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Abstract2

In this paper we develop a model for the spatial variability of apparent electrical3

conductivity, ECa, of soil formed in relict patterned ground. The model is based on the4

continuous local trend (CLT) random processes introduced by Lark (2012) (Geoderma,5

189–190, 661–670). These models are non-Gaussian and so their parameters cannot be6

estimated just by fitting a variogram model. We show how a plausible CLT model, and7

parameters for this model, can be found by the structured use of soil knowledge about8

the pedogenic processes in the particular environment and the physical properties of the9

soil material, along with some limited descriptive statistics on the target variable. This10

approach is attractive to soil scientists in that it makes the geostatistical analysis of soil11

properties an explicitly pedological procedure, and not simply a numerical exercise. We12

use this approach to develop a CLT model for ECa at our target site. We then develop13

a test statistic which measures the extent to which soils on this site with small values14

of ECa, which are coarser and so more permeable, tend to be spatially connected in the15

landscape. When we apply this statistic to our data we get results which indicate that16

the CLT model is more appropriate for the variable than is a Gaussian model, even after17

transformation of the data. The CLT model could be used to generate training images of18

soil processes to be used for computing conditional distributions of variables at unsampled19

sites by multiple point geostatistical algorithms.20

Keywords: Patterned ground; Apparent electrical conductivity; Electromagnetic induc-21

tion; Stochastic geometry; Voronoi tessellation; Multiple point geostatistics; Pedometrics.22
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1. Introduction23

‘Mais surtout nous insisterons sur la nécessité d’incorporer au maximum la physique24

du problème et le contexte géologique de la zone étudiée’. Chilès and Guillen (1984).25

In most geostatistical analyses of soil the data are assumed to be a realization of a26

multi-Gaussian random function, perhaps after they have been transformed so that their27

histogram represents a Gaussian distribution. Furthermore, the random function com-28

monly has a spatial covariance function drawn from a limited subset of models (Webster29

and Oliver, 2007), which are used because of their convenient mathematical properties. In30

some of the earth sciences there has been progress in the development of random functions31

with parameters that are determined, or at least constrained, by parameters of underlying32

processes which have a physical meaning (e.g. Kolvos et al., 2004; Chilès and Guillen,33

1984). This has advantages (Lark, 2012a), for example, the efficiency of spatial sampling34

to model the spatial covariance function could be improved if prior distributions for co-35

variance parameters could be specified from process knowledge. However, this has not36

been achieved in soil science. Lark (2012a) suggested that this is probably because the37

variables that soil scientists study are commonly influenced by a more complex set of fac-38

tors at more diverse spatial scales than is the case for the variables where it has proved39

possible to specify the covariance function from process information. For example, the40

covariance function for diffusion processes is well-established (Whittle, 1954; 1962), and41

diffusion is a source of spatial variation in the concentration of nutrients in soil, but it is42

just one of many sources of spatial variation, and is of limited importance at the spatial43

scales most generally studied for practical purposes.44

Lark (2012a,2012b) suggested that progress might be made by recognizing a number45

of distinct modes of soil variation, simple and generalizable rules that capture how the46

effects of factors of soil variation vary laterally, and which map naturally on to particular47

spatial random functions. For example, in conditions where soil variation is strongly48

determined by differences between discrete domains in the landscape (such as geological49

units, topographic units, fields etc.) then a subdivision of space into random sets such as50

Poisson Voronoi polygons may be appropriate (Lark, 2009) and properties of the spatial51

model (such as the mean chord length of the polygons) may be given a physical meaning.52
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Lark (2012b) proposed a mode of soil variation: continuous local trends. Under this53

mode of variation soil varies laterally in space, changing continuously rather than in a54

step-wise fashion; and these trends are local and repeating, so that they are essentially55

unpredictable (in contrast to a large-scale trend in a variable that might be observed across56

a study area). Examples of continuous local trends would be concentration gradients57

around the rhizosphere, or around individual plants, and catenary variation at landscape58

scale. Lark (2012b) proposed a general family of random functions to describe continuous59

local trends (CLT random functions). The value of a CLT variable at some location is given60

by a distance function, whose argument is the distance from the location of interest to the61

nearest event in a realization of a spatial point process. This makes the CLT a random62

function. The CLT variables considered by Lark (2012b), and in this paper, are Poisson63

CLT (PCLT) variables because the spatial point process is completely spatially random.64

Lark (2012b) estimated parameters of a PCLT process from data on a soil variable. It65

was also pointed out that the PCLT process might differ from a comparable Gaussian66

random function with respect to its multiple point statistics (Strebelle, 2002). This raises67

the possibility that PCLT models, as well as mapping closely on to a particular mode of68

soil variation, might be practically useful for applications where spatial connectivity plays69

a major role controlling processes in soil and so the multiple point statistics of the variable70

are important.71

In this paper we use a PCLT random function to model the variation of apparent72

electrical conductivity, ECa, of soil at a site where this variable is strongly influenced73

by spatial patterns in the parent material. These patterns arose from the development74

of ice wedges in Eocene clay under permafrost conditions, and subsequent infilling by75

coarser material which leads to strong textural contrasts in the soil. The objective is76

to show how soil knowledge: general knowledge about soil formation in the particular77

environment and its relationship to ECa, and some simple descriptive statistics of the78

data (summary statistics and empirical variograms), allow us to select and fit a PCLT79

model. We then compare the PCLT model with a trans-Gaussian (TG) model of the80

data, i.e. a model fitted by conventional geostatistical analysis after the data have been81

transformed to approximate normality. Specifically we compare the models with respect82

to a statistic that summarizes the spatial connectivity of the coarser material, which might83
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be relevant to simulations of transport processes in the soil. We then evaluate which model84

appears best to represent the spatial pattern in the data.85

2. Case Study86

2.1 The study area and data collection.87

We surveyed an area of Pleistocene patterned ground in the sandy silt region of88

Belgium. The patterned ground was identified by polygonal crop marks on an aerial89

photograph and interpreted to be the result of ice wedge formation during the last glacial90

period. The study area and data collection were discussed in detail by Meerschman et91

al. (2011), therefore we limit ourselves here to a brief presentation of it. More general92

information on ice-wedge polygons constitutes part of the soil-knowledge base that we use93

in this study, and is presented in section 2.3.2 below as it is required.94

The study area (0.6 ha) was located in an agricultural field in Deinze, Belgium95

(central coordinates: 51◦ 01′16′′N, 3◦29′41′′E). Excavation of a small part of the study96

area (6×6-m) to a depth of 0.9 m uncovered an ice-wedge pseudomorph with a diameter97

of about 6 m. The wedges were formed in clay-rich Tertiary marine sediments that were98

covered with a 0.6 m layer of silty-sand Quaternary deposits. Texture analysis on 9499

subsoil samples (0.6 - 0.8 m) showed a clear contrast between the Eocene host material100

(on average 21% clay) and the superficial material (on average 6% clay).101

Previous studies (Saey et al., 2009; Cockx et al., 2006) have shown that ECa is a102

useful covariate to study textural variability at profile and polygon-scale in soils formed103

in these conditions. The study area was surveyed with a mobile proximal soil sensor104

measuring ECa(mS m−1) of an underlying soil volume down to approximately 1.5 m. The105

sensor was mounted on a sled pulled by an all terrain vehicle. The vehicle drove along106

parallel lines with an in-between distance of on average 0.75 m. The within-line distance107

between sensor response registrations was 0.15 m.108

2.2 Initial data analysis.109

Meerschman et al. (2011) noted that the ECameasurements clearly reflected the110

polygonal patterns: small ECavalues indicated the former ice wedges filled with lighter111

material. In addition to the short-range variation in ECa, there were large values of ECa112
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near an old field track in the north-east of the surveyed region. To avoid any assumptions113

about the form of this trend we decided to restrict our analyses to the lower left quadrant114

of the surveyed area, a region of approximately 40×40-m, with 17 792 observations, which115

excludes this area with elevated ECa. Figure 1 shows a post-plot of these data.116

Figure 2 shows the histogram of the data. Summary statistics are presented in Table117

1. Note that the data are mildly skewed. In the analyses reported below the PCLT model118

was fitted in all cases to the raw data, and all analyses with the TG model were done with119

the data after a transformation which is described in section 2.3.1 below.120

2.3 Spatial analysis.121

In this section we describe the analysis of the ECa data to fit a TG model and a PCLT122

model. The first task (section 2.3.1) was straightforward after a data transformation, which123

is described. In section 2.3.2 we describe how soil knowledge was used to fit the PCLT124

model.125

2.3.1. Trans-Gaussian model126

The objective of the case study is to compare a continuous local trend (PCLT) model127

of the data with a trans-Gaussian (TG) model, as might be used in standard geostatistical128

analysis. Although the data are only mildly skew, since the objective of this exercise is to129

compare a Gaussian or Trans-Gaussian model with a stochastic geometric alternative, it130

was decided to transform the data so that the histogram and summary statistics were as131

close as possible to those expected for data drawn from a Gaussian random variable. We132

therefore used a Box-Cox transformation of the data to normality for the TG modelling:133

y =
zζ − 1

ζ
ζ 6= 1,

= loge (z) ζ = 1, (1)

where z is a value on the original scale and y is a transformed value. We used the boxcox134

procedure from the mass package (Venables and Ripley, 2002) for the R platform (R135

Development Core Team, 2012) to find the likelihood profile of the ζ parameter, and136

selected the value with maximum likelihood. The data were then transformed with the137

maximum likelihood estimate of ζ, substituted into Eq. (1) and then standardized to zero138

mean and unit variance. The estimate of ζ and summary statistics for the data after139
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transformation, and standardization, are presented in Table 2.140

An isotropic empirical variogram of the transformed and standardized data was141

then computed using the method of moments estimator due to Matheron (1962) as im-142

plemented in the fvariogram directive in GenStat (Payne, 2010). An authorized model143

was then fitted to the estimated variogram by weighted least squares (Cressie, 1985) using144

the mvariogram procedure in GenStat (Harding et al., 2010). Alternative models were145

considered and the stable or powered exponential model was selected on the basis of the146

Akaike information criterion (McBratney and Webster, 1986). This variogram model takes147

the form148

γ(r) = c0 + c1 (1− exp(−{r/a}κ) , (2)

where c0 and c1 are, respectively, the variances of the nugget and spatially correlated149

components of the variable, r is lag distance, a is a distance parameter and κ is a shape150

parameter where 0 < κ ≤ 2. The estimates of these parameters are presented in Table 2,151

and the estimates of the variogram of the TG variable, and the fitted model are shown in152

Figure 3.153

2.3.2. Stochastic Geometric model154

Estimates of the isotropic variogram of the raw data on ECawere obtained using the155

method of moments estimator due to Matheron (1962) as described for the transformed156

data in section 2.3.1. (these are the solid symbols in Figure 6). The identification and157

fitting of an appropriate stochastic geometric model for the soil variable will allow us to158

plot a continuous variogram function for these estimates.159

When a TG model is fitted it is assumed that, after any transformation, the data160

y = {y(x1), y(x2), . . . , y(xn)} from the n locations x1,x1, . . .xn can be regarded as a161

realization of an n-variate Gaussian random variable, Y. Under this assumption the162

variogram of Y entirely summarizes the information that the data contains about its163

spatial variability, and the task of estimating model parameters, under the assumption of164

a stationary mean, reduces to the task of estimating variogram parameters. This is not the165

case with models for random variables, such as the PCLT models, which have non-zero odd166

moments of order three or larger, and therefore are not Gaussian. The fitting of a PCLT167

model cannot, therefore, simply reduce to the computation of parameters which minimize168
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the weighted sum of squared residuals between the empirical and fitted variogram.169

In this study our approach to the selection and estimation of a PCLT model is170

to constrain it by soil knowledge. Soil knowledge consists of general understanding of171

the underlying processes that influence soil formation and so the variation of the target172

variable, and also of general quantitative information about the variable in the study site173

or a homologous site, represented by summary statistics, empirical variograms or similar174

information. In the following sections we go through a semi-formal process of model175

identification based on inferences from soil knowledge and culminating in the estimation176

of parameters for an appropriate model. Each subsection is headed with a question, and177

with the general source of soil knowledge used to address it. The individual elements178

of soil knowledge are then summarized in brief labelled sentences, expanded in a short179

paragraph. Inferences from this soil knowledge are then set out.180

2.3.2.1. Question: ‘What mode of soil variation?’ Soil knowledge about the underlying181

pedogenetic process.182

The identification of a general mode of soil variation is based on two items of soil183

knowledge which are listed below.184

SK1. The dominant source of soil variation at metre scales in this landscape is the185

presence of Pleistocene ice-wedge polygons. These are described in more detail by186

Meerschman et al (2011). Ice-wedge polygons form in periglacial conditions on sur-187

faces with slopes less than a critical value. Over much of central Europe ice-wedge188

polygons formed in periglacial conditions during the Quaternary, they are detectable189

at the study site from airphotography. It has been shown (Cresto Aleina et al., 2012)190

that the comparable polygonal patterns in ground of contemporary tundra can be191

modelled as a Poisson Voronoi Tessellation (PVT), that is to say one may postulate192

an underlying homogeneous spatial point process of completely spatially random193

seed points, and any one polygon consists of all locations nearest to one associated194

seed point than to any of the others. See Lark (2009) for a summary of some of the195

properties of PVT spatial processes and Okabe et al. (2000) for a more complete196

account. Note, in particular, that the polygons generated by this process are not of197

uniform size or shape. By analogy we infer that a PVT model would be a plausible198
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descriptor of the ice-wedge polygons at the study site.199

SK2. We may expect more or less continuous variation in depth-integrated soil proper-200

ties from the centre to the edge of any polygon. Much of the polygonal patterned201

ground formed in Europe and North America during the Quaternary was covered202

by aeolian or glacio-fluvial sand or silty deposits. These have an important role in203

subsequent pedogenesis (Catt, 1979; Walters, 1994) imposing local lateral trends.204

At the centre of a polygon there is typically a relatively thin layer of sandy or silty205

superficial material over the host material in which the ice wedges originally formed.206

After thawing, the space previously occupied by ice in the wedges that delineate207

the polygons was typically filled with the superficial material. Any depth-integrated208

soil property, such as ECa, can therefore be expected to vary laterally (although not209

necessarily linearly) from the centre of the polygon to its edge if there is a texture210

contrast between the host material and the superficial material. There is such a con-211

trast at the Deinze study site where the overlying material is silty-sand Quaternary212

deposits, and the host material is Eocene sandy clay (Meerschman et al., 2011).213

From these two elements of soil knowledge we may infer that the spatial variation of214

a depth integrated soil property such as ECa, in these conditions, can plausibly be regarded215

as a Poisson Continuous Local Trend random process as defined by Lark (2012b). In the216

next section we consider what distance function might be proposed.217

2.3.2.2 Question: ‘What type of distance function is plausible?’ Soil knowledge about218

pedogenetic processes and summary statistics.219

SK3. We may expect ECa to decline from the polygon centre to the rim. It is generally220

found that measurements of ECa made by electromagnetic induction are positively221

correlated with the clay content of the soil (e.g. Kachanoski et al., 2002; Saey et222

al., 2009). For this reason we should expect ECa, as a depth-integrated variable,223

to decline from the polygon centre, where the thickness of sandy and silty material224

over the heavier host material is thinner, to the edge of the polygon where the225

former ice wedge is filled with the lighter material. This was found to be the case226

by Meerschman et al. (2011).227

SK4. The data on ECaare mildly positively skewed. This can be seen in Table 1.228
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The simplest PCLT model, as used by Lark (2012b), has a linear distance function229

D(k) ∝ k. If the distance function has a positive slope, i.e. {k′ > k} → {D(k′) > D(k)},230

then it can be seen that the corresponding PCLT random function has a moderate posi-231

tive skewness (about 0.65). A linear distance function with a negative slope, needed for232

consistency with SK3, would therefore give rise to a random function with a moderately233

negative skewness. This is not compatible with SK4.234

Of the distance functions examined by Lark (2012b) one in which the distance235

function is proportional to the reciprocal of distance is compatible with SK3 and SK4.236

The reciprocal of distance declines with distance (SK3), and the example of such a random237

function given by Lark (2012b) has mild positive skewness (SK4). On this basis it was238

decided to proceed with further analysis on the assumption that the data on ECa could be239

regarded as realizations of a PCLT process with a distance function linearly proportional240

to241

D(k) =
1

k + α
, (3)

where k is distance to the nearest event of the underlying spatial point process, and α242

is a parameter which must take some value α > 0 to ensure that the distance function243

is defined for all positive k. We refer to this PCLT as the inverse-distance PCLT in the244

remainder of this paper. Note that the distance function in Eq. (3) defines what we shall245

call the standard PCLT variable. The random variable that models the target soil variable246

is linearly proportional to the standard PCLT variable, so fitting the model entails the247

estimation of parameters of the standard PCLT along with a scale parameter which is the248

a priori variance of the random variable.249

The inverse-distance function was selected because it was seen to be a simple func-250

tion, at least potentially compatible with available soil knowledge. In due course its251

parameters are estimated and this gives some further indication of its plausibility, and in252

section 2.3.3 we evaluate statistics to compare its plausibility with the TG model.253

We call the standard inverse-distance PCLT random function Zid. We shall model254

the ECa data as a realization of a random function Y where255

Y = βZ = β (Zn + Zid) , (4)

where β is a constant of proportionality and Zn is an independently and identically dis-256
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tributed Gaussian nugget component of mean zero. This nugget component is included257

in the random model for the target variable to account for any variation spatially corre-258

lated at scales finer than the sampling interval. This is common practice in geostatistical259

modelling with standard covariance models such as the spherical, exponential or Matérn.260

We now obtain the cumulative distribution and density functions of Zid. We first261

define the inverse of the distance function in Eq.(3), Ḋ(zid), such that262 {
zid = D(k) =

1

k + α

}
�
{
Ḋ(zid) = k

}
.

Then263

Ḋ(zid) =
1

zid
− α. (5)

Since D(k) is monotonic and decreasing with increasing k for admissible (non-264

negative) values of k, the marginal cumulative distribution function of Zid, Fid(z) can265

be written as266

Fid(zid) = 1 − Fk(Ḋ(z)), (6)

where Fk(k) is the marginal cumulative distribution function of k. In Eq. (14) of Lark267

(2012b) it is shown that, for a Poisson point process in 2-D with intensity λ,268

F (k) = 1 − exp
{
−λπk2

}
, (7)

and so269

Fid(zid) = exp

{
−λπ

(
1

zid
− α

)2
}
, (8)

which is defined for 0 ≤ zid ≤ 1/α, which shows that the random function Zid has an270

upper and a lower bound.271

By differentiation of Fid(zid) with respect to zid we can obtain a probability density272

function (PDF):273

fid(zid) =
2λπ

(
1
zid
− α

)
z2id

exp

{
−λπ

(
1

zid
− α

)2
}
, 0 < zid ≤

1

α

= 0, otherwise. (9)

10



A soil variable modelled as an inverse-distance PCLT random function is assumed to274

have a spatially correlated component that is linearly proportional to zid for some values275

of the parameters α and λ. As noted above, the soil variable is assumed to be a realization276

of a random function Z that includes an independent Gaussian nugget component of mean277

zero. If the PDF of the nugget component is denoted by fn(zn, then the PDF of Z, f(Z),278

can be obtained by the convolution operation279

f(z) =

∫ ∞
−∞

fn(x)fid(z − x) dx, (10)

since Zid and Zn are independent random variables (Dudewicz and Mishra, 1988).280

The next question that we consider is a plausible range of values for the α parameter.281

2.3.2.3 Question: ‘What is a plausible range of values for, λ, the intensity of the process282

and for the parameter α of the distance function?’ Soil knowledge from field observations283

and an estimate of the proportion of variation of ECa that is attributable to the nugget284

component285

SK5. Meerschman et al. (2011) report a detailed excavation of a polygonal cell with286

diameter about 6 m, which they regard as typical from airphoto evidence. If all cells287

have a diameter of d m then the average intensity of an underlying spatial point288

process is the reciprocal of the cell area which may be approximated (treating the289

cells as circular) by 4/πd2. On the basis of the observation of Meerschman et al.290

(2011) it was decided to consider a range of possible values of λ for the spatial point291

process in the interval
[
0.02m−2, 0.08m−2

]
which corresponds to a range of polygon292

diameters from 4 to 8 m (i.e. 2 m either side of the value proposed as representative).293

SK6. The nugget variance of the (untransformed) ECa data is about 10% of the correlated294

variance. This information is used to calculate moments for the variable Z, given295

values of α and λ, by evaluation of the PDF in Eq.(10). It should be noted that in296

the final model the nugget variance is estimated separately, and is not constrained297

by this assumption. To obtain this proportion we fitted a powered exponential298

model, Eq.(2), to the empirical variogram of the ECadata(not shown here) using the299

mvariogram procedure in GenStat (Harding et al, 2010).300

The mean and variance of an inverse-distance PCLT random function, Zid, for some301
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values of the parameters α and λ was obtained from the PDF in Eq.(9), the qdag algorithm302

in the IMSL library (Visual Numerics, 2006) was used for numerical integration. It was303

then possible to compute the variance of an independent Gaussian nugget component, Zn,304

such that the variances of Zid and Zn were in the same ratio as SK6 suggests pertains for305

the ECa data. The coefficient of skewness for the sum of these two random variables could306

then be calculated from moments obtained by numerical integration of the convolution of307

the distributions of Zid and Zn, as described in Eq.(10).308

Figure 4 is a plot of values of the skewness coefficient of variable Zid for values of309

the parameters α and λ, the range for λ obtained from SK3. Note that over much of the310

range of values of λ it is α that has the strongest effect on the skewness. The two contours311

drawn on the Figure bound a region within which the skewness is in the interval [0.25, 0.5].312

We regard this as mild positive skewness, compatible with SK4, and so we assume that313

jointly plausible values of α and λ lie within these limits. The Figure shows, for example,314

that values of α less than 2 m seem unlikely to be compatible with SK4 since coefficients315

of skewness for such variables are larger than 0.5. Similarly, if λ = 0.05 then a plausible316

range of values of α indicated by the Figure is 2.5–3.8 m.317

2.3.2.4 Model fitting given the soil knowledge318

Estimates of the isotropic variogram of the raw data on ECawere obtained using the319

method of moments estimator due to Matheron (1962) as implemented in the fvariogram320

directive in GenStat (Payne, 2010). An inverse-distance PCLT model was then fitted to321

the estimates by weighted least squares, but subject to the condition that α and λ fall322

jointly within the range defined by the two contours shown in Figure 4. The variogram323

for the standard PCLT variable Zid variable depends only on the parameters α and λ.324

In order to fit the PCLT model to the empirical variogram of the soil process it is also325

necessary to estimate the proportionality constant β which scales the standard PCLT326

variable to the variable assumed to be realized in the soil data, as shown in Eq (4). This327

is done indirectly here by direct estimation of the a priori (sill) variance of the correlated328

component of the variogram of Y (defined in Eq (4))329

c1 = β2var [Zid]

12



along with a nugget component330

c0 = β2var [Zn]

where var [Z] denotes the a priori variance of random variable Z. The fitted variogram331

for the target random variable, Y , was specified by:332

γ(r) = c0 + c1gid(r|α, λ), (11)

where gid(r|α, λ) is the variogram of the PCLT process with parameters α and β and the333

a priori variance scaled to 1.0 thus:334

gid|α,λ(r) = 1− Cid(r|α, λ)

Cid(0|α, λ)
, (12)

where Cid(r|α, λ) is the covariance function for lag r for the standard inverse-distance335

PCLT process with parameters α and λ. The covariance function for a variable in 2-D is336

given by337

Cid(r|α, λ) =

∫
R2

{S(k, kr) + F (k) + F (kr)− F (k)F (kr)− 1}
{
− 1

(k + α)2

}
dk

{
− 1

(kr + α)2

}
dkr,(13)

where S(k, kr) is the joint survival function for the underlying spatial point process, as338

defined by Lark (2012b). This equation is obtained directly from Eq.(20) of Lark (2012b)339

and the reader is referred to that paper for details.340

The inverse distance model was fitted as follows.341

i). The value of the parameter α was set at a fixed value, in turn α =2.0 m, 2.25 m, 2.50342

m . . .343

ii). The parameter λ was then set at values over some range [λα,min, λα,max] where344

0.02 ≤ λα,min < λα,max ≤ 0.08 such that for specified α and any λ ∈ [λα,min, λα,max]345

the expected value of the skewness coefficient, as read off Figure 4, was within the346

interval [0.25, 0.5].347

iii). For the set values of α and λ values of co and c1 were found so that the weighted348

sum of squared deviations of the variogram function in Eq (11) and the empirical349

variogram (Cressie, 1985) were minimized. These values were found with the IMSL350

optimization subroutine bcpol (Visual Numerics, 2006).351
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iv). Repetition of step (iii) for successive values of λ ∈ [λα,min, λα,max] produced a ‘profile352

plot’ of the weighted sum of squares, WSS, against λ. Such plots were produced353

for successive values of α, as designated in step (i). Estimates of α, λ, c0 and c1354

were found from the profile plot for which the minimum WSS was the smallest of all355

observed values.356

The resulting estimates of α and λ were 2.5 m and 0.07 m−2 respectively. The estimates of357

c0 and c1 were 0.49 and 4.03 respectively. Figure 5 shows the profile plot of the weighted358

sum of squares with α = 2.5 m and Figure 6 shows the empirical variogram for the un-359

transformed data and the fitted inverse-distance PCLT model. In Figure 7 is shown (line)360

the corresponding distribution function for the random function Z = Zid+zn standardized361

to zero mean and unit variance according to the values of the mean and standard deviation362

obtained from the PDF in Eq (10). Also plotted on Figure 7 are points from the empirical363

CDF of the standardized ECa data. The theoretical and empirical distribution functions364

are in reasonable agreement, although the median of the former seems to be rather smaller365

than the latter.366

2.3.3. Comparing the TG and PCLT models367

It is well known that Gaussian (and trans-Gaussian) models of spatial variation, in which368

all information on variability is expressed by two-point statistics such as the covariance369

function, are not able to reproduce all important features of natural spatial fields, which370

must be represented by higher-order moments (e.g. Guardiano and Srivastava, 1993). This371

has been the motivation for the development of multiple point statistics. In this section we372

investigate whether the PCLT model allows better characterization of the spatial structure373

of the ECa data than does the TG model.374

One feature of the Gaussian and trans-Gaussian random variables that often limits375

their applicability is the fact that large values of the variable tend to be spatially isolated376

from other large values, the same holds for small values (e.g. Gómez-Hernández and Wen,377

1997; Strebelle, 2002). In this case study we may consider locations with small values of378

ECa. These locations are likely to be dominated by lighter sandy and silty Quaternary379

material, rather than the heavier-textured Eocene host material, and so will have larger380

porosity and hydraulic conductivity, than sites where the ECa is larger. If the TG model381
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does not adequately represent the connectivity of such areas then any modelling based382

on TG simulation will fail to represent processes where this lateral connectivity matters.383

This could include processes such as lateral movement of a pollutant plume in saturated384

conditions, the response of the water table to drainage schemes or the lateral spread of385

root pathogens. Figure 8 shows sets of realization of each of the fitted PCLT and TG386

models for ECa. The inverse-distance PCLT realizations were generated directly following387

the procedure used by Lark (2012b). The TG realizations were obtained by Sequential388

Gaussian Simulation using the sgsim subroutine from the gslib library (Deutsch and389

Journel, 1997) modified to use the powered exponential variogram function. On visual390

inspection it can be seen that, while some large patches with smaller ECavalues are seen391

in the TG realization, there are fewer isolated small patches with small ECavalues in392

the inverse-distance PCLT realization, which has large and connected regions with small393

conductivity around the boundaries of the Voronoi cells of the underlying point process.394

However, this visual inspection is of limited usefulness and a more objective measure is395

needed.396

To this end we consider a simple test statistic, which can be readily evaluated on the397

ECa data which are more or less regularly sampled but which do not constitute a compre-398

hensively observed ‘image’. We define the statistic P (τ,∆) as the expected proportion of399

observations within a square window of width ∆, centred at a randomly selected location400

x which are ≤ τ , conditional on the value at x being ≤ τ . We may expect these values401

to be smaller for a TG random function than for a function which better-represents the402

spatial structure of a variable in which small values tend to be spatially connected.403

We estimated P (τ,∆) for the TG and PCLT random functions fitted to the ECa404

data by simulation. These are denoted by PTG(τ,∆) and PPCLT(τ,∆) respectively. We405

considered windows of width 2 m or larger (because approximately 40 ECa observations406

occur within a 2-m window). Each simulation program generated a single independent407

realization of the random function at 25 equally-spaced locations in a window of width ∆408

one of which was at the centre of the window. If the simulated value at the centre was ≤ τ ,409

the conditioning criterion, then the realization was retained and P (τ,∆) was estimated as410

the proportion of the observations in the window for which ≤ τ . This was repeated until411

10 000 independent realizations which met the criterion that the central value was ≤ τ had412
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been obtained. The PCLT realizations were generated using the procedure described by413

Lark (2012b). The TG realizations were obtained by LU decomposition (Goovaerts, 1997).414

The mean value of PTG(τ,∆) and the standard deviation of the 10 000 independent values,415

were computed for different values of ∆ and for τ set to the median, first quartile and first416

octile of the ECadata. This was also done for PPCLT(τ,∆). The difference between the417

mean values of PPCLT(τ,∆) and PTG(τ,∆) for these different thresholds and for windows418

of different size, are plotted in Figure 9.419

Figure 9 shows three things. First, the mean value of PPCLT(τ,∆) is larger than that420

of PTG(τ,∆) for given τ and δ. That is to say, given that a value falls below a threshold,421

there is a larger proportion of neighbouring values which do so for the PCLT process422

than for the TG process. Second, the effect depends on the threshold, and increases as423

the threshold becomes more extreme relative to the overall distribution. Third, the effect424

depends on the window size. It is small for a large window, but it is also notable that the425

difference is larger for the window width 4 m than the window width 2 m. This reflects426

the spatial scale of the random function.427

The P (τ,∆) statistic was then estimated from the ECa data for the same three428

threshold values used in the simulations, and for ∆ = 4m given that this window showed429

the largest differences between the two processes in the simulation. An independent ran-430

dom subsample of 250 observations for which ECa≤ τ was obtained, the proportion of ECa431

observations within a square window, width ∆ about each of these observations was com-432

puted. The results are shown in Figure 10. The mean value of PTG(τ,∆) and PPCLT(τ,∆)433

from the simulations are plotted, and for each of these the 95% confidence interval for the434

mean of a sample of 250 independent observations is also shown, based on the variances435

of the values obtained by simulation. The estimates from the ECa data are also plotted.436

Note that for all three thresholds the values of P (τ,∆) for the data are larger than the437

upper limit of the confidence interval for the TG process. For τ equal to the median and438

the first quartile the values from the data are within the confidence interval for the PCLT439

process, for the first octile the estimate is slightly smaller than the confidence interval for440

the PCLT process, but closer to the expected value for the PCLT process than it is for441

the TG process.442

16



3. Discussion443

The overall objective of this study was to identify a stochastic model for a soil444

property that varies according to some mode, and to base this identification as far as445

possible on knowledge of the underlying soil process and, at most, some simple descriptive446

statistics of the variable such as the empirical variogram and summary statistics. This447

was achieved in this study by employing general soil knowledge in a structured way. This448

is proposed as a framework for similar studies on soil variation in contrasting modes.449

The PCLT model used here is a stochastic model of soil variability selected because450

it represents a particular model of soil variation. This places it in between the most451

common approach to stochastic modelling, where a Gaussian or TG model is selected for452

convenience, and approaches based on direct specification of the form of the covariance453

function from a mechanistic model of the process. The latter has been achieved only454

for a limited set of processes over a limited range of spatial scales, e.g. Whittle (1954,455

1962), Kolvos et al. (2004). Essentially the PCLT model is selected because it is in456

some sense an analogue of the soil process of interest. A similar approach has been used457

elsewhere. For example, Smith et al. (200) selected a ‘blur’ process based on convolution458

to model the space-time covariance of atmospheric pollutants, the convolution process459

was an analogue of pollutant dispersal. Similarly, Brochu and Marcotte (1993) selected a460

generalized Cauchy variogram model for observations on hydraulic head on the grounds461

that this process had physical analogies with a gravimetric field, which is mechanistically462

linked to the Cauchy model.463

The use of stochastic geometric analogues of soil processes to generate stochastic464

models is attractive. It remains to be seen how wide a range of soil processes can be465

represented that way, and it is accepted that lateral textural variations in patterned ground466

are at once likely to be represented by simple geometric models and rather unrepresentative467

of soil variation in most conditions. None the less, the approach to the identification of468

models based on finding operators that are analogues for processes in the soil is likely to be469

more successful than the search for stochastic models based on strictly mechanistic models.470

It must also be noted that the stochastic geometric approach naturally reproduces non-471

Gaussian variation which must be characterized by moments of order higher than two,472

whereas the mechanistic approaches to spatial modelling are often explicitly based on473
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two-point statistics, the covariance function (e.g. Whittle, 1954; 1962).474

The particular advantage of the stochastic geometric approach in this case study475

is how the inverse-distance PCLT model was better than the TG model in terms of the476

test statistic on the connectivity of values with small ECa. If one wanted to generate477

conditional simulations of the soil in this environment as a basis for computing, for ex-478

ample, distributions of upscaled processes such as pollutant transport across a block of479

land, then the inverse-distance PCLT model would produce superior representations of the480

connectivity of material with large conductivities, and so of preferential flow pathways.481

There is considerable scope for further development of this approach. Other dis-482

tance functions could be considered for this variable, and for others. In this study we483

looked for the simplest distance function that seemed to be compatible with soil knowl-484

edge, and there may be scope further to refine a framework for selecting a function. More485

specific soil knowledge could be used. For example, in the case study considered here,486

one could generate a simple conceptual 3D model of a polygon, with material with dif-487

ferent dielectrical properties, and compute the expected trend function from models of488

the EM properties of the soil. While the objective of this particular study was to restrict489

the use of direct observations on the target variable to simple descriptive statistics, one490

might also conduct specific surveys at fine scale on transects across polygons in order to491

identify plausible distance functions for further studies. It should also be noted that the492

homogeneous Poisson process, while a default spatial model, is not the only one available493

and might not be generally appropriate. While it was selected in this case on the basis494

of recent work on patterned ground (Cresto Aleina et al., 2012), it is likely that, at the495

limit, a more overdispersed spatial process would be more appropriate for this problem,496

with fewer close-spaced points than in the homogeneous Poisson case.497

The model-fitting framework in this study made combined use of point estimates of498

the variogram, and a weighted least squares criterion for parameter estimation, subject499

to constraints identified from soil knowledge which imposed constraints on the modelled500

parameters based, in this case, on the coefficient of skewness. This remains a somewhat501

arbitrary procedure for parameter estimation. Ideally a likelihood-based estimator should502

be derived. This is unlikely to be straightforward, not least because the joint distribution503

function of any PCLT process is complex and requires geometrical functions for which504
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analytical expressions are not known. In other settings, when the likelihood function is505

expensive to evaluate, parameters may be estimated by an extension of the method of506

moments to include higher order moments than the usual first and second. An example of507

this is given by Iskander and Zoubir (1999), and it is suggested that a method of higher-508

order moments is most likely to be a tractable solution to fitting stochastic geometric509

models.510

There is scope for further work on the comparison of realizations of the PCLT and511

TG processes with respect to multiple point statistics and for weighing the evidence that512

one model rather than the other best represents particular data. We used a relatively513

simple statistic in this paper, given that our data are not-quite regularly sampled and514

so do not constitute an image. However, it would be interesting to see how statistics515

developed for images (e.g. De Iaco and Maggio, 2011) might be used to evaluate alternative516

stochastic models. That said, the statistic which we used in this paper was not a general517

measure of spatial structure but rather was focussed on a particular problem of direct518

interest (i.e. the connectedness of areas likely to have larger hydraulic conductivities).519

This is arguably more relevant than a generalized measure. It would be interesting to520

develop methods to quantify the spatial structure of random fields as this affects particular521

processes. For example, one might compare the outcomes of a process model for the522

dispersal of contaminant plumes when it is run with input data on conductivity or similar523

model parameters which are realizations of contrasting random processes.524

Any PCLT model could be used in conventional spatial prediction by kriging since525

the variogram or, equivalently, the covariance function can be specified. However, since526

the PCLT covariance function is not available in closed form, it would generally be more527

efficient to use a standard variogram function for kriging; and since kriging uses only the528

two-point statistics of a variable there is unlikely to be any benefit in using the PCLT model529

rather than a standard spatial model for this purpose. The value of the PCLT model is not530

to provide an alternative form of the covariance function, but rather for spatial prediction531

of non-Gaussian variables whose multivariate distribution is not entirely characterized by532

the covariance function. Spatial prediction in such cases may be may be done by codes533

such as snesim (Strebelle, 2002) or the direct sampling (DS) algorithm of Mariethoz et534

al. (2010) which allow one to obtain conditional distributions at unsampled sites from535
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multiple realizations of a non-Gaussian process. These procedures require training images536

of the variables of interest, and the availability of sufficient training images of adequate537

quality is a potential limitation on the use of multiple point geostatistical methods in538

soil science. For this reason Pyrcz et al. (2008) developed a library of training images539

for a particular geological setting (fluvial and deepwater reservoirs) by a combination of540

stochastic and object-based simulation methods. If an appropriate PCLT process could be541

identified for a particular soil variable, then it might be used similarly to generate training542

images, either for a library or as required for a multiple point conditional simulation. It is543

easy to generate multiple training images from a PCLT model. This would be particularly544

advantageous for the DS algorithm, because it has been noted (e.g. Meerschman et al.,545

2013) that multiple realization generated by the DS algorithm sometimes all include exact546

copies of significant patches of the (single) training image. This could be avoided by547

modifying the DS algorithm to sample multiple training images in random order, when548

these can readily be generated.549

4. Conclusions550

We have shown how a structured use of soil knowledge allows us to fit an appropriate551

stochastic geometric model to data on a soil property in a particular environment. Further-552

more, we have shown that this model appears to capture features of the spatial variation of553

our target variable better than the standard Gaussian model, even after transformation of554

the data to marginal normality. There is more work to be done in the development of this555

approach, and exploring its practical implications but we believe this case study shows that556

there is considerable potential. In particular, realizations of PCLT processes may be bet-557

ter than standard TG simulations for predicting outcomes of non-linear processes such as558

contaminant transport, and for quantifying the uncertainty of such predictions. If PCLT559

models succeed in capturing the multiple point behaviour of soil variables, then PCLT560

simulation can be used to provide an inexhaustible supply of training images for existing561

multiple point prediction code. This removes one major limitation on the application of562

this emerging geostatistical methodology.563
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Table 1. Summary statistics of the raw data on ECa.

Statistic mS m−1

Average 31.37
Median 31.13
Standard deviation 2.2
Skewness 0.36
Quartile 1 29.9
Quartile 3 32.76
Octile 1 29.03
Octile 7 34.08
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Table 2. Summary statistics of the data on ECaafter the Box-Cox transformation and for

the transformed data after standardization. Variogram parameters for the standardized

data are also given.

Statistic Transformed Transformed and
data standardized data

Average 1.508 0
Median 1.507 -0.056
Standard deviation 0.01 1
Skewness 0 0
Quartile 1 1.501 -0.646
Quartile 3 1.514 0.668
Octile 1 1.497 -1.085
Octile 7 1.52 1.216

ζ∗ −0.57

Variogram
parameters†

c0 0.12
c1 0.84
a 1.91
κ 1.49

∗ Maximum likelihood estimate of the parameter of the Box-Cox transform, see Eq.(1)

† Powered (stable) exponential model, see Eq.(2).
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Figure captions

1. ECa data, coordinates are in metres relative to a local datum.

2. Histogram of ECa data.

3. Empirical variogram of transformed and standardized ECa data with a fitted model.

4. Values of the coefficient of skewness for an inverse-distance PCLT process with different

values of the parameters λ and α. The two contours bound the region where we

regard the variable as mildly positively skewed.

5. Profile plot of the weighted sum of squares for the fit of the inverse-distance PCLT

variogram function against λ, with α fixed at 2.5 m.

6. Empirical variogram of the untransformed ECa data with the fitted inverse-distance

PCLT variogram.

7. Marginal distribution function of the standardized inverse-distance PCLT random

function with α=2.5 m and λ=0.07 m−2 (line). The points are from the empirical

cumulative distribution function of the standardized ECa data.

8. Realizations of (a) the inverse-distance PCLT random function and (b) the TG random

function (back transformed to original units) on a 0.25-m square grid.

9. Plot of the difference between the mean of PPCLT(τ,∆) and that of PTG(τ,∆) for

different window widths (∆) and with τ set to the median, first quartile and first

octile of the ECadata. Mean for 10 000 realizations of each random function.

10. P (τ,∆) with ∆ = 4 m plotted against τ set to the median, first quartile or first

octile. The solid disc, •, is the mean value from 10 000 realizations of the PCLT

random function, the solid square, �, is the mean value from 10 000 realizations of

the TG random function. The horizontal bars show the 95% confidence interval for

the mean of based on 250 independently and randomly selected locations that mean

the conditioning criteria. The crosses, × show the mean values for 250 independently

and randomly selected sites in the ECa data set.
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