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Abstract 28 

 Shifts in the diet of top predators can be linked to changes in environmental conditions. 29 

In this study, we tested relationships between environmental variation and seasonal changes in 30 

diet of a top predator, the grey-headed albatross Thalassarche chrysostoma, breeding at Bird 31 

Island, South Georgia in an austral summer of 1999/2000. Oceanographic conditions in that year 32 

around South Georgia were abnormal (i.e. anomalously high sea surface temperature to a relative 33 

19 year long-term mean). The diet of grey-headed albatrosses showed high seasonal variation, 34 

shifting from cephalopods (42.9 % by mass) in late February to Antarctic krill Euphausia 35 

superba (58.3 %) in late April, and grey-headed albatrosses breeding performance was low 36 

(16.8%) . This study shows these albatrosses did not manage to find sufficient alternative prey 37 

and highlight the risk to top predators if there is an increase in the frequency or severity of food 38 

shortages in Antarctic waters. 39 

 40 

 41 

42 



 
3 

INTRODUCTION 43 

 Climate processes have a major impact on the structure and function of ecological 44 

systems (Stenseth et al. 2002). A wide range of studies have shown links between fluctuations in 45 

climate, and changes in terrestrial, freshwater and marine ecosystems worldwide (Wuethrich 46 

2000; Attrill and Power 2002; Stenseth et al. 2002; Quetin and Ross 2003). In the marine 47 

environment, top predators, such as seabirds, have to cope with resources that are patchily-48 

distributed and seasonally variable (Brooke 2004; Weimerskirch 2007; Fauchald 2009). For this 49 

reason, their ability to adapt to changing environmental constraints has an important influence on 50 

their breeding performance and population dynamics (Phillips et al. 1996; Lewis et al. 2006). 51 

Adaptation of seabirds and other marine organisms to environmental conditions may be 52 

immediate, or show a temporal lag of weeks, seasons, decades or even generations (Reid and 53 

Croxall 2001a; Walther et al. 2002; Atkinson et al. 2004). For example, rhinoceros auklets 54 

Cerorhinca monocerata breeding in Japan respond within days to changes in the food web 55 

caused by fluctuations in ocean currents, resulting in a switch in diets from euphausiids to fish 56 

(Ito et al. 2009). Other studies have recorded major annual changes in the diets of seabirds in 57 

relation to environmental perturbation (Xavier et al. 2003a; Xavier et al. 2003b; Ito et al. 2009; 58 

Wang et al. 2009). Indeed, growth rates and survival of offspring of many seabirds and other 59 

marine predators are frequently related to the quantity or quality of prey consumed (Croxall et al. 60 

1988; Phillips et al. 1996; Boyd et al. 2006). 61 

The Southern Ocean is a highly dynamic marine ecosystem, currently showing signs of 62 

unusually rapid environmental change (King 1994; Reid and Croxall 2001a; Atkinson et al. 63 

2004; Meredith and King 2005). Seabirds are amongst the major consumers in the region 64 

(Croxall and Prince 1980). Many species are also threatened by conflict with fisheries 65 

(competition for the same stocks of prey, or incidental mortality), or predation by introduced 66 

mammals (Croxall et al. 1998; Wood et al. 2000; Xavier et al. 2003b; Phillips et al. 2004b; 67 

Croxall et al. 2012). They are known to feed on a range of prey, including fish, crustaceans, and 68 

cephalopods in particular (Xavier et al. 2003a; Xavier et al. 2003b; Xavier and Croxall 2007). 69 

However, no detailed study has ever assessed seasonal variation in their diet.   70 

 In 2000, oceanographic conditions were unusually warm close to South Georgia in March 71 

and April, with sea surface temperature higher by up to 1° C compared with the average of the 72 
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last 19 years in the region (for example, at 40.5°W 54.5 °S, the sea surface temperature was 73 

3.92° C compared with 2.99 ° C for the average)  (Xavier et al. 2003b). In April 2000, which is 74 

the late chick-rearing period for grey-headed albatrosses, 89% of grey-headed albatrosses fitted 75 

with satellite-transmitters (n=9)  foraged far from the colony in Antarctic waters than recorded in 76 

chick-rearing in other years (Wood et al. 2000; Xavier et al. 2003b; Catry et al. 2004; Phillips et 77 

al. 2004a); grey-headed albatrosses usually forage north of South Georgia, in Antarctic Polar 78 

Frontal Zone/sub-Antarctic waters during their chick-rearing period, feeding mostly on the 79 

ommastrephid squid Martialia hyadesi, and on fish, with the consumption of M. hyadesi being 80 

positively correlated to high breeding success (Rodhouse et al. 1996; Prince et al. 1999; Xavier 81 

et al. 2003a; Xavier et al. 2003b)  and also southwest to the Scotia Sea, South Shetlands and 82 

Antarctic peninsula regions but the proportion using each areas show strong annual variation 83 

(Wood et al. 2000; Xavier et al. 2003b; Phillips et al. 2004a). In 2000, trip duration was 84 

unusually long, averaging 13.3 days (range 5-26 days), compared with a mean of 2-3 days 85 

typical of the chick-rearing period in other years (Huin et al. 2000; Phillips and Croxall 2003), 86 

which was reflected in a low breeding success (16, 8%; Xavier et al. 2003a),  the sixth worst of 87 

the 24 years between 1989 and 2012 for which data are available (British Antarctic Survey, 88 

unpublished data)  for grey-headed albatrosses breeding at Bird Island. In this study, using a 89 

unique dataset for the year 2000, we investigate how a top predator, the grey-headed albatross, 90 

copes with seasonal changes in oceanographic conditions by analysing changes in diet 91 

composition, and the implications for breeding performance. Therefore, aims of the study were 92 

to (1) describe seasonal changes in the diet of grey-headed albatrosses at fine temporal scale 93 

(samples collected every 2 weeks) between February and April 2000, and (2) relate changes in 94 

diet to sea surface temperature anomalies in alternative foraging areas to examine relationships 95 

with putative changes in distribution. 96 

  97 

MATERIAL AND METHODS 98 

 99 

Diet sampling 100 

Food samples (stomach contents) were collected from grey-headed albatross chicks at 101 

Bird Island, South Georgia every 2 weeks from early February to late April, in 2000. Food 102 
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sampling was by induced regurgitation after the chick had been fed by the parent, and has no 103 

effect on chick survival or mass at fledging (Phillips 2006). These samples were analyzed on the 104 

same day that they were obtained. The samples were weighed and the overall mass was recorded. 105 

All components were sorted into categories (cephalopods, crustaceans, fish and others; the latter 106 

comprising carrion, penguin feathers, barnacles and jellyfish), and fresh remains weighed 107 

following Cherel et al. (2000) and Xavier et al. (2003a).  108 

 Within each component, fresh remains were identified according to Clarke (1986), 109 

Boltovskoy (1999), Xavier et al. (2003b) and Xavier and Cherel (2009) and using reference 110 

collections held at the British Antarctic Survey (BAS), UK and at the Institute of Marine 111 

Research (IMAR), PT. Loose beaks were examined along with those extracted from the other 112 

cephalopod remains when determining the species composition and size classes of cephalopods 113 

consumed. The diet data was summarised as frequency of occurrence, proportions by number 114 

and proportions by mass, following Xavier et al. (2003a). 115 

 116 

Oceanographic data 117 

Sea surface temperature anomalies (SSTa) were obtained from 4 reference locations 118 

randomly selected across the study region in known foraging areas of grey-headed albatrosses 119 

during chick-rearing (Xavier et al. 2003b; Phillips et al. 2004a); north of the Antarctic Polar 120 

Front (45.5° S 35.5° W), South Georgia region (50.5° S 35.5° W), mid Scotia Sea (55.5° S 40.5° 121 

W) and at the Antarctic Peninsula region (60.5° S 50.5° W) (Figure 1). Annual variation was 122 

assessed by comparing SSTa between 1982 and 2000. Weekly sea surface temperature anomalies 123 

(SSTa, Reynolds et al., 2002) were obtained from 124 

http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_Smith125 

OIv2/.weekly/. Absolute dynamic height data, provided by Aviso (Archiving, Validation and 126 

Interpretation of Satellite Oceanographic data) (Rio and Hernandez 2004), were overlaid with the 127 

average position of the  major oceanic fronts in the study region (Subantarctic front, Antarctic 128 

Polar Front, Southern Antarctic Circumpolar Current front, Southern Boundary of the Antarctic 129 

Circumpolar Current) in order to identify any substantial changes in the positions of these fronts. 130 

Values for oceanographic parameters were obtained from the closest date to the diet sampling 131 

(range: 0-2 days). 132 
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 133 

Statistical analysis 134 

 All statistics were carried out using Minitab (Sowers Printing Company, Pennsylvania). 135 

We examined relationships between different diet parameters - the frequency of occurrence and 136 

estimated mass of cephalopods, crustaceans and fish, and number of each of the main prey 137 

species, the ommastrephid squid Martialia hyadesi, cranchiid squid Galiteuthis glacialis, 138 

onychoteuthid squid Kondakovia longimana, lamprey Geotria australis and Antarctic krill 139 

Euphausia superba (hereafter referred as krill) - and SSTa obtained from the four reference 140 

locations according to the sampling diet dates, by means of Spearman rank correlation 141 

coefficient, rs. Since multiple tests were performed, we applied the Bonferroni correction (1/ 142 

number of correlations carried out for each reference location) and interpreted correlation 143 

patterns following Hills (1969). General Linear Models (GLMs) were used to test whether the 144 

proportions of the various prey groups in the diet varied significantly across sampling periods. 145 

Values are reported as mean ± Standard Error (SE) unless stated otherwise. 146 

        147 

RESULTS 148 

Seasonal variation in diet composition 149 

A total of 120 food samples were collected from grey-headed albatross chicks between 150 

early February and late April 2000 (i.e., 20 samples every 2 weeks). Average weight of food 151 

samples changed significantly, from 271 ± 24.6 g in early February to 202 ± 20.7 g in late April 152 

(ANOVA, F5,114=3.1, P = 0.01), decreasing  throughout the sampling periods (Linear regression, 153 

F1,118= 4,86, P= 0.03, r2=4.0). 154 

Regarding diet composition, when all samples were combined, grey-headed albatrosses 155 

consumed mainly crustaceans (61 % by mass), followed by fish (19 %) and cephalopods (17%) 156 

(Figure 1; see also Xavier et al. 2003a). However, there were considerable changes between 157 

sampling periods (Figure 2), including significant differences in the frequency of occurrence of 158 

the components (crustaceans, fish and cephalopods; χ2 
10= 32.0, P < 0.01). Results from the 159 

GLMs also showed that the proportions by mass of crustaceans (F5,114= 4.53, P<0.01) and 160 

cephalopods (F5,114= 4.97, P<0.01), but not fish (F5,114= 1.0, P=0.40), differed significantly 161 

between sampling periods. Cephalopods increased from < 1 % by mass in early February to 42.9 162 
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% (and were the most important prey group) in late February, whereas crustaceans were the most 163 

consumed prey group in all other periods (Figure 2). There were also considerable changes in 164 

species composition by number: the sub-Antarctic squid Martialia hyadesi was the most 165 

important cephalopod species in early February, but then declined in importance thereafter, as 166 

the proportion of the Antarctic squid species Galiteuthis glacialis increased (K. longimana was 167 

always the most important cephalopod consumed by mass; Figure 3). Within the fish component, 168 

G. australis was the most important by number in all sampling periods, but by mass Magnisudis 169 

prionosa was the most consumed fish prey in early February, and then declined in importance, as 170 

the proportion of G. australis increased (Figure 4). Krill dominated the crustacean component, 171 

by number (> in all sampling periods) and by mass (> 99 %) in all sampling periods (Figure 2). 172 

 173 

Oceanographic conditions within the foraging area of breeding grey-headed albatrosses 174 

 Oceanographic conditions between the north of the Antarctic Polar Front (APF) and the 175 

Antarctic Peninsula were unusually warm during some months: SSTa north of the APF was 176 

warmer (i.e. positive SSTa), for most of the breeding cycle (late incubation to late chick-rearing) 177 

of grey-headed albatrosses (Dec. 1999, Jan. - Feb. 2000 and Apr. - May 2000; Figures 1 and 5), 178 

than the mean long-term average in the previous 19 years (1982-2000; Figure 5). Further south, 179 

around South Georgia, high SSTa values were observed slightly later, between January 2000 and 180 

April 2000 (Figure 5). In the mid Scotia Sea, abnormal SSTa was only apparent in April 2000 181 

(Figure 5), and at the Antarctic Peninsula, SSTa was higher from March 2000 to July 2000 182 

(Figure 5), which corresponds to the late chick-rearing period of grey-headed albatross. 183 

Examination of absolute dynamic height data showed that this was due to widespread warming 184 

of surface waters rather than shifts in the position of the fronts of the Antarctic Circumpolar 185 

Current (ACC).  Large-scale surface warming in this region has previously been recorded, most 186 

recently in 2009(Venables 2012).   187 

 188 

Relationships between prey availability and SSTa  189 

 There were 2 significant correlations between values for the main diet parameters (i.e. 190 

frequency of occurrence and mass of crustaceans, cephalopod and fish; number of items of the 191 

most important prey: krill, Martialia hyadesi, Galiteuthis glacialis, Kondakovia longimana and 192 
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lamprey) and SSTa at each reference location: the number of G. australis  was 193 

positivelycorrelated to SSTa in the South Georgia region (Spearman rank correlation; rs = 0.943; 194 

P=0.05) and  the mass of M. hyadesi was positively correlated with SSTa in the mid Scotia Sea 195 

(Spearman rank correlation; rs = - 0.943; P=0.05) (). No other significant relationships or other 196 

obvious patterns were evident. 197 

 198 

DISCUSSION 199 

Our study identified significant seasonal changes in the diet of grey-headed albatrosses at 200 

South Georgia when confronted by unusual environmental conditions. Based on prey 201 

biogeography, the reduction in Martialia hyadesi and lamprey, and increase in krill and 202 

Galiteuthis glacialis in the diet represent shifts from feeding in the Antarctic Polar Frontal Zone 203 

(APFZ) to waters at much higher latitudes. Despite this, breeding success in 2000 was poor 204 

(16.8%; Xavier et al. 2003a). In our study, the oceanographic conditions were unusually warm 205 

close to South Georgia between January and April 2000, with sea surface temperature warmer by 206 

up to 1 °C in comparison with annual data between 1982 and 2000 (see results). 207 

Grey-headed albatrosses tracked in April 2000 foraged predominantly in Antarctic 208 

waters, mainly on the shelf or shelf-slope waters of the South Orkneys and South Shetlands, and 209 

at the Antarctic Peninsula north of Adelaide Island feeding on krill (Xavier et al. 2003a). In 210 

contrast, earlier in the season, the diet consisted predominantly by number  of the subantarctic 211 

squid Martialia hyadesi, which is obtained mainly at the APFZ (Rodhouse et al. 1996). The 212 

switch to long trips carries an increased risk that the chick will die of starvation in the interim, 213 

and hence breeding success in 2000 was ultimately poor. Previous studies at South Georgia 214 

suggest that breeding failure in grey-headed albatrosses is associated with some years in which 215 

krill (Croxall et al. 1999) or M. hyadesi (Xavier et al. 2003a) are scarce. This was the case in 216 

1994, even though grey-headed albatrosses continued to forage north of South Georgia but fed 217 

more on fish and less on squid than usual (Rodhouse et al. 1996; Prince et al. 1999). Together, 218 

these results suggest that the key determinant of successful breeding in grey-headed albatrosses 219 

is the availability of M. hyadesi, hence the significant positive correlation between the proportion 220 

of this squid in the diet and breeding success (Xavier et al. 2003a) and SSTa (this study). 221 

Feeding only on  krill at the Antarctic Peninsula seems not to be a viable alternative, presumably 222 
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because it is not sufficiently available/abundant in some years and often requires much longer 223 

foraging trips to Antarctic Peninsula, which reduces overall provisioning rates.  224 

The onychoteuthid squid Kondakovia longimana was consistently the most important 225 

cephalopod consumed by grey-headed albatrosses by mass in all sampling periods (Figure 2). 226 

The biology and distribution of K. longimana is still poorly known, although it is known to occur 227 

in Antarctic (circumpolar) and APFZ waters (Cherel and Weimerskirch 1999; Xavier et al. 228 

1999), potentially mating/spawning on shelf areas (Cherel and Weimerskirch 1999) and be 229 

available in the upper strata of the water column (Lu and Williams 1994) potentially accessible 230 

live to grey-headed albatrosses throughout their foraging range breeding while breeding in South 231 

Georgia (Croxall and Prince 1994; Phillips et al. 2004a; Xavier and Croxall 2007). Despite this 232 

squid species occur regularly in the diets of grey-headed albatrosses (Xavier et al. 2003a; Xavier 233 

and Cherel 2009), its availability is likely not to in high numbers as K. longimana is the  main 234 

cephalopod prey by mass in poor breeding success years (Xavier et al. 2003a; this study).  235 

Galiteuthis glacialis was the most important cephalopod species in most sampling 236 

periods by number (Figure 3). G. glacialis is a typical Antarctic species, being caught all around 237 

the Southern Ocean (Xavier et al. 1999) and found in numerous Antarctic predators (Xavier and 238 

Cherel 2009). Like K. longimana, G. glacialis is more abundant in the diet of grey-headed 239 

albatrosses by number vin poor breeding success years (Xavier et al. 2003a; this study).  240 

The lamprey G. australis, were the main prey in the fish component in grey-headed 241 

albatrosses by number in all sampling periods (and by mass, except in early February, in which 242 

M. prionosa was the most important; Figure 3) and was related to SSTa in the South Georgia 243 

region. This agrees with previous studies, in which G. australis dominated the diet of grey-244 

headed albatrosses (Xavier et al. 2003a). Unlike K. longimana, G. australis had been the most 245 

important fish species in both good and bad breeding years of grey-headed albatrosses (Xavier et 246 

al. 2003a), suggesting that G. australis, known to occur in APFZ waters, is a prey regularly and 247 

consistently available to this predator (Xavier et al. 2003a).    248 

Our study showed correlations between SSTa and G. australis and M. hyadesi from the 249 

diets of grey-headed albatrosses during chick-rearing, suggesting that changes in SSTa may 250 

influence albatrosses foraging distribution. This high flexibility in feeding strategies is also 251 

apparent in changes typical of the transition between different breeding stages. For example, 252 
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grey-headed albatrosses breeding at Marion Island are known to forage north of this island 253 

during incubation and southwest during chick-rearing (Nel et al. 2001). Similarly, black-browed 254 

albatrosses breeding at Bird Island foraged predominantly around and to the northwest of Bird 255 

Island during incubation, stayed on the shelf around South Georgia and Shag Rocks during 256 

brood-guard, and tended to switch to more southerly Antarctic waters in chick-rearing (Phillips 257 

et al. 2004a). Female grey-headed albatrosses from South Georgia forage in the APFZ, and 258 

males in the APFZ and also far to the southwest and southeast in Antarctic waters during 259 

incubation, and both sexes mainly in the APFZ in brood-guard (Phillips et al. 2004). During 260 

chick-rearing, both sexes travel to the APFZ, and also southwest to the Scotia Sea, South 261 

Shetlands and Antarctic peninsula regions but the proportion using each areas show strong 262 

annual variation (Wood et al. 2000, Xavier et al. 2003a, Phillips et al. 2004, BAS unpublished 263 

data). In addition, individual birds that travel first to the APFZ will, if they experience poor 264 

feeding success, switch immediately to Antarctic waters without returning to the colony (Catry et 265 

al. 2004). It would therefore appear that during chick-rearing, grey-headed albatrosses favour 266 

waters around, or to the north of South Georgia in the APFZ when environmental conditions are 267 

favourable (i.e., SSTa conditions are normal), but, as our seasonal trends in diet indicate, will 268 

gradually change their foraging patterns if confronted by challenging environmental conditions, 269 

as occurred in 2000. 270 

We show that oceanographic conditions were atypically warm across the Scotia Sea 271 

(including South Georgia) from September 1999 to May 2000 (Figure 1; Figure 5). Warming 272 

anomalies were first observed north of the APF at the end of the austral winter in September 273 

1999. Then, warming conditions extended further south, first around the intermediate reference 274 

locations and eventually at the Antarctic Peninsula in late May. Typically, in  years in terms of 275 

both normal oceanographic conditions and good breeding performance (Xavier et al. 2003a), 276 

grey-headed albatrosses forage at the APF, usually returning with the sub-Antarctic squid M. 277 

hyadesi (Xavier et al. 2003a; Catry et al. 2004). Although M. hyadesi was still present in the diet 278 

in March and April 2000, numbers were low (see results). Indeed, another predator of M. 279 

hyadesi, the Patagonian toothfish Dissostichus eleginoides that, unlike grey-headed albatrosses 280 

forages deep in the water column, also barely fed on M. hyadesi in 2000, indicating that 281 

abundance of the latter was uncharacteristically low (Pilling et al. 2001; Xavier et al. 2002). This 282 
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ties in with the shift between late Feb. and March to other squid, Galiteuthis glacialis and 283 

Kondakovia longimana, which are typically Antarctic species (Xavier et al. 1999), and to krill. 284 

Lamprey, which is a typically subantarctic species, was regularly present in the diet of grey-285 

headed albatrosses throughout the whole breeding season (see results), probably consumed 286 

during the small proportion of trips to the APFZ (Xavier et al. 2003a). Lamprey distribution may 287 

also extend further south in warm years, but this, and indeed many other aspects of the life cycle 288 

of oceanic lamprey, including their host and how they become available to albatrosses at South 289 

Georgia, are unknown (Potter et al. 1979).  290 

Changes in the diet of grey-headed albatrosses in this study were highly correlated with 291 

environmental conditions. The proportions of crustaceans and fish by mass, as well as the 292 

number of several squid species, were significantly related to SSTa. Temperature anomalies in 293 

the South Pacific sector of the Southern Ocean are propagated via the ACC into the South 294 

Atlantic on time scales of more than 1 year, whereas atmospheric processes related to ENSO and 295 

the Southern Annular Mode have a direct influence on shorter time scales (<6 months) (Murphy 296 

et al. 2007a). These changes in SSTa across the South Atlantic sector are related to the 297 

recruitment and dispersal of krill (Murphy et al. 2007a). The density and distribution of krill has 298 

exhibited dramatic spatial and temporal fluctuations in the southwest Atlantic, where > 50 % of 299 

krill in the Southern Ocean are concentrated, and has declined since the 1970s (Atkinson et al. 300 

2004). This oceanographically driven variation in krill population dynamics and abundance has 301 

affected dependent predators, including some seabirds and marine mammal predators (Croxall et 302 

al. 1999; Reid and Croxall 2001b). In our study, we demonstrate that there was a shift in the diet 303 

of grey-headed albatrosses, which may be related to a functional link between the oceanographic 304 

conditions and abundance/availability of krill, fish and squid, that affected the breeding 305 

performance of albatrosses, reducing their chick survival. Such propagating anomalies, mediated 306 

through physical and trophic interactions, are likely to be an increasingly important component 307 

of variation in ocean ecosystems in the light of predicted anthropogenic climatic change. 308 

The close examination of the diet of grey-headed albatrosses provided a good insight into 309 

seasonal variation (Table 1). Although there was little change in the species composition of the 310 

crustacean components, and krill tended to dominate, the fish and cephalopod components of the 311 

diet changed significantly (Table 1). Furthermore, within these components, the importance of 312 
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particular species, changed considerably, with G. glacialis (by number) and G. australis (by 313 

mass) increasing over time over time (Figures 3 and 4). These changes would not have been 314 

identified if only looking at the overall diet (i.e., if all samples had been pooled). Overall, this 315 

study clearly demonstrates how top predators may respond in years when environmental 316 

conditions are unfavourable. Despite this flexibility, breeding success was poor, which from a 317 

conservation perspective is of particular concern for the study species, the grey-headed albatross, 318 

given that the South Georgia population is the largest in the world, and breeds in a hotspot of 319 

environmental variability (Murphy et al. 2007b; Murphy et al. 2007c). 320 
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Figure 1. Map of the study region (SA- South America; SG- South Georgia; AP – Antarctic 509 
Peninsula), locations of the 4 reference locations (Star symbols) and oceanographic conditions 510 
(monthly mean sea surface temperature anomaly (°C) relative to 1971-2000 mean) between 511 
September 1999 (A) to April 2000 (H). Contour lines are plotted and labelled every 0.5 °C, 512 
anomalies <0 °C have dashed lines, anomalies ≥ 0 °C have solid lines. 513 
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Figure 2. General composition of the diet of grey-headed albatrosses at Bird Island (south 523 

Georgia), between February and April 2000.  524 
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Figure 3. Seasonal changes of the most important cephalopod species, by number and by mass, 533 
in the diet of grey-headed albatrosses between February and April 2000.  534 
 535 
 536 
 537 
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Figure 4. Seasonal changes of the most important fish species, by number and by mass, in the 540 
diet of grey-headed albatrosses between February and April 2000.  541 
 542 
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 543 
Figure 5. Mean monthly sea surface temperatures anomalies (SSTa) between 1982- 2000 at 4 544 

randomly-selected reference locations (black symbols) in the study area: north of the Antarctic 545 

Polar Front (45.5° S 35.5° W), South Georgia region (50.5° S 35.5° W), mid Scotia Sea (55.5° S 546 

40.5° W) and Antarctic Peninsula (60.5° S 50.5° W). White symbols are values for the 547 

1999/2000 season. The values are given mean ± SD. 548 
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Table 1. Seasonal variation in the diet of grey-headed albatrosses from Bird Island, South Georgia in 2000. (n= number of 

samples; F (%) = Frequency of occurrence; N (%) = percentage of number of individuals (in parentheses there are the raw 

values); M (%) = percentage of the proportion by mass). Only prey that represented ≥ 5 % by mass in the diet were included. 

                             Overall 

 

Early February 

(n=20) 

Late February 

(n=20) 

Early March 

(n=20) 

Late March 

(n=20) 

Early April 

(n=20) 

Late April    

(n=20) 

 

Species F (%) F (%) F (%) F (%) F (%)             F (%) F (%) N (%) M (%) 

CEPHALOPODS               17±3 

Alluroteuthis antarcticus 5 30 20 50 40 40 31 (58) 3 5.2 

Galiteuthis glacialis 35 100 95 85 85 60 77 (1218) 57 19.4 

Kondakovia longimana 40 90 85 65 80 55 69 (256)12 44.5 

Martialia hyadesi 25 80 45 60 30 20 43 (251) 12 7.7 

Psychroteuthis glacialis 15 25 45 40 45 45 36 (129) 6 

 

12.9 

Gonatus antarcticus 15 70 50 45 20 25 38 (82) 4 

 

3.3 

Moroteuthis knipovitchi 5 35 25 20 15 15 19 (129) 2 4.0 

FISH              19±3 

Geotria australis 15 75 70 65 60 35 47 (403) 62 49.3 

Champsocephalus gunnari 0 5 0 0 10 0 3 (10) 2 3.7 

Magnisudis prionosa 20 15 5 15 5 5 11 (27) 4 36.7 

CRUSTACEANS             61±4 

Euphausia superba 100 70 100 85 95 80 89 >99 99.6 

OTHERS          
  

  

 

  3±1 


