor 

 
18 the chemical and biological response of acidified surface waters in the UK to the planned reduction 

 
19 in the emission of acidic sulphur and nitrogen gases as required by the UNECE Convention on Long 

 
20 Range Transboundary Air Pollution.  Most papers in the volume are concerned with the changes that 

 
21 have taken place at the 22 AWMN sites during 20 years of monitoring from 1988 to 2008. They show 

 
22 that  significant  changes  in  deposition  chemistry,  in  water  chemistry  and,  to  a  lesser  extent,  in 

 
23 biology have taken place, consistent with a recovery from acidification.   However, when compared 

 
24 with  pre-acidification   conditions  inferred  from  lake  sediment  records,  the  extent  of  biological 

 
25 recovery so far is shown to be quite limited.   The volume also contains papers on other aspects of 
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26 surface water acidification in the UK.  They include evidence for persistent highly acidic conditions of 
 

27 streams  in  the  North  York  Moors,  data  from  Scotland  showing  how  afforestation  is  modifying 
 

28 recovery  from  acidification  and  the  results  of  chemical  speciation  modelling  in  explaining  the 
 

29 relationship between acidification and macroinvertebrate species richness at AWMN and other sites 
 

30 in the UK.  The final papers are concerned with projections for the future and the extent to which 
 

31 acidified  sites will continue  to  improve.    They  conclude  that recovery  will continue  albeit slowly 
 

32 during this century but that other pressures principally from climate and land-use change are likely 
 

33 to alter the recovery pathways towards novel ecological endpoints potentially quite different from 
 

34 past baselines. 
 

35 
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43 1.   Introduction 
 

44 
 

45 Lake  sediment  records  demonstrate  that  Upland  Waters  in  the  UK  have  been  in  receipt  of 
 

46 atmospheric  pollutants  from  the combustion  of fossil  fuels for over 200 years (Rippey,  1990).  In 
 

47 addition, the analysis of diatom remains from sediments reveals that many upland lakes, specifically 
 

48 those situated in catchments in areas of high acid deposition and with low acid neutralisin g capacity, 
 

49 became severely acidified  during the nineteenth  century and early part of the twentieth  century 
 

50 (Battarbee et al., 1988).  However, despite Gorham’s prescient concern about “whether the effects 
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51 of the industrial  age upon air chemistry  have as yet seriously influenced  the ecology of the Lake 
 

52 District….” (Gorham, 1958), surface water acidification  was not recognised as a problem in the UK 
 

53 until  the late 1970s following  a chemical and biological  survey of Galloway lakes and streams by 
 

54 Wright et al. (1980) in 1979.  At the time the UK Government was not convinced by the evidence for 
 

55 fossil fuel combustion as the ultimate cause of acidification.  It was consequently reluctant to accept 
 

56 responsibility   for  the  problem,   either  in  the  UK  or  indeed  in  Scandinavia   where  long-range 
 

57 transported  air  pollutants  from  the UK and other  industrial  countries  had also  been blamed  for 
 

58 acidification and loss of fish populations (Almer et al., 1974). Nevertheless, by 1986, the UK accepted 
 

59 the  research  evidence   that  conclusively   demonstrated   a  clear  correspondence   between  acid 
 

60 deposition  and  the acidification  of low alkalinity  surface  waters  both  in the UK and  Scandinavia 
 

61 (Mason,   1990).  The  UK  consequently   signed   up  to   the  UNECE   Convention   on  Long   Range 
 

62 Transboundary  Air  Pollution  (LRTAP)  aimed  at controlling  the emission  of  S and  N  gases  to  the 
 

63 atmosphere.   As a result, over the last three decades there have been sustained reductions in the 
 

64 emissions  of acidic gases across  the UK and across Europe  as a whole.   By 2010 levels of S and 
 

65 oxidised N emissions in the UK had declined by approximately 94% and 58% respectively relative to 
 

66 1970 (RoTAP, 2012) (Figure 1). 
 

67 
 

68 
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71 
 

72 Figure 1. Trends in UK emissions of (a) SO2 and (b) NOx (modified from RoTAP 2012). 
 

73 
 

74 The  UK  Acid  Waters  Monitoring  Network  (AWMN)  was  established  by  the  UK  Department  of 
 

75 Environment  (now Defra) in 1988 to assess the chemical and biological response of acidified lakes 
 

76 and streams in the UK to the planned reduction in emissions following the recommendations of the 
 

77 UK Acid Waters Review Group (AWRG, 1987). 
 

78 
4 



 

 
 
 
 

79 The Network comprised 22 lake and stream sites across upland regions of the UK (Figure 2, Table 1). 
 

80 Figure 2 shows 24 sites as Loch Coire nan Arr was replaced in 2007 by Loch Coire Fionnaraich and 
 

81 Danby  Beck  (Site  24)  was added  to  the Network  in 2012.  Hydrochemical  analysis  is undertaken 
 

82 monthly  from  streams  and  quarterly  from  lake  outflows.  Biological  monitoring  involves  annual 
 

83 surveys of diatoms, macroinvertebrates,  salmonid fish and stream aquatic macrophytes,  with lake 
 

84 aquatic macrophytes  surveyed bi-annually. The design of the Network, sampling methodology and 
 

85 analytical protocols are described by Patrick et al. (1995) and Monteith & Evans (2000) and further 
 

86 information is available on the AWMN website (awmn.defra.gov.uk). 
 

87 
 

88 
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91 
 

92 Figure 2.   Map of UK Acid Waters  Monitoring  Network  sites and other  sites included  in the this 
 

93 Special  Issue.    Sites:  1.    Loch  Coire  nan  Arr;  2.  Allt  a’Mharcaidh;  3.  Allt  na  Coire  nan  Con;  4. 
 

94 Lochnagar; 5. Loch Chon; 6. Loch Tinker; 7. Round Loch of Glenhead; 8. Loch Grannoch; 9. Dargall 

 

 
95 Lane; 10. Scoat Tarn; 11. Burnmoor Tarn; 12. River Etherow; 13. Old Lodge; 14. Narrator Brook; 15. 

 
96 Llyn Llagi; 16. Llyn Cwm Mynach; 17. Afon Hafren; 18. Afon Gwy; 19. Beagh’s Burn; 20. Bencrom 

 
97 River;  21. Blue Lough;  22. Coneyglen Burn;  23. Loch Coire Fionnaraich; 24. Danby Beck. 

 
98 
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99 
 

100 The Network has evolved since its inception. In 1995, following recognition of nitrogen deposition as 
 

101 a  secondary  driver  of  surface  water  acidification,  total  dissolved  nitrogen  and  total  dissolved 
 

102 phosphorus  were  added  to  the  suite  of  measured  chemical  determinands.    At  the  same  time 
 

103 monitoring of one of the AWMN sites in north-east Scotland, Lochnagar,  was expanded to include 
 

104 mercury in atmospheric deposition, water and aquatic plants. In 1999, in response to concerns about 
 

105 the potential role of climate change, shallow sub-surface and deep-water temperature began to be 
 

106 monitored at all lake sites using thermistor-based  temperature dataloggers. A weather station was 
 

107 installed at Lochnagar  in 2002 and an automatic  hydro -meteorological  monitoring  buoy equipped 
 

108 with a thermistor chain and water quality sensors was deployed at the Round Loch of Glenhead in 
 

109 2005. Temperature dataloggers have been installed at all  sites and there are plans to complete the 
 

110 installation of conductivity and stage (loch and river) recorders throughout  the Network to assess 
 

111 the impacts of climate variability especially with respect to changing storminess and the magnitude 
 

112 of sea-salt  episodes).  It will also  allow  hydrochemical  data  to  be expressed  as  fluxes  as well as 
 

113 
 

114 

concentrations. 

 
115 A unique feature of the AWMN is the use of sediment traps emptied annually in the lake sites and 

 
116 used to monitor changes in diatom assemblages and trace metals. These complement sediment core 

 
117 data (Juggins et al., 1996) and allow changes in diatom assemblages to be tracked back continuously 

 
118 

 
119 

to the pre-acidification reference period in the early 19th  century. 

 
120 The AWMN database now holds over 20 years of chemical and biological data and provides the basis 

 
121 for a new assessment of the chemical and biological  trends that are occurring in the UK uplands 

 
122 following earlier reviews after five (Patrick et al., 1995), ten (Monteith and Evans, 2000) and fifteen 

 
123 years  (Monteith  and  Evans,  2005).  The  length  of  the  time  series  now  allows  a  more  detailed 
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124 statistical analysis of trends including the use of additive modelling to allow for non-linear temporal 
 

125 trends in hydrochemical data and a variety of ordination-based techniques for multivariate biological 
 

126 data. Taken together, the greater quantity of data and advances in statistical analyses enables the 
 

127 
 

128 

extent of the recovery to be assessed more definitively than hitherto. 

 
129 Data from the Network are made available to other national and internatio nal long-term monitoring 

 
130 programmes including the UK Environmental Change Network (ECN), the International Cooperative 

 
131 Programme on Assessment of Rivers and Lakes (ICP Waters) for which the AWMN provides all six UK 

 
132 

 
133 

sites (e.g. Garmo et al., 2011) and the Programme on Integrated Monitoring (ICP IM). 

 
134 In addition to the intrinsic value of the long-term AWMN data-sets many of the sites also fulfil key 

 
135 roles in national scale experimental  programmes  and in the calibration,  testing and application of 

 
136 biogeochemical  and  ecological  models  to  upland  waters.  AWMN  sites  have  been  the  focus  of 

 
137 catchment based experimental or modelling studies on the biogeochemistry of carbon (Clark et al., 

 
138 2010; Dawson et al., 2008; Evans et al., 2012; 2008) and nitrogen (Curtis et al., 2006; 2005; 2011; 

 
139 2012; Evans et al., 2006; 2008). Detailed algal ecology,  ecological modelling and food-web studies 

 
140 have built on biological and chemical monitoring data (Layer et al., 2011; 2010; Ledger and Hildrew, 

 
141 2005;  Woodward  and  Layer,  2007;  Yang  and  Flower,  2012).  Understanding  and  modelling  the 

 
142 speciation and toxicity of heavy metals have been the focus of several studies using AWMN data 

 
143 (e.g. Neal et al., 2011; Rippey et al., 2008; Tipping and Carter, 2011). Climate change impacts on 

 
144 upland  waters  have  also  been  modelled  for  AWMN  sites  (e.g.  Evans,  2005;  Futter  et al.,  2009; 

 
145 

 
146 

 
147 

Thompson, 2012). 

 
148 2.   Paper synopses 
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149 
 

150 This Special Issue presents the results of the analyses of the 20-year AWMN time-series data-sets 
 

151 together with other studies on low alkalinity waters in the UK subject to or recovering from 
 

152 problems of acidification.  The first papers deal with deposition chemistry and hydrochemistry, the 
 

153 second section is concerned with biological change and the last section places the 20-year 
 

154 observational record into a longer time context, both past and future.  The volume concludes with a 
 

155 
 

156 

synthesis and a look to the future. 

 
157 

 
158 

2.1 Trends in acid deposition and hydrochemistry 

 
159 The first four papers in the volume present mainly chemical data describing how the reduction in the 

 
160 emission of acidic gases (Figure 1) has been reflected by changes in the chemistry of deposition and 

 
161 

 
162 

by changes in surface water chemistry at AWMN sites and at other long-term study sites in the UK. 

 
163 Curtis and Simpson  (this issue) use an additive model  to show trends in both concentrations  and 

 
164 bulk acid deposition loads at the 12 Acid Deposition Monitoring Network (ADMN) sites most closely 

 
165 associated with sites in the UK AWMN. The results indicate significant increasing trends in rainfall 

 
166 pH, significant decreasing trends in non-marine sulphate concentration but no significant trend in N 

 
167 concentration  at most sites. However,  non-marine  chloride  concentrations  decline significantly  at 

 
168 nine sites showing that chloride reductions are acting alongside sulphate reductions in explaining the 

 
169 

 
170 

increasing pH of bulk deposition across the country. 

 
171 Monteith et al. (this issue) used both linear and non-linear statistical modelling to assess changes in 

 
172 the hydrochemistry  of the 22 lakes and streams in the AWMN over the twenty year period from 

 
173 1988-2008. Concentrations of non-marine sulphate fell in line with reductions in non-marine sulphur 
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174 deposition, although concentrations in recent samples from the most acidified sites remain several 
 

175 times   higher   than   those   in   the   most   remote,   low-deposition   regions   of   the   UK.   Nitrate 
 

176 concentrations also declined slightly at several sites in northern England and Wales but increased in 
 

177 some Scottish sites.  A combination of unusually high rainfall and sea -salt inputs in the early years of 
 

178 monitoring, gradual long-term reductions in hydrochloric acid deposition, and later, more substantial 
 

179 reductions   in  sulphur   deposition,   mainly   account   for  the  relatively   linear   increases   in  Acid 
 

180 Neutralising Capacity (ANC) across the network with time. In the most acidified waters, the response 
 

181 in acidity to reductions in acid deposition  was dominated  initia lly by large reductions in inorganic 
 

182 aluminium concentrations whilst a substantial proportion of the deposition-driven increase in ANC at 
 

183 several sites is accounted for by increases in concentrations of Dissolved Organic Carbon (DOC). For 
 

184 the non-acidified,  but acid-sensitive,  waters in the far north and west of the UK, changes in DOC 
 

185 represent the only clear response to the small changes in sulphur deposition that have taken place. 
 

186 In a  comparison  of sites with  afforested  and moorland  catchments,  consistently  higher  levels  of 
 

187 inorganic aluminium concentration and lower ANC provide clear evidence that the afforested sites 
 

188 are, and remain, more acidified than moorland sites, although it is suggested they are recovering at 
 

189 
 

190 

a similar rate. 

 
191 Evans et al. (this issue) present data from the North York Moors National Park in Northeast England, 

 
192 a region located immediately downwind of major sulphur and nitrogen emission sources but one not 

 
193 formally represented  by an AWMN site.   Instead the acidification  status of surface waters in the 

 
194 region  is assessed  by the authors  from  a unique  20 year  stream  pH record  from Danby  Beck, a 

 
195 stream  site  in the north  of the Park, and  from a snapshot  survey  of 51 surface  waters  draining 

 
196 moorland and conifer plantations. The Danby Beck data show that extremely acidic conditions have 

 
197 prevailed over the length of the 20 year data-set, with recovery only evident in the last few years. 

 
198 The survey data confirmed that extreme acidification of the moorland area is widespread: out of 37 
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199 moorland  streams sampled, 32 had an acid neutralising capacity (ANC) below  −50 µeq/l. Sulphate 
 

200 was found to be the dominant cause of acidification, and sulphur isotope analysis confirmed that the 
 

201 sulphur  was  derived  primarily  from  atmospheric  deposition.  The  data  also  indicate  that  conifer 
 

202 planting  has  exacerbated  acidification,  leading  to  fivefold  higher  nitrate  and  threefold  higher 
 

203 aluminium  concentrations  in afforested sites compared to the moorland sites.   The authors argue 
 

204 that the slow recovery of surface waters in the North York Moors is due to the release of a legacy of 
 

205 stored sulphur from the surrounding peatlands during droughts and they recommend the addition of 
 

206 
 

207 

a formal monitoring site representing the region to the AWMN. 

 
208 In  an  assessment  of  the  effect  of  plantation  forestry  on  the  recovery  of  surface  waters  from 

 
209 acidification, Malcolm et al. (this issue, a) use long term data (1976–2009) from eight streams with 

 
210 contrasting catchment land-use in the Loch Ard area of Central Scotland. Streams ranged from highly 

 
211 acidic (median annual pH 4.1) to circumneutral (pH 7.1). The data show that significant reductions in 

 
212 non-marine sulphate (NM-SO4) concentrations closely match reductions in S deposition resulting in 

 
213 significant increases in pH and ANC and reductions in toxic inorganic labile aluminium (L-Al). Streams 

 
214 draining large areas of mature or second phase forestry were characterised by greater NM-SO4  and 

 
215 L-Al  concentrations  and  lower  pH and  ANC  than  sites  with  a  modest  forestry  influence  or  with 

 
216 moorland vegetation.   Chemical recovery at sites with a strong forestry influence was greater than 

 
217 observed  for the moorland  catchment,  but relative inter-site  differences  persisted, indicating  the 

 
218 continued influence of forestry on hydrochemical conditions under contemporary conditions and the 

 
219 legacy of forestry effects from previous decades. Non-linear temporal trends in the composition of 

 
220 macroinvertebrate assemblages consistent with ecological recovery from acidification were detected 

 
221 in  all  streams,  regardless  of  their  absolute  chemical  status.  The  authors  stress  the  need  to 

 
222 understand the recovery process better with respect, especially, to the complexity of chemical and 
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223 biological interactions, the non-linear nature of change, the potential for hysteresis to occur and the 
 

224 
 

225 

definition of recovery endpoints. 

 
226 

 
227 

2.2 Biological response to changing hydrochemistry 

 
228 The marked increase in acid neutralising capacity that ha s occurred at acidified lakes and streams 

 
229 has led to more muted but nevertheless significant changes in biota across the UK, most clearly seen 

 
230 by changes in diatom epilithon and by the appearance of aquatic plant taxa previously  thought to 

 
231 have been lost (Kernan et al., 2010).  In this volume we describe the changes to macroinvertebrate 

 
232 and fish populations that have occurred over the last 20 years and the principal factors controlling 

 
233 

 
234 

those changes. 

 
235 Murphy et al. (this issue) analyse the 20-year (1988–2008) record of macroinvertebrate  data from 

 
236 the AWMN and demonstrate significant temporal changes in community structure at 12 of the 22 

 
237 sites. Acidification indices suggest that macroinvertebrate recovery from acidification is taking place 

 
238 at five stream sites and five lake sites. However there is no evidence for macroinvertebrate recovery 

 
239 at a further seven sites that show a significant increase in ANC. The authors argue that this mismatch 

 
240 is   evidence   that   biological   recovery   is   delayed   compared   to   the   chemistry   and   that   the 

 
241 macroinvertebrate  changes observed are modest with most sites still showing signs of acid stress. 

 
242 They  conclude  that  the  limited  recovery  is  due  to  continuing  unfavourable  chemical  conditions 

 
243 

 
244 

and/or to ecological inertia in the reassembly of acid-sensitive faunas. 

 
245 Stockdale et al. (this issue) use the chemical speciation model, WHAM-FTOX, to predict the impact of 

 
246 proton and metal mixtures (including Al) on the species richness of macroinvertebrate assemblages 

 
247 from  upland  surface  waters  in  the  UK  (including  AWMN  sites)  and  Norway  recovering  from 
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248 acidification and they compare their results with direct observations from time-series data. Model 
 

249 results compare well with observed trends of chemical and biological improvement at some sites, 
 

250 indicating  that  chemistry  is often  the principal  factor  controlling  species  richness.  At other  sites 
 

251 additional   (un-modelled)   factors  appear  to  account  for  further  suppression  of  diversity.  They 
 

252 conclude that the model gives a good indication of the relative importance of chemical toxicity and 
 

253 
 

254 

other un-modelled factors in limiting the recovery response of macroinvertebrate communities. 

 
255 Malcolm et al. (this issue, b) assess evidence for the recovery of salmonid fish populations from the 

 
256 effects of acidification using data from the AWMN. The effects of different chemical determinands 

 
257 on  brown  trout  fry  and  parr  populations  were  assessed  alone  and  in  combination.  Significant 

 
258 positive temporal  trends in fish presence were observed at two of the most acidified  sites  in the 

 
259 network  indicating  that limited recovery  is occurring  where  favourable  chemical  conditions  have 

 
260 now been attained. Fry were found to be substantially more sensitive to water quality than parr and 

 
261 labile  monomeric  aluminium  (L-Al)  concentration  was  the  best  single  chemical  determinand  for 

 
262 predicting   fry  presence.  The  authors  suggest  that  chemical  thresholds   for  the  probability  of 

 
263 occurrence of brown trout populations should be derived from L-Al - fry response relationships and 

 
264 

 
265 

that monitoring of L-Al should become standard practice in acidified areas of the UK. 

 
266 

 
267 

2.3 Recovery and future threats 

 
268 Despite  evidence  of  recovery  from  acidification  provided  by  the  20  year  AWMN  chemical  and 

 
269 biological data, the extent of recovery as judged against past baselines is as yet limited.  Moreover, a 

 
270 full recovery is threatened  by new pressures  from climate change and land-use change and their 

 
271 

 
272 

uncertain interaction with pollutants stored in catchment soils. 
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273 Battarbee et al. (this issue) address the issue of recovery using the combined data from sediment 
 

274 cores and sediment traps to track changes in diatom assemblages in the 11 AWMN lakes from pre- 
 

275 acidification  times (prior to ca. 1850 AD) to the present (2008 AD).   They show that the degree of 
 

276 recovery from acidification varies amongst sites but in all cases its extent is limited when compared 
 

277 with the pre-acidification reference. In most cases the recovery, although slight, is characterised by a 
 

278 decline in acid tolerant taxa and a return towards taxa that occurred previously at each respective 
 

279 site. In a few cases, however, the floristic composition of recent samples is different from those that 
 

280 occurred during and before the acidification  phase. The reasons for this are not yet clear but it is 
 

281 possible   that  nutrient   enrichment   from  atmospheric   N  deposition   and/or   climate   change   is 
 

282 beginning  to play a role in driving water  quality  as acidity  decreases.  The authors  maintain  that 
 

283 diatom  samples  from annually  exposed  sediment  traps when combined  with sediment  core data 
 

284 provide a  high resolution  and continuous  record  of environmental  change  and provide  a unique 
 

285 
 

286 

method of comparing recovery endpoints with past reference conditions. 

 
287 In the next two papers Helliwell et al. (this issue, a & b) use the dynamic hydrogeochemical  model 

 
288 MAGIC to simulate the chemical response of catchment soils and surface waters to future changes in 

 
289 atmospheric  pollution  and land use at UK AWMN and other  sites.   In the first paper the authors 

 
290 hindcast acid neutralising capacity (ANC) for the 22 AWMN sites and show that, with the exception 

 
291 of Blue Lough, all sites had modelled ANC values above 20 µeq/l in 1860 AD. During the subsequent 

 
292 period of acidification  from 1860 to 1970 modelled ANC declined to <20 µeq/l at 14 of the sites. 

 
293 After 1970, despite significant reductions in sulphur and to a lesser extent nitrogen deposition the 

 
294 simulated soil base saturation at all sites either continued to decline or remained stable until the late 

 
295 1980s, with marginal recovery detected at some sites thereafter in the past decade.  On the basis of 

 
296 planned  emission  reduction  scenarios  for  2020  under  the  Gothenburg  protocol  and  land  use 

 
297 scenarios  for 2050  under  approved  Forestry  Commission  plans at the five afforested  sites  in the 
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298 AWMN, model predictions indicated that surface water acid status will continue to improve during 
 

299 the  next  decade  and  beyond  primarily   due  to  the  projected   significant   decline  in  sulphate 
 

300 concentrations. The contribution of nitrate leaching to the total acid status of surface water in 2020 
 

301 was small but predicted to increase slightly by the end of the century (2100 AD) and likely therefore 
 

302 to have a small confounding influence on the rate of chemical recovery at most sites in the network. 
 

303 There  was  no  evidence  from  the  model  predictions  that  afforested  sites  will  follow  a  different 
 

304 recovery trajectory to moorland sites. Planned reductions in coniferous forest cover amounting to 
 

305 approximately 13% across the five afforested sites are projected to result in a slight increase in ANC 
 

306 
 

307 

and pH. 

 
308 The second modelling paper (Helliwell et al.) (this issue, b) focusses on forestry and its role in the 

 
309 acidification  of soils and surface  waters  of five  sites with varying  forest  cover  from  0 to 65% in 

 
310 Galloway,  South-west  Scotland.    A ‘no forestry’  scenario  was compared  to  future  ‘Forest  Design 

 
311 Plans’  provided  by  the  Forestry  Commission.  In  the  model  conifer  planting  enhanced  pollutant 

 
312 scavenging and increased base cation uptake but did not strongly impede the widespread chemical 

 
313 recovery of surface waters from the mid 1980s to the present day.   Current ANC values are above 

 
314 the critical ANC threshold of 20 µeq/l at all five sites and >50 µeq/l at three of the four forested sites. 

 
315 However, ecological surveys show that the response of fish and aquatic invertebrates has generally 

 
316 been  small.  For  the  future,  continued  chemical  recovery  was  predicted  in  response  to  planned 

 
317 reductions in acid deposition to 2020 but thereafter the recovery rate was much slower with no site 

 
318 expected to return to the conditions of 1860 by 2100. There were only small differences in the ANC 

 
319 response post 2010 between the planned forest cover scenario and the ‘no forest’ scenario based on 

 
320 the underlying assumptions and calibration of the model  suggesting that future changes in forest 

 
321 cover  are  unlikely  to  have  a  major  impact  on  the  recovery  process  and  that  future  emissions 
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322 reductions, rather than land-use change, may therefore be required to promote  further biological 
 

323 
 

324 

recovery in affected catchments. 

 
325 The final paper (Curtis et al., this issue) provides a n overview of the pressures facing upland waters 

 
326 in the UK both now and in the future. It maintains that the threat from acid deposition has declined 

 
327 sharply since the 1980s but its legacy remains a major concern.  Although recovery is taking place a 

 
328 complete  recovery  is  unlikely  as  projected  pressures  from  climate  change  increase.  UK  upland 

 
329 waters are likely to become warmer, summer streamflows lower, winter streamflows higher and the 

 
330 occurrence and influence of snowfall and lake ice-cover will decrease. Expansion of forest planting, 

 
331 changing  grazing regimes and land management  practices  are also likely  to take place under  the 

 
332 influence of socio-economic  as well as climate pressures leading to the modification  of catchment 

 
333 biogeochemistry,  surface water quality and freshwater  biodiversity.  The authors conclude that the 

 
334 reference  condition  concept may not be appropriate  in setting ecological  restoration  targets and 

 
335 stress the importance of high quality integrated monitoring of upland waters to underpin decision 

 
336 

 
337 

making in the future. 
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Site Code UK Grid 
 

Reference 
Type Altitude 

 
Range (m) 

Geology Soils Catchment 
 

area (ha) 
Forest 

 
area (%) 

Lake 
 

area 
 

(ha) 

Lake max. 
 

depth (m) 

1. Loch Coire nan Arr ARR NG 808422 Lake 125 – 896 Sandstone Podzol, gley, peat 897 - 12 12 

2. Allt a’ Mharcaidh MHAR NH 881045 Stream 325 – 1111 Granite Podzol, peat 998 - - - 

3. Allt na Coire nan Con ANCC NM 793688 Stream 10 – 756 Schist, gneiss Peaty gley 790 48 - - 

4. Lochnagar NAG NO 252859 Lake 785 – 1155 Granite Alpine podzol 92 - 10 27 

5. Loch Chon CHN NN 421051 Lake 100 – 600 Schist, grits Podzol, gley 1470 56 100 25 

6. Loch Tinker TINK NN 445068 Lake 420 – 700 Schist, grits Peat 112 - 11 10 

7. Round Loch of Glenhead RLGH NX 450804 Lake 295 – 531 Granite Peat, peaty podzol 95 - 13 14 
8. Loch Grannoch LGR NX 542700 Lake 210 – 601 Granite Gley, podzol, peat 1290 70 114 21 

9. Dargall Lane DARG NX 449786 Stream 225 – 716 Shale, greywackes Peaty podzol 210 - - - 

10. Scoat Tarn SCOATT NY 159104 Lake 602 – 841 Volcanics Peaty ranker 95 - 5 20 

11. Burnmoor Tarn BURNMT NY 184044 Lake 252 – 602 Volcanics, granite Ranker, podzol, 
 

peat 
226 - 24 13 

12. River Etherow ETHR SK 116996 Stream 280 – 633 Millstone grit Peat 1300 - - - 

13. Old Lodge LODGE TQ 456294 Stream 94 – 198 Sandstone Brown podzol, gley 240 - - - 

14. Narrator Brook NART SX 568692 Stream 225 – 456 Granite Podzols 475 - - - 
15. Llyn Llagi LAG SH 649483 Lake 380 – 678 Slate, shale, dolerite Peaty podzol, peat 157 - 6 17 
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16. Llyn Cwm Mynach MYN SH 678238 Lake 285 – 680 Cambrian sedimentary Rankers, peat 152 55 6 11 

17. Afon Hafren HAFR SN 844876 Stream 355 – 690 Shale, gritstone Peaty podzol, peat 358 50 - - 
18. Afon Gwy GWY SN 842854 Stream 440 – 730 Shale, gritstone Peaty podzol, peat 210 - - - 

19. Beagh’s Burn BEAH D 173297 Stream 150 – 397 Schist Peat 273 - - - 

20. Bencrom River BENC J 304250 Stream 140 – 700 Granite Peat 298 - - - 
21. Blue Lough BLU J 327252 Lake 340 – 703 Granite Peat 42 - 2 5 

22. Coneyglen Burn CONY H 641884 Stream 230 – 562 Schist Peat 1410 15 - - 

23. Loch Coire Fionnaraich VNG9402 NG 945498 Lake 236 – 933 Sandstone, quartzite Peat, peaty podsols 550 - 9 14 

 
 

Table 1. Selected characteristics of the UK AWMN sites 
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