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a b s t r a c t

Levels of reactive nitrogen (N) in the atmosphere have declined by around 25% in Europe since 1990.
Ecosystem services provide a framework for valuing N impacts on the environment, and this study
provides a synthesis of evidence for atmospheric N deposition effects on ecosystem services. We estimate
the marginal economic value of the decline in N deposition on six ecosystem services in the UK. This
decline resulted in a net benefit (Equivalent Annual Value) of d65 m (d5 m to d123 m, 95% CI). There was
a cost (loss of value) for provisioning services: timber and livestock production of �d6.2 m (�d3.5 m to
�d9.2 m, 95% CI). There was a cost for CO2 sequestration and a benefit for N2O emissions which
combined amounted to a cost for greenhouse gas regulation of �d15.7 m (�d4.5 m to �d30.6 m).
However, there were benefits for the cultural services of recreational fishing and appreciation of
biodiversity, which amounted to d87.7 m (d13.1 m to d163.0 m), outweighing costs to provisioning and
regulating services. Knowledge gaps in both the under-pinning science and in the value-transfer
evidence prevent economic valuation of many services, particularly for cultural services, providing only
a partial picture of N impacts which may underestimate the benefits of reducing N deposition.
Crown Copyright & 2013 Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA

license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

Levels of reactive nitrogen (N) in the atmosphere have increased
globally since the 1940s as a result of man's activities (Galloway et al.,
2008). The main sources of oxidised N compounds are vehicle
emissions, industry and domestic combustion, while reduced N
compounds, primarily ammonia, derive from agriculture sources
such as manure and fertiliser volatilisation. Nitrogen is a basic
nutrient required for growth, and most semi-natural systems are
N-limited (Vitousek et al., 1997). Increased N deposition in the last 70
years has caused widespread adverse impacts on biogeochemical
cycling and biodiversity in semi-natural systems as a result of both
eutrophication and acidification, which have been well studied (e.g.
Duprè et al., 2010; Phoenix et al., 2012; Sutton et al., 2011a). However,
since N stimulates plant growth, deposition of this nutrient may be
seen as beneficial for human production systems, e.g. by increasing
forest growth (De Vries et al., 2009).

Across Europe, emissions of N have now declined by 25% since
around 1990 due to policy measures to reduce industrial and
vehicular emissions of oxidised N, and to reduce ammonia emis-
sions from agriculture (Oenema et al., 2011). However, the effect of
this decline in emissions has not been systematically evaluated
across a wide range of sectors.

Ecosystem Services frameworks are emerging as a way of
capturing the wider effects of policy decisions or evaluating land
use change in order to more comprehensively take into account
the range of impacts on the environment, and on the benefits
humans receive from it (Turner and Daily, 2008). However,
although rapidly developing, much of the conceptualisation
around ecosystem services, and the data required to quantify
them, do not readily marry to existing experimental data, and
the links to ecological processes are poorly defined. Applications to
new situations are often largely qualitative, based on expert
judgement or assumptions, and lack supporting evidence from
the literature. When examined in more detail, the literature
reveals far greater complexity to what are presented as simple
relationships. There is a need to bridge this gap in scientific
understanding between ecosystem processes and ecosystem ser-
vice delivery.

Valuation of ecosystem services, monetary and non-monetary,
increasingly feeds into decision making processes (Fisher et al.,
2009). Assigning an economic value to N pollution impacts has
been conducted in some studies e.g. valuation of ammonia (NH3)
impacts on human health (Holland et al., 2005; Watkiss, 2008),
and for impacts of N from agriculture (Sutton et al., 2011b).
Detailed cost-benefit approaches have been applied in The Eur-
opean Nitrogen Assessment for the impacts of nitrogen in Europe
(Brink et al., 2011), and for the effects of water quality legislation
in Chesapeake Bay, USA (Morgan and Owens, 2006). An ecosystem
services framework has been proposed for ammonia pollution
(Smart et al., 2011), but has not yet been applied in detail. A key
challenge of applying an ecosystem services framework to the
valuation of air pollution impacts is that it requires a full under-
standing and quantification of the impact pathway: from changes
in emissions, to deposition and its consequent effects on ecosys-
tem processes and how those changes affect ecosystem service
provision and the goods and benefits arising from them.

Therefore, in this paper we aim to review the published
evidence supporting N impacts on ecosystem services and show
how improved understanding of those links can be used to guide
valuation of impacts. Firstly, we describe the main mechanisms of
N impacts on ecological systems, and then make explicit the
conceptual links between N and supporting, provisioning, regulat-
ing and cultural ecosystem services. The study then conducts a
marginal cost analysis using examples in a UK context, comparing
the impact of a net reduction in N deposition from 1987 to 2005,
using 1987 as the reference year. For this we use the typology of
final ecosystem services (sensu Fisher et al., 2008) as developed in
the UK National Ecosystem Assessment (UK NEA, 2012).

2. Mechanisms of N impacts on ecological processes

Nitrogen impacts are manifested through three principal
mechanisms: eutrophication, acidification and direct toxicity
(Bobbink et al., 2010). We briefly describe these mechanisms here,
and show the conceptual links to ecosystem services for each
mechanism (Figs. 1–3), based on the wide range of impacts on
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ecological processes. The evidence for these impacts is discussed
in more detail in Sections 3 and 4.

Eutrophication (Fig. 1) of oligotrophic (i.e. nutrient poor)
habitats occurs where there is excess nutrient availability, above
the natural, pre-industrial levels. Since N is a nutrient, it
increases the quantity of available N in the soil, stimulating
plant productivity and rates of nutrient cycling in N limited
terrestrial and aquatic systems (Vitousek et al., 1997; Fisher,
2003). These processes governing the biogeochemical cycling of
carbon (C) and N are analogous to the supporting services, and
are represented within the dashed line box of Fig. 1. Changes in

primary productivity and accumulation of N in soils (Jones et al.,
2008) subsequently affect other soil or water mediated pro-
cesses such as N leaching, or biological processes including
flowering, alteration of competitive relationships between spe-
cies, nutrient imbalances or nitrogen saturation, and indirect
impacts mediated by changes in stoichiometry (Clark and
Tilman, 2008; Sala et al., 2000). These in turn affect a range of
provisioning, regulating and cultural ecosystem services, shown
in Fig. 1.

Nitrogen contributes to acidification of soils and freshwater
systems (Fig. 2). Historically this acidification was primarily due to
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but in reality are much more complex.
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high sulphur deposition. However, since sulphur deposition has
declined dramatically across Europe, N now makes a greater
contribution to acidity than sulphur at current deposition levels
(ROTAP, 2012). Uptake and assimilation of ammonium by plant
roots and the process of nitrification, and subsequent leaching of
nitrate cause acidification of the soil (Gundersen and Rasmussen,
1990). Acidification impacts occur through toxicity effects on
aquatic and terrestrial organisms due to exceedance of biological
and chemical thresholds of soil pH, and increased mobilisation of
toxic ions such as Al3þ . Effects on plant growth also occur through
soil pH controls on P availability (Kooijman et al., 1998; Brady and
Weil, 1999), which indirectly alters plant productivity. Impacts on
regulating services occur directly through lowered soil pH and
slower rates of biogeochemical cycling and organic matter decom-
position, while impacts on cultural services are mediated through
changes in abundance or diversity of organisms such as fish or
changes in plant growth and community composition.

Direct toxicity (Fig. 3) is caused by the gaseous forms of N as
ammonia or as nitrogen dioxide. At very high concentrations,
nitrogen dioxide is toxic to plant growth, but in many cases the
toxicity is due to chronic exposure, i.e. annual dose, rather than
acute toxicity. In much of Europe, concentrations of nitrogen
dioxide are below the critical levels defined in LRTAP Convention
(2010), with the exception of some urban areas or close to major
roads and large point sources. Ammonia is also toxic to plant
growth at high concentrations. The critical level for ammonia for
vegetation is an annual mean of 3 mg m�3 to protect semi-natural
vegetation, and 1 mg m�3 to protect sensitive lichens and bryo-
phytes (Cape et al., 2009). The majority of toxicity impacts are
mediated by reduced plant growth with negative impacts on
provisioning services, with some indirect effects on species com-
position and on biogeochemical cycling (Fig. 3), which impact on
regulating services and cultural services. Note that reduced plant
growth may have positive impacts on some services such as water
supply, and altered nutrient cycling may have positive or negative
effects on greenhouse gas emissions. These are discussed in more
detail in Section 4.

Each of these three mechanisms has an impact on a range of
ecosystem services, for which we summarise the evidence below.
There is an extensive literature spanning many decades on N impacts
on ecosystem processes, and more recently on biodiversity. We do

not aim to reproduce this, rather to summarise the main impacts that
are of relevance to ecosystem service provision, with selected
supporting references. We discuss first the impacts on supporting
services, and then the implications for intermediate and final
provisioning, regulating and cultural services.

3. Effects of N on supporting services

3.1. Primary production

Since N is the principal limiting nutrient (Vitousek et al., 1997),
increases in N deposition usually increase net primary production
(NPP) in terrestrial systems. This increased plant productivity fixes
additional carbon through photosynthesis, which enters soil
carbon pools through litter fall, root turnover and root exudates,
contributing to nutrient cycling and ultimately soil formation.
There are important exceptions, where climate or limitation of
other nutrients, such as phosphorus, prevent a growth response to
N, and where nutrient imbalances or direct toxicity reduce plant
growth. In such cases N does not increase NPP, but may still
accumulate in the system or have other impacts. In aquatic
systems there is increasing evidence that freshwaters can be N
limited or N and P co-limited, rather than P limited (Maberly et al.,
2002). In N-limited aquatic systems, atmospheric N can increase
primary productivity of plankton and macrophytes and decrease
macrophyte diversity (e.g. Fenn et al., 2003; James et al., 2005).

3.2. Nutrient cycling

Nutrient cycling in terrestrial systems is generally understood
to mean the rate of mineralisation of organic matter. Inorganic N
from atmospheric deposition affects decomposition rates through
litter quality via increased tissue N, i.e. reduced C:N ratio, and
altered lignin concentrations, but responses are complex. In a
meta-analysis, decomposition was stimulated by N where litter N
or lignin content was low, but retarded where litter N or lignin
contents were high (Knorr et al., 2005). In general, N deposition
increases mineralisation rates, leading to faster turnover of N in
the soil and greater availability of labile inorganic N for plant
growth, further increasing primary production. Excess N can lead
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Fig. 3. Process-based impact pathway for direct toxicity (incorporating NOx and NH3 effects). For legend, see Fig. 1.
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to nitrate (NO3
�) leaching, if N availability exceeds biological

demand (Emmett, 2007). By contrast, acidification below pH
4.5 can slow microbial decomposition, due to changes in bacterial
community composition, and a shift from bacterial to increasing
fungal dominance of the microbial decomposer community (Rousk
et al., 2010). Increases in the solubility of toxic aluminium forms
below pH 4.5 can also slow microbial activity and therefore
nutrient cycling.

3.3. Soil formation

Soil formation occurs through accumulation of soil organic
matter and through mineral weathering of rock. Organic matter
accumulation depends on the balance of carbon inputs from plant
litter (i.e. Net Primary Productivity, NPP) and the rate at which the
plant matter is decomposed (i.e. nutrient cycling), both discussed
above. Air pollution can alter both sides of the equation. The
balance between production and decomposition is difficult to
quantify and varies spatially due to temperature and soil moisture
controls on decomposition rates and plant production, as well as
land-use in many habitats. The net effects of N on carbon
sequestration in soils are reasonably well understood for a range
of habitats. In forests and heathlands N deposition generally
increases soil organic matter accumulation (De Vries et al.,
2009), in grasslands moderate fertilisation increases soil C stocks
while intensive fertilisation decreases them (Soussana et al.,
2004), while excess N deposition decreases soil C stocks in bogs,
peatlands (Bragazza et al., 2006) and Alaskan tundra soils (Mack
et al., 2004). Soil formation has direct implications for soil C
sequestration, but underlies a range of other provisioning, regulat-
ing and to a lesser extent cultural services reliant on soil.

4. Effects of N on provisioning services

4.1. Food production in highly managed agricultural habitats –
crops, livestock, dairy

Nitrogen stimulation of plant production can have positive effects
for provisioning services linked directly to plant growth such as crops
and feedstock production, including hay and silage, and indirectly via
increased or faster weight gain in livestock (Jensen et al., 2011; Brink
et al., 2011). In fertilised agricultural systems, including dairy and
beef production on re-sown highly fertilised leys the relatively small
amounts of atmospheric N input (deposition range in Europe ca. 5–
40 kg N ha�1 yr�1 for non-forest systems) compared with typical
agricultural additions of 10–200 kg N ha�1 yr�1 (Velthof et al., 2009)
still represent a cost-saving in fertiliser input for farmers, who
otherwise would have to add greater quantities of fertiliser. An
analogous situation exists for sulphur following major declines in
sulphur deposition in the UK, where sulphate additions are now
required for some crops, especially brassicas (Zhao et al., 2003).
Acidification and ammonia toxicity impacts are less likely in these
fertile systems where plants have the capacity to upregulate assim-
ilation, and soil pH is managed by farmers, while direct toxicity from
nitrogen dioxide is unlikely at current concentrations, although may
cause localised damage near point sources.

4.2. Food production – livestock in semi-natural grasslands

Improved (i.e. drained and fertilised) pastures and short-
rotation leys are considered within fertilised agricultural systems
above. Unimproved and semi-improved grasslands produce hay
and provide lower-quality grazing land for extensive livestock
production. Surprisingly, there is limited experimental evidence
for increased grassland productivity due to elevated N deposition

in semi-natural grasslands: at high N deposition, biomass produc-
tion increased in acid grasslands, but showed no change or
marginal increases in calcareous grasslands (Phoenix et al., 2003)
possibly due to P limitation. Species compositional change driven
by elevated N deposition may improve forage quality, and hence
livestock production, by favouring nitrophilous graminoids
(Maskell et al., 2009) and increases in tissue N content of some
species (Plassmann et al., 2009). By contrast, acidification may
reduce productivity in acidic grasslands, and may drive species
compositional change (Stevens et al., 2010), reducing forage
quality.

4.3. Food production – game in moorlands

Enhanced productivity, shoot growth and foliar N content of
Calluna vulgaris with increased N have been shown in heathland
habitats (Britton et al., 2008; Power et al., 2006). In upland habitats
where Calluna is dominant this could have the potential to support
larger populations of grouse or deer for shooting. However, an indirect
consequence of N addition is acceleration of the Calluna vulgaris
growth cycle, with more frequent management needed to prevent
degradation (Terry et al., 2004). This is classed as a provisioning service
here, but could alternatively be considered a cultural service with
shooting as a leisure activity. Further acidification of these acidic
habitats is unlikely to affect Calluna vulgaris growth, however ammo-
nia toxicity may do so (Sheppard et al., 2008).

4.4. Wild food production – fungi, all habitats

The evidence surrounding N deposition effects on fungi and
production of their fruiting bodies is complex. A review of the
evidence suggests that N deposition can cause widespread reduc-
tions in certain fungal fruiting bodies, but effects on fungal
abundance or diversity below ground are less clear (Wallenda
and Kottke, 1998).

4.5. Fibre production – wool in semi-natural grasslands

The conceptual links and the reasoning for increased meat
production in semi-natural grasslands, discussed above, may be
transferred also to wool production. However, there is no evidence
linking N deposition to changes in wool production or quality to
our knowledge.

4.6. Fibre production – timber in woodlands

There is considerable interest in the impacts of N deposition on
woodland productivity, centred around the issue of C sequestra-
tion in woodland, extensively reviewed in De Vries et al., (2008,
2009) and Sutton et al., (2008). Nitrogen can stimulate tree
growth, and positive impacts of N as a nutrient outweigh negative
impacts mediated by acidification (Solberg et al., 2009).

4.7. Genetic diversity of wild species

There is some evidence for effects of eutrophication, acidifica-
tion and direct toxicity on some species groups. There are well
documented negative impacts on wild (plant) species diversity,
with further implications for invertebrates and other ecosystem
components which depend on them (e.g. Bobbink et al., 2010).
These are discussed further under cultural services below. Nitro-
gen deposition may reduce the ecological plasticity of some plant
species, with potential implications for future genetic diversity
under global change (Vergeer et al., 2008). There is some limited
evidence for negative effects of eutrophication due to N on
carabids and butterflies (Nijssen et al., 2001; WallisDeVries and
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Van Swaay, 2006) and on soil microbial and fungal diversity
(Lilleskov et al., 2002; Pardo et al., 2010).

4.8. Water supply

There is a conceptual link between enhanced vegetation
growth and increased water use and interception by plants, which
could result in decreased water fluxes into reservoirs and ground-
water, potentially affecting the quantity of water available for
extraction as drinking water. The magnitude of this flux is not
known, but may warrant further work. For example, it is suggested
that ozone effects on tree physiology may alter water volume in
rivers of forested catchments (McLaughlin et al., 2007).

5. Effects of N on regulating services

5.1. Equable climate – C stocks in vegetation and soils, and net C
sequestration rates

In this review we make a distinction between C stocks in
vegetation and soils and C sequestration. Sequestration rates (i.e.
annual flows of C) are more easily monetised than C stocks.

In most habitats, only soil C stocks are considered a long-term
store, although in forests a degree of long-term C storage may occur
in above-ground biomass in long-lived tree species, or in timber
products with high longevity. Nitrogen causes increases in tree
growth (Wamelink et al., 2009a), also discussed under provisioning
services for timber above; while impacts on soil carbon stocks are
also discussed under soil formation above. There is experimental
evidence that N can increase soil C stocks in heathlands, grasslands
and forests (Power et al., 1995; Phoenix et al., 2003; Vanguelova et al.,
2007), but at moderate to high levels, may have adverse impacts in
some habitats, reducing soil C in bogs for example (Bragazza et al.,
2006), while impacts in other habitats are unknown.

The extrapolation to changes in net C sequestration rate over time
is harder to quantify. However, by applying a range of techniques
including net ecosystem exchange measurements, pollution gradient
and chronosequence studies, tracer studies and modelling approaches,
the longer-term implications (i.e. over timescales of 30–40 years or
more) of N deposition on net C sequestration over time can be derived
for forests and moorlands (De Vries et al., 2009), and some grasslands
(Rowe et al., 2006; Jones et al., 2008). In the long term, acidification can
impact C stocks and sequestration rates. The reduction in decomposi-
tion rates of recalcitrant litter produced by calcifuge species is greater
than the reduction in mineralisation rates and plant growth. Therefore,
the net carbon gain in soil increases (Berg and McClaugherty, 2007).

5.2. Equable climate – other greenhouse gas emissions

Emissions of the greenhouse gas nitrous oxide (N2O) are
strongly linked to N inputs, but denitrification and subsequent
release of N2O is controlled by soil temperature and moisture
conditions. It is assumed that ca. 1% of deposited N is re-released
as N2O–N (IPCC, 2006), but higher emission rates have been
shown, depending on ecosystem type (Skiba et al., 1998;
Pilegaard et al., 2006). Nitrogen deposition can suppress the
oxidation of methane in the soils of neutral to calcareous grass-
lands, forests and arable systems, thereby increasing emissions of
this potent greenhouse gas (Hutsch et al., 1993), although the
changes in these habitats are likely to be small.

5.3. Purification – clean air (particulates and gaseous pollution)

Plants both directly trap particulates on leaf surfaces, which is a
physical process, and take up gaseous pollutants through

deposition onto leaf surfaces and uptake via stomata (Freer-
Smith et al., 1997; Beckett et al., 1998). In principle, larger plants
provide greater filtering of particulates (Nowak and Crane, 2000).
However, the relatively limited growth stimulation of plants by N
is unlikely to drastically affect this aspect of air quality.

5.4. Purification – clean air (ammonia concentrations)

Nitrogen status of plants has a direct influence on the absorption
and uptake of gaseous ammonia. At a certain level of N status, there is
a compensation point when plant stomata no longer take up
ammonia, and may release it (Dragosits et al., 2008). Thus the N
status of the vegetation will influence the proportion of ammonia
deposited and the distance it travels from a point source before it is
deposited on vegetation. However, these impacts are difficult to
quantify at large scale.

5.5. Purification – clean water (nitrates and dissolved organic carbon
– DOC)

Nitrate leaching into freshwaters is a consequence of overloading
the regulating service of purification naturally provided by soils of all
habitats and becomes a water quality issue, with associated treat-
ment costs for water companies producing clean drinking water.
Relationships have been derived between N deposition and N export
via leaching, for forests (Dise and Wright, 1995; Gundersen et al.,
1998), moorlands (Curtis and Simpson, 2007), with more limited
evidence for calcareous grasslands (Phoenix et al., 2003), but
relationships differ due to soil and vegetation-mediated differences
in N saturation and N cycling. It is possible to model N leaching at
catchment scales and above (e.g. Kronvang et al., 2009).

Dissolved organic carbon (DOC) causes the brown colouring in
many upland streams and lakes and is a water quality issue. This
can be regarded as a dis-benefit of the effects of N deposition on
the environment, as it represents a cost for water companies to
remove the colouring from affected drinking water sources in the
uplands. DOC concentrations are inversely related to acidity. DOC
concentrations in freshwaters are rising following declines in S
pollution (Evans et al., 2006), but acidity due to N also affects DOC
concentrations (Butterbach-Bahl et al., 2011).

5.6. Hazard regulation, reduced flooding (rivers and coastal)

There are conceptual links between increased N deposition and
reduced flooding in rivers, via increased plant growth with
associated greater water use reducing run-off to rivers, but also
increased macrophyte growth within lowland rivers reducing
water flow rates. However, there are complex feedbacks associated
with soil drying and unpredictable impacts on run-off. The links
with coastal flooding have a stronger conceptual basis. Nitrogen
deposition increases vegetation growth in mobile and semi-fixed
coastal dunes (Jones et al., 2004), and in saltmarsh (Van Wijnen
and Bakker, 1999). Taller and more vigorous vegetation in dunes
binds the sand and is one factor promoting higher dune building,
improving the flood defence capability of the leading dune
(Barbier et al., 2008). In saltmarsh, vegetation acts to attenuate
wave energy (Möller et al., 1999), and stimulation of vegetation
growth by N deposition can potentially increase this service.

6. Effects of N on cultural services

6.1. Water-based leisure activities, and recreational fishing

In N limited lakes and freshwaters, there is the potential for N
deposition to cause high algal growth adversely affecting amenity
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value through visual impacts, restriction of amenity uses such as
boating and swimming e.g. due to toxic algal blooms (van der
Molen et al., 1998; Camargo and Alonso, 2006). Eutrophication of
water courses may also affect recreational fishing through altera-
tion of aquatic food-webs and ultimately fish populations (Smith
and Schindler, 2009). There is increasing understanding of the role
of N limitation rather than P limitation in freshwater systems
(Maberly et al., 2002; James et al., 2005), but the specific
contribution of atmospherically deposited N to eutrophication is
not easy to separate.

Acidification of freshwaters, which is in part due to N deposi-
tion, causes loss or damage to fish populations. Impacts of high
concentrations of labile aluminium and hydrogen ions on fish
reproductive capability include effects on egg production, hatching
success and on physiological parameters such as osmo-regulation
and gill function (Donaghy and Verspoor, 1997; Kroglund et al.,
2008). Studies have shown links between acid neutralisation
capacity (ANC) in waters and health of fish populations in Norway,
with a critical threshold of 20 μeq L�1 ANC, based largely on
impacts on Atlantic salmon in rivers and brown trout in lakes (Lien
et al., 1996; Lydersen et al., 2004; Kroglund et al., 2008).

6.2. Aesthetic appreciation of natural environment (flowering)

Flowering of wild species is an important component of the
attraction of wild habitats to the public, for example bluebell
woods and wildflower meadows. Nitrogen deposition affects both
the abundance and composition of flowering species, but also their
individual flowering rates. Nitrogen manipulation experiments
show that flowering of Calluna vulgaris in heathlands is enhanced
by N (Power et al., 1995), while flowering in grasslands is reduced
by N (O'Sullivan, 2008). Thus, responses to N are habitat specific.
Response functions linking flowering to N can be derived, but their
use in assessment of cultural importance depends on the valuation
techniques available.

6.3. Aesthetic appreciation of natural environment (weediness and
visual damage)

High N deposition around ammonia point sources, such as pig
or chicken farms, in woodland areas dramatically alters the
groundflora to that of nitrophilic species such as nettles Urtica
dioica and the grass Yorkshire fog Holcus lanatus (Pitcairn et al.,
2002). These species are common in disturbed ground, giving a
‘weedy’ appearance, in contrast to unimpacted more natural areas.
It is possible that this weedy appearance is of less value to the
public. The direct toxicity effects of ammonia on cultural services
are probably limited to visual damage on plants close to point
sources. High ammonia concentrations cause greying of Calluna
vulgaris shoots, and increase sensitivity to stresses such as drought
or winter desiccation which causes further die-back (Sheppard
et al., 2008). However, to our knowledge the air pollution impacts
on the aesthetic quality of the natural environment have not been
subject to empirical research, and the magnitude of any potential
effects have not been quantified.

6.4. Appreciation of biodiversity

In a wide range of terrestrial habitats, declines in plant species
richness have been noted with N deposition globally (Bobbink
et al., 2010; Pardo et al., 2010). These include acid grasslands
(Stevens et al., 2004; Duprè et al., 2010), sand dune grasslands
(Jones et al., 2004) and mixed grassland, heath and bog, and
deciduous woodland (Maskell et al., 2009). However, in some
habitats, loss of plant species diversity due to N has not been
observed: calcareous grasslands (Van Den Berg et al., 2011),

woodland epiphytes (Mitchell et al., 2005), Scottish montane
habitats (RoTAP 2012) or in Racomitrium heath (Armitage et al.,
2012). Although, in some of these habitats, other changes have
occurred which damage their conservation status, such as shifts in
calcareous grasslands towards domination by the grass Brachypo-
dium pinnatum (Bobbink and Willems, 1987), and direct toxicity
damage to the moss Racomitrium lanuginosum in Racomitrium
heath (Jones et al., 2002; Pearce and van der Wal, 2002). This
direct reduction in biodiversity in some habitats is likely to have
adverse impacts on cultural services associated with appreciation
of the natural environment.

There is increasing evidence that some of the negative effects
on species richness and community composition previously
ascribed to eutrophication may, in acid-sensitive habitats, be
partially due to acidification of soils, by both N and S. This has
been shown in national surveys of acid grasslands (Maskell et al.,
2009; Stevens et al., 2010) and heathland (Maskell et al., 2009).
Species loss due to N is not confined solely to vegetation, for
example the decline of more charismatic taxa such as red shrike
Lanius collaris in the Netherlands and Denmark linked to changes
in prey items (Nijssen et al., 2001), but is harder to quantify or
value without specific studies.

A number of studies show shifts in plant community composi-
tion or species biomass along ammonia concentration gradients
away from intensive livestock units, for woodland groundflora (e.g.
Pitcairn et al., 2002) and sand dune grassland (Jones et al., 2013).
Direct evidence for loss of species richness is provided by an
ammonia release experiment on a bog system where Sphagnum
capillifolium, Cladonia spp. and Calluna vulgaris all disappeared at
the higher ammonia concentrations (Sheppard et al., 2009).

In freshwaters, reduced macrophyte species richness has been
associated with winter nitrate concentrations in lakes (van der
Molen et al., 1998). Freshwater acidification, in part due to N
deposition, has caused changes in epilithic diatoms, aquatic
macrophytes, macroinvertebrate communities as well as fish and
bird populations (Ormerod and Durance, 2009). These predomi-
nantly adverse impacts on biodiversity are likely to have had a
negative impact on the cultural services associated with human
use and appreciation of rivers. In contrast to terrestrial systems,
acidification in freshwaters has a marked impact on charismatic
species such as salmon, trout and the birds that feed in rivers. Such
effects may be more noticeable by the general public than most
eutrophication effects in terrestrial systems.

Diversity loss is likely to have higher resonance with the public
than shifts in community composition, although both are impor-
tant indicators of N damage to ecosystems. Shifts in species
dominance are much more common than loss of species richness
and may drive previously widespread species to increasing rarity
with the potential for future species loss. Preferences for con-
servation of species can be related to rarity, beauty or other
cultural factors. These are all motivations that typically relate to
both non-use and use values linked to appreciation of the natural
environment and diversity.

7. Methods

In this section, we show how an improved understanding of the
links between atmospheric N deposition and ecosystem services
can be used to guide valuation of those impacts. Using historical
changes in deposition in the UK over a twenty year period in an
ex-post assessment, we explore the impact of declines in N
deposition on the value of six ecosystem services: two provision-
ing (timber and grassland production), two regulating (carbon
sequestration and N2O emissions) and two cultural services
(recreational fishing and appreciation of biodiversity).
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7.1. Overview

Marginal change in the value of ecosystem services was
calculated based on a scenario comparison of impacts resulting
from the change in N deposition over the period 1987–2005 (Jones
et al., 2012). The scenario compared observed changes in pollutant
emissions from 1987 to 2005, versus maintenance of 1987-levels
of emissions as the counterfactual. In other words, what had been
the benefit of observed reductions in pollutant emissions during
the period 1987–2005. This interval covers the main period for
which accurate UK emissions and deposition data have been
calculated using a consistent methodology. Over this period N
emissions and N deposition increased slightly until 1990 and then
declined from 1990 to 2005. The period of N deposition increase is
included in the calculations of impact.

For each ecosystem service, an impact pathway was con-
structed, deriving response functions based on published literature
for each step of the chain. Nitrogen emissions data were from UK
emissions inventories (Murrells et al., 2010); deposition data were
from emission and interpolation outputs of the FRAME model,
spatially calibrated to measured deposition data, summarised in
ROTAP (2012). Dose response functions linked the quantity of N
deposited to impacts on ecosystem services. Calculations used UK
average N deposition data, for forest and non-forest habitats as
appropriate, accounting for differences in gaseous N deposition
velocities. For each scenario, the difference in pollutant deposition
and consequent impact on ecosystem services was calculated for
each year, relative to the baseline of no change in deposition.
Economic values of ecosystem service provision were calculated
using market prices, cost-based approaches and value transfer
methods as appropriate. The difference in value between the
scenarios for each year was calculated, then Net Present Value
using a 3.5% discount rate following UK government guidelines for
ecosystem service valuation (HM Treasury, 2003), and Equivalent
Annual Value (EAV) using an annuity over the scenario period
were calculated. The derivation of response functions for each
service and valuation methods are described separately below.
Uncertainty analysis for each step of the impact pathway in the
valuation was conducted following a Monte Carlo based approach
using @RISK (Palisade Corporation, USA). Uncertainties are
expressed as lower bound and upper bound 95% Confidence
Intervals around a best estimate. The quantification and valuation
methods for the six services are summarised below, with more
detail provided in the Supplementary Material for some services.

7.2. Impacts of N on timber production

In general in the UK, declines in N deposition lead to reduced
tree growth. More detailed description of these assumptions can
be found in the Supplementary Material. Ratios of carbon seques-
tered in tree biomass per unit of deposited N were calculated as
2.3–16 kg C per kg N for decreases in N deposition. Carbon seques-
tered was converted to dry weight timber assuming 50% C content
(Solberg et al., 2009), and then to greenwood volume assuming a
representative wood density of 0.45 t dry wood/m3 for softwood
(range 0.33–0.45 t/m3) and hardwood (0.49–0.53 t/m3)
(Broadmeadow and Matthews, 2003). Wood volume was scaled
to the area of forestry under softwood and hardwood. Valuation
was based on the standing sales prices for UK forest estate timber,
of d120 per hectare for softwood and d30 per hectare for hard
woods (at 2010 prices).

7.3. Impacts of N on livestock production (meat and dairy)

Impact of N deposition on livestock production is assessed here
via inferred effects of N on the productivity of grassland, and

consequently meat (cattle and sheep) and dairy production.
Reductions in N deposition are assumed to translate to a reduction
in grassland productivity which is compensated by farmers with
additional N fertiliser inputs on a 1:1 basis (Smart et al., 2011). The
assessment is restricted to improved grassland, although arguably,
effects of declining N deposition may be more noticeable in
unimproved grassland, valuation of which would require detailed
response functions for changes in meat and wool production based
on changes in forage quantity and quality. Valuation is based on
fertiliser prices of d0.62 per kg N in ammonium nitrate straights
(Nix, 2011).

7.4. Impacts of N on carbon sequestration

Quantification of impacts on carbon sequestration was pos-
sible for woodland and heathland. There was insufficient infor-
mation to calculate impacts in grassland. Impacts were based on
changes in C sequestration in soils for woodland, heathland, and
additionally in above-ground biomass in woodland, following
the methodology described in Section 7.2 for N impacts on tree
growth. In woodland, the ratio of carbon sequestrated in soils
and vegetation per unit of deposited N ranged from 3 to 30 kg C
per kg N for decreases in N deposition (De Vries et al., 2009). In
heathland, the ratio of carbon sequestrated in soils per unit of
deposited N ranged from 3 to 14 kg C per kg N for decreases in N
deposition (De Vries et al., 2009). For both habitats, values were
adjusted in the context of declining N deposition to take account
of lag effects on plant growth due to accumulated N in soils,
following Wamelink et al., (2009a,b). Greenhouse gas fluxes
were scaled by habitat area to give gross fluxes at the UK scale,
and converted to CO2 equivalents (CO2e). Valuation was based
on the non-traded shadow price of carbon (2010 d51.70/t CO2e)
(DECC, 2010).

7.5. Impacts of N on N2O emissions

Nitrogen impacts on N2O emissions were calculated for the
following semi-natural habitats: woodland, heathland, grassland,
bogs, wetlands, assuming that for each kg of deposited N, 1% is re-
emitted into the atmosphere as N2O–N (IPCC 2006). Greenhouse
gas fluxes were scaled by habitat area to give gross fluxes at the UK
scale, and converted to CO2 equivalents (CO2e). Valuation was
based on the non-traded shadow price of carbon (2010 d51.70/t
CO2e) (DECC, 2010).

7.6. Impacts of N on recreational fishing

Impacts of N on recreational fishing occur via changes in
nutrient status affecting fish populations and species composi-
tion, and indirectly via acidification impacts. This partial valua-
tion estimate is based on changes in eutrophication due to N
and subsequent impacts on salmonid fishing in upland rivers.
We make the assumption that in these catchments, atmospheric
N is the primary source of anthropogenic N, and streamwater
nitrate concentrations alter proportionally with changes in
deposition. The assumptions behind the contribution of atmo-
spheric deposition to stream nitrates in upland and lowland
rivers are provided in more detail in the Supplementary
Material.

Since most valuation studies of eutrophication impacts do not
separate the contribution of N and P, for this study valuation was
based on a travel cost method and a random utility model
(Johnstone and Markandya, 2006). Johnstone and Markandya
(2006) examined the impact of marginal changes in river water
quality for selected rivers in England (a total of 303 stretches of
river covering upland, lowland and chalk streams). Their analysis
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includes the estimation of a trip prediction (participation) model
which examines the relationship between river quality attributes
and proportional changes in fishing trips, where a 10% increase in
nitrate results in a 7% reduction in predicted fishing trips.
Johnstone and Markandya (2006) estimate that a 10% increase in
nitrate reduces consumer surplus by d1.79 per trip (2001 d). This
equates to d2.18 in 2010 prices.

We proxied stream type by fish species with the assumption
that all salmonid fishing occurs in upland river catchments. The
number of angler days per year for salmon and sea trout angling is
3.8 million, mostly in rivers (Radford et al., 2007). One angler day
was equated to one trip (Johnstone and Markandya, 2006). The
change in consumer surplus was multiplied by the change in the
number of trips calculated to generate a value for the impact of N
deposition on recreational fishing in upland rivers. The relation-
ship between the consumer surplus value and the change in trips
was assumed to be linear.

7.7. Impacts of N on appreciation of biodiversity

This study defines the ‘appreciation of biodiversity’ in terms
of non-use values associated with conserving elements of the
natural environment, plant and animal species. The study
focuses on biodiversity in terrestrial habitats, using nitrogen
critical load exceedance (a damage threshold) as a proxy for
habitat damage caused by N deposition (Bobbink et al., 2010).
Impacts were calculated for four broad habitat types: woodland,
heathland, acid grassland, calcareous grassland and bogs. More
detail on the methodology is provided in the Supplementary
Material.

Non-use values were based on a choice experiment methodol-
ogy (Christie et al., 2010; Christie and Rayment, 2012), designed to
value changes in the level of provision of seven separate ecosys-
tem service attributes. These ecosystem service attributes included
non-charismatic species, defined as follows (Christie et al., 2010):
threatened trees, plants, insects and bug species and populations
that will be influenced by UK Biodiversity Action Plan implemen-
tation, framed in terms of increase or of decrease in the number of
species. The WTP value for non-charismatic species was d88 per
household.

This WTP value was disaggregated by habitat according to an
expert derived matrix, allowing separate attribution of ecosystem
service value to the habitats modelled in this study (Table S1,
Supplementary Material), comprising eight of the 19 habitats in
Christie et al. (2010). The disaggregated WTP values for each
habitat were then scaled according to the proportional change in
critical load exceedance for that habitat (Figure S2, Supplementary
Material). The disaggregated, scaled value was then multiplied by
the number of households in the UK, 25 million, to calculate a total
value of this service for the UK for each habitat at a given level of
historical N deposition.

8. Results

For the six ecosystem services that were assessed, changes in
value due to declines in N deposition are shown in Table 1. There was
a net decline in average UK N deposition of 2.53 kg N ha�1 yr�1 from
20.2 kg N ha�1 yr�1 in 1987 to 17.6 kg N ha�1 yr�1 in 2005. This
resulted in a loss of ecosystem service value for timber production,
livestock production, and carbon sequestration, but a gain in ecosys-
tem service value for emissions of the greenhouse gas nitrous oxide,
recreational fishing and biodiversity. There was a net benefit for
ecosystem services of declining nitrogen deposition: the net equiva-
lent annual value (EAV) of changes in ecosystem services due to
changes in pollution deposition was d65.8 m (d5.1 m to d123.2 m,
95% CI) per year. When broken down by ecosystem service category,
there was a cost for the two provisioning services of �d6.2 m
(�d3.5 m to �d9.2 m, 95% CI) due to a loss of N-stimulated
productivity. Regulating services showed a mix of benefit and cost,
but amounted to a net loss of �d15.7 m (�d4.5 m to �d30.6 m, 95%
CI)). However, benefits to the two cultural services amounted to
d87.7 m (d13.1 m to d163.0 m, 95% CI), which outweighed the net
costs to provisioning and regulating services.

9. Discussion

In this paper we present an evidence-based summary of
nitrogen impacts on ecosystem functions and processes within
the context of impacts on ecosystem services. We acknowledge
that this is, of necessity, a snapshot of the extensive nitrogen-
effects literature spanning many decades. However, it serves to
identify where evidence does exist to support assumed impacts on
ecosystem services, and where the evidence is lacking, or where
there is not yet consensus. Two examples illustrate these points. In
both cases, an understanding of the underlying processes helps
explain some of the discrepancies. It is usually assumed that N
increases productivity of semi-natural grasslands, however pro-
ductivity of oligotrophic calcareous grasslands and some upland
grasslands is often restricted by phosphorus limitation and by
climatic factors respectively (e.g. Phoenix et al., 2003). It is also
assumed that N increases soil carbon accumulation as a result of
stimulating plant productivity. However, accumulation of soil
carbon is dependent on the delicate balance between increased
carbon inputs to soil from litter and rhizodeposition and increased
soil respiration rates. These relationships between soil carbon and
nitrogen deposition differ by habitat, and may show contrasting
impacts, with N increasing soil C in woodlands but decreasing it in
bogs for example (Bragazza et al., 2006; De Vries et al., 2009).

With the evidence so far, it is possible to quantify impact
pathways for N impacts on selected ecosystem services, but it
should be noted that they entail a range of assumptions. These
include the issue of time lags and the reversibility of N impacts
following reductions in deposition. Because N alters rates of

Table 1
Summary of costs (negative) and benefits (positive) to ecosystem services as a result of declines in nitrogen emissions (dmillion Equivalent Annual Value – EAV, 95% CI in
brackets), by ecosystem service.

Provisioning services Regulating services Cultural services Net EAV

Timber production Livestock Net GHG emissions Recreational fishing Appreciation of biodiversity

CO2 N2O

Loss Loss Loss Gain Gain Gain Gain
�d1.80 �d4.40 �d21.00 d5.30 d0.03 d87.70 d65.80
(�d0.7–�d3.5) (�d2.8–�d5.7) (�d7.2–�d39) (d2.7–d8.4) (No uncertainty estimate performed) (d13.1–d163) (d5.1–d123.2)
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environmental processes, and accumulates in ecosystems, its
effects are often long-lived. A reduction in deposition does not
remove N from the soil–plant system. The continued high rates of
tree growth (Wamelink et al., 2009a) reflect the ongoing impacts
of N stored within soils. Active intervention is required to remove
N from soils, and even then hysteresis effects e.g. due to associated
acidification of soils or waters mean that recovery is slow, may not
take the same trajectory, or indeed may be irreversible. This
concept of irreversible change is intimately linked with the idea
that an ecological threshold should not be exceeded, i.e. with the
idea of a critical load (Smart et al., 2011).

Additional assumptions are applied in the quantification of the
full impact pathway including the valuation steps. For example, it
is assumed that farmers notice changes in grassland productivity
associated with declining N deposition, and adjust their manage-
ment accordingly. This is a strong assumption, and farmer deci-
sions are not governed solely by productivity. In intensively
managed systems where fertiliser application rates are high
relative to deposition this may not be the case, yet when changes
in deposition are large, as for sulphur, effects on yield are notice-
able (Zhao et al., 2003) and farmers change their management
accordingly. In this case, it is likely that the assumed response of
farmers to changes in N deposition over-estimates the financial
impact on livestock production. The validity of valuing biodiversity
is much debated, and methods are still in their infancy. Here we
use value transfer from a WTP study on biodiversity valuation
(Christie et al., 2010; Christie and Rayment, 2012) to a different
valuation context, but where the outcome that respondents were
asked to value is comparable (a decline in species populations of
non-charismatic priority species). Non-charismatic species were
chosen rather than the higher valuations attributed to charismatic
species in Christie et al. (2010) since the non-charismatic species
closer represent the wide range of organisms known to be
negatively affected by N deposition. The WTP estimates in
Christie et al. (2010) are within the range of other studies valuing
biodiversity of multiple species (Nunes and van den Bergh, 2001).
Other studies have applied a restoration cost to value nitrogen
impacts on biodiversity (Ott et al., 2006) which include a different
set of assumptions: that it is possible to restore all impacted areas,
that the methods and costs are known, and that all impacted areas
are restored. Value transfer remains a reasonable option until
studies are specifically designed to value atmospheric N deposition
impacts on biodiversity. Although frequently criticised, stated
preference techniques remain the only method for capturing
non-use values, and many of the criticisms do not apply in well-
designed studies (Carson et al., 2001). Ignoring non-use values
risks only partially capturing the impact of improvements in air
pollution in an ecosystem services framework, which aims to
provide a more holistic approach to evaluating policy impacts.

Here, we show through selected examples that it is possible to
quantify impact pathways for N deposition using an improved
understanding of bio-physical relationships and the evidence-
based links to ecosystem service provision. We also illustrate their
potential application in a policy context, which suggests consider-
able net benefit has been obtained as a result of policy measures to
reduce N deposition, primarily of oxidised N from vehicle exhausts
and large combustion sources, despite costs associated with
declines in N-stimulated production in provisioning services.
While the approaches here differ from those used in the European
Nitrogen Assessment (Sutton et al., 2011b), the relative magnitude
of impacts on ecosystems and on climate are similar, with much
greater value associated with impacts on ecosystems. The net
benefit in this study hinges on capturing the non-use values
associated with appreciation of biodiversity in terrestrial habitats.
In general, provisioning services which produce saleable commod-
ities are relatively easy to value through market prices. By contrast,

cultural services are much more difficult to value, and impacts on
aquatic biodiversity, water quality and other recreation-related
cultural services, which are all likely to see an increase in the level
of service provision as a result of declines in N deposition, are not
currently valued. This means that, until the methodologies for
valuing cultural services and the valuation evidence base improve,
assessments will be weighted in favour of provisioning services
which, as shown in this study, may lead to underestimates of the
benefits of reducing atmospheric N deposition.

Further development of this work should consider a number of
issues. Constructing the impact pathways for ecosystem services
requires multi-disciplinary teams involving environmental and
social scientists, and environmental economists. In this study we
present broad-brush assessments at national scale in order to
show the broad applicability of the approach, but they can be
further improved by more detailed spatial quantification of envir-
onmental impact and of valuation, as has been shown for ozone
impacts on selected provisioning services (Mills et al., 2011;
Karlsson et al., 2005). Nevertheless, there remain knowledge gaps
in the underpinning environmental science, knowledge gaps in
valuation, and in the impact pathways linking them, particularly
for cultural services. These knowledge gaps need to be addressed
before many of the impacts of N on other ecosystem services can
be valued.
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