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PREFACE 

The gas explosions at Loscoe and  Abbeystead  have  highlighted  both the dangers  associated 
with the migration of methane in the subsurface, and the need to quickly and accurately 
establish its source  in  order  to  instigate  appropriate  control. In order  to  improve  the  ability  to 
identify sources, the potential of stable isotope ratios (13C and  12C, 2H and lH) has  been 
investigated  as an additional  means of characterising  methane.  Thus a variety of UK sources 
of methane  were  analysed  to extend the database and  assess  the potential of stable isotope 
ratios for source  identification. 

This  work  was  funded by the  Department of the  Environment  (Wastes  Technical  Policy  Unit, 
Local Environment Policy Division) and by the  Natural Environment Research Council. 
Thanks  are extended to the following  organisations and individuals who provided 
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Mr Neville Woods and colleagues,  British  Coal,  East  Midlands  District; 
Messrs  Grant  Baldwin, Chris Dent,  Roy  Emberton, Phi1 Scott and Dr Paul  Fletcher,  Harwell 
Laboratory; 
Mr Hugh Moss,  Shanks  and  McEwan (Southern) Ltd.; 
Drs Chris  Cowper,  Chris Downes and  colleagues,  British  Gas  plc; 
Dr David  Creedy  and  colleagues,  British  Coal,  Technical  Department; 
Messrs  James  Murcott,  Tim  Clark  and Dave Coleman, Farm Gas Ltd.,  and Mr Ray  Links; 
Dr G  M Rippon,  Biomechanics  Ltd.; 
Mr Ian Cowie,  West  Yorkshire  Waste  Management; 
Mr Julian  Edwards,  University of  Nottingham; 
Mr Graham Warren,  Nottinghamshire  County  Council; 
Messrs  Rod  Brennan  and  Murray  Parker,  Derbyshire  County  Council; 
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Mr Philip  Taylor,  Campbell  Brickworks; 
Mr Geoff Bums, Stoke  Bardolph  Water  Reclamation  Works; 
Mr Mark  Mallen,  Tarmac  Econowaste; 
MS  Leslie  Heasman, M J Carter  Associates. 



EXECUTIVE  SUMMARY 

The gas explosions at Loscoe and  Abbeystead have highlighted the dangers associated with 
the migration of methane in  the subsurface, and  the  need to quickly and accurately establish 
the source of the  methane in order  to  instigate  appropriate measures for  control and 
remediation. Sources of  methane include leaking gas mains, sewers, natural gas reservoirs, 
gas associated with oil and coal, landfills and the products of anaerobic degradation of 
organically contaminated groundwater. Although  public opinion may demand rapid action 
following  the  discovery of methane  hasty  remedial  action  which  does  not consider the  source 
of the gas or  its mode  of  transmission,  may  at  best  be a waste  of resources, or, at  worst,  may 
exacerbate  the  spread of the gas. 

To confirm a methane  source  three  approaches  may be  used. The source can be  identified by 
comparing the composition of the gas with known source  compositions:  identifying a 
migration pathway between the putative source and  the point at which methane is observed 
and confirming the existence of a mechanism (such as diffusion or convection) capable of 
moving the gas along the  pathway (Williams and Hitchman, 1989). In most cases only  the 
first approach is taken: usually by comparing major and trace components with those of 
known gases,  or by determining the 14C content to distinguish 'geological'  from recent 
biogenic methane. Identifying the origin  may  be  very  much  more complicated if more  than 
one source of methane exists, and, where compositional evidence  alone is used, it  is 
important to have a well  defined  database for the  likely  composition of possible source  gases 
and to evaluate whether changes in composition may have occurred during gas migration. 
Stable isotope ratios of carbon and hydrogen (ie 13C/12C, 2H/ 1H) potentially provide an 
additional means by which methane can be characterised but such data are scant for sources 
in  the United Kingdom. 

In order to assess whether stable isotope ratios could be diagnostic of particular sources, 
methane containing gases from a variety of origins were collected and analysed. These 
included coal fields,  North Sea gas fields, deep biogenic reservoirs, landfills and anaerobic 
digesters. 

Results show that there is some overlap on the d 2 H ~ ~ 4  versus d13CCH4 graph, notably 

between coal and landfill gas, but  this  was resolved with d13CCo2 plotted against al3CCH4. 



These results indicate that the determination of stable isotope ratios of carbon  and  hydrogen 
in methane  and  carbon  dioxide is a  useful  additional  technique for source  characterisation  but 
that  isotopic  fractionation  may  occur  if  the  methane is oxidised by microbial  processes. 



CONTENTS 

PREFACE 

EXECUTIVE SUMMARY 

1 INTRODUCTION 

2 THEORY 
2.1 Stable  isotope  ratios 
2.2 Stable isotopic characterisation of methane 

3 GAS SAMPLING  AND  ANALYSIS 

4 RESULTS  AND  DISCUSSION 

5 CONCLUSIONS  AND  FUTURE  WORK 

1 

2 
3 

6 

8 

15 

6 REFERENCES 



LIST OF TABLES 

1 Stable isotope  ratio  ranges  of  natural  methane  gases 5 

2 Composition (%) and  stable  isotope  ratios (%o) of methane-containing  gases 8 
collected  in  this  study 

LIST OF FIGURES 

Sample preparation for stable  isotope  determinations 

Biogenic  and  thermogenic  methane:  frequency  distribution  of  stable 
isotope ratios 

Stable carbon  and  hydrogen  isotope ratios of methane from different 
sources:  data from this  study  and the literature  ranges  collected in Table 1 

Stable carbon against  stable  hydrogen isotope ratios  of  methane 
from different sources:  BGS  and  literature  data 

Stable carbon isotope ratios of carbon dioxide against  methane 
in gases fiom different  sources:  BGS  and  literature data. 

7 

9 

11 

12 

14 



1 INTRODUCTION 

The gas explosions at Loscoe and  Abbeystead  have  highlighted the dangers associated  with 
the  migration of methane  in  the  subsurface,  and the need to quickly and accurately  establish 
the source of the methane in order to instigate appropriate measures for control and 
remediation (Williams and Aitkenhead, 1989; HMSO, 1986).  In several instances where 
methane  has  been  detected  in  the  vicinity  of  landfills,  the  landfill  has  not  necessarily  been  the 
only  methane source; leaking gas mains,  sewers,  indigenous  gas  from underlying 
Carboniferous  strata,  and  the  products of anaerobic  degradation of organically  contaminated 
groundwater are all possible sources of methane. Although public opinion may demand 
rapid action following the discovery of methane, and certainly after an explosion, hasty 
remedial action  which does not consider the  source of the  gas  nor its mode of transmission, 
may at best be a waste of resources, or, at  worst,  may exacerbate the  spread of the gas. 

To confkn a methane  source  three  approaches  may  be  used. The source  can be identified by 
comparing the composition of the gas with known source compositions; establishing a 
migration  pathway  between  the  putative  source  and  the  point  at  which  methane is observed, 
and confirming the existence of a mechanism  (such  as  diffusion or convection) capable of 
moving the gas along the pathway  (Williams  and  Hitchman,  1989). In most cases only  the 
first approach is taken: usually by comparing major and trace components with those of 
known gases, or by determining the 14C content to distinguish 'geological' from recent 
biogenic methane; identification may  be complicated if more  than one source of methane 
exists. 

Where compositional evidence alone is used it is important  to  have a well  defined database, 
and  to consider possible changes in  composition  that may have occurred during migration. 
For instance the CH4:C02 ratio is often  used  in  source  identification,  especially for landfill 
gas (Emberton,  1984); however, CO2  may be 'filtered out' during migration (e.g. by 
sorption onto wet incinerator ash), or may undergo chromatographic separation in moving 
through a suitable fine grained  sediment or soil. Similarly, methane is known to be oxidised 
to carbon  dioxide by bacteria, which makes CH4:C02 ratios  unreliable  for  source 
determination. 

Where a natural gas or coal gas source is suspected, I4C measurements can be used  to 
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determine the  'age' of the methane. The isotope emits &radiation at a relatively low energy 
(156keV)  and  as  natural  activities  are  low,  highly  efficient  sophisticated  detection  equipment 
is needed. The methane is first combusted to carbon dioxide, then either (in most cases) 
synthesised to benzene for liquid  scintillation  counting, or (when samples are small)  purified 
for gas proportional counting (Bowen,  1988). While this is a very  useful  technique,  it can be 
expensive  and  may  take  considerable  time  to  carry out. 

As an alternative, the stable isotope ratios (i.e. 13C/12C and 2H/1H) of different methane 
gases vary according to  their  forrnation processes, both  primary  and secondary. Indeed, the 
fractionation associated  with  aerobic methane oxidation has  been  the subject of a number of 
laboratory experiments (Zyakun  and others, 1986, 1979; Barker and Fritz 1981b; Coleman 
and others, 1981) and may contribute to the enrichment in 13C  of contemporary methane 
compared to geological  biogenic  gases. The hydrocarbon  exploration  industry  has long used 
stable carbon isotope ratios as a tool  in recognising oil, gas  and oil/gas reservoirs, and  while 
a literature search revealed a substantial body of data on  these "geological" methanes, there 
were few on  the  stable  isotope  composition of methane from contemporary  sources;  data  was 
particularly sparse for sources  in  the  United  Kingdom. 

In order to assess whether stable isotope ratios could be diagnostic of particular sources, 
methane-containing gases from a variety of origins were collected and analysed. These 
included coal fields,  North Sea gas fields, landfills, anaerobic digesters, and lake and river 
muds. 

2 THEORY 

2 . 1  Stable  isotope  ratios 

Carbon  in the terrestrial environment comprises 98.89%  12C and 1 . l  1%  13C (contrasting 
with 10-lo % 14C), and hydrogen  99.985%  'H and 0.015% 2H. Both stable isotope ratios 
can therefore be determined with a relatively  simple  mass spectrometer in less time  and  at a 
lower cost than 14C measurements. 

Stable isotope ratios  are  defined by the  expression  (given for carbon): 
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a"C, = [ 5 - I ]  X 1000,  where S and PDB denote  sample  and  standard  respectively, 
RFDB 

and R = '"C / 12C 

The units for a are parts per thousand,  noted  as %O and read 'per mill. The standards used 
are  most  commonly  the PDB standard for carbon  (derived  from  the  rostrum  of  the calcarmus 
fossil Belemnitella  americana from  the Pee Dee Formation  of  South  Carolina),  and  'standard 
mean  ocean  water'  (SMOW) for hydrogen ( Craig,  1953). 

The a notation represents a differential measurement of the  13C abundance: samples 
containing more 1°C  than the PDB standard  will  have a > 0, and are described as 'enriched' 
or 'heavier'; those with  less  will  have a < 0 and  are 'depleted' or 'lighter'. 

2 . 2  Stable  isotopic  characteristics of methane 

Methane  in the environment is formed either by the  chemical  reduction of organic  matter by 
micro-organisms (biogenic methane), or abiologically over "geological" periods of time 
following  the  burial,  compression  and  heating of organic  material  (thermogenic  methane). It 
has also been  suggested  (Gold  and  Soter,  1980,1982 ) that  methane,  trapped  deep  within  the 
earth  when  the  planet condensed from a cloud of interstellar gases, is presently outgassing, 
and  has  given rise to  many  known  hydrocarbon  reserves.  While  this  "primordial  methane" 
may  well exist in  the earth's crust  there is at present no evidence to support the  view  that it 
could have given rise to  the  hydrocarbon  deposits  of  the UK (Bath  and  others,  1984). 

It is well known that  the character of the  gases  produced by the different natural pathways 
(i.e. biogenic and thermogenic) differ in terms of their a'3cCH4, d 2 H c ~ 4  and a1"Cc02 
values. In addition to  the  primary  (i.e. formation) effects, there are potentially secondary 
(i.e.  subsequent  to  formation)  effects  which  may  occasionally  become  significant.  These  are 
associated  with  movement  towards  isotopic  equilibrium,  bacterial  degradation,  and  migration 
(summarised by Fuex, 1977). Of these, isotopic equilibrium with other hydrocarbons  has a 
negligible effect, and  13CH4  equilibration  with  CO2  would require a temperature  of at least 
200°C and a fairly high proportion of CO2 to be significant. Bacterial oxidation of CH4 
affects the  stable  isotope  ratios,  but  will  only be seen  in  the  near-surface, or where  the 
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atmosphere is able to penetrate to depth (for example in mine workings). Fractionation 
during  migration is also  possible, but is generally considered of little  importance in 
hydrocarbon  exploration. 

Several authors have summarised dl3CCH4 values for natural gases (e.g. Barker and Fritz, 
1981a; Fritz, 1980; Deines, 1980) as a basis for differentiation. As a result, a useful 
"rule-of-thumb"  has  emerged: 

dl3CCH4 > -6W000 = thermogenic source 
dl3CCH4 < -6W00 = biogenic  source. 

Schoell (1983,1980) compared dl3CCH4 with a number  of other characteristics (percentage 
c2+3 d 2 H c ~ 4  and dl3cC2H6) to produce diagrams separating natural gases  into fields 
according to provenance. As well  as differentiating biogenic from thermogenic, subgenetic 
groupings are also clear. However, because Schoell was primarily interested in commercial 
gas deposits, data  from  landfill  and  other  biogenic  gas  types  were  not considered. 

Laboratory work (Zyakun and others, 1986,1979; Barker and Fritz 1981b; Coleman and 
others, 1981) and field observations (James and Burns,  1984; Barker and Fritz, 1981b) have 
shown  that  aerobic  methane  oxidation  can  play a major role in  stable isotope fractionation,  in 
one study causing residual methane to be enriched in 13C by up to 50%0 (Coleman and 
others, 1981). This could easily lead to biogenic methane being construed as thermogenic, 
though consideration of the d2H value - itself potentially enriched in d2H by up to 2000/00 
(Coleman and others, 1981) - should show otherwise (Barker and Fritz, 1981b). The 
carbon dioxide formed by microbial oxidation - in laboratory work it has been depleted in 
13C relative to residual methane by  up to  WOO (Barker and Fritz, 1981b) - mixed with  that 
produced during formation of  the  methane,  is a possible further complication. 

The ranges of d 1 3 C ~ ~ 4 ,   d 2 H ~ ~ 4  and d13Cco2 values in the literature are collected in Table 
l ;  those  with  particularly  narrow  ranges are probably due more to  the  paucity  of data than  the 
presence  of  well  defined  limits. The d 1 3 C ~ ~ 4  range of contemporary  methane producers lies 
within that of thermogenic gases - it remained to be seen whether the d 2 ~ H 4  and dl3Cc02 
values could characterise these  sources. 
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Table 1 Stable  isotope  ratio  ranges of natural  methane  gases 

a13c(7H4,%0 
gas type max min 

themogenic 

dry gas2 -21  -76 
wet  gas2 -24  -63 
Coal -12 -71 
biogenic 
glacial  drift -70 -91 
lake  mud -45 -80 
landfill -38 -58 
marsh3 -49 -76 
sewage sludge -47 -49 
deep  marine  sediment -40 - 109 
sea  shore  sediment -53 -90 
marine  reserves -55 -76 

references' 

-136 -177 
-153 -256 
-133 -155 

-226 -277 
-256 -346 

-207 -374 
-200 -348 
-168 -261 
-219 -284 
-179 -219 

-7 -11 

-10  -30 

+7 -21 
-2 -25 
+23 -11 
+2 -21 
+4 -6 
+ l1  -32 
-1 -26 

f r u  
b f j k m q w  
a f i j  
c h k n r s t v  
j v  
e v  
C V  

r 

1 in the  reference  section,  marked by italic letters 
2 younger,  associated  with  oil  ("wet"); or mature, no oil ("dry") 
3 "marsh" also includes  locations  described as "wetlands"  and  "peatlands" 

3 GAS  SAMPLING AND ANALYSIS 

Gas samples were collected from  existing installations in landfill sites (including the 
Department of Energy  test cells at  Shanks & McEwan's Brogborough site), anaerobic  waste 
digesters, marshy  ground,  peat  bogs, deep excavations, coal strata  and  North Sea gas fields, 
and their composition and stable isotope ratios determined and compared. Gases were 
collected by hand  pumping  into stainless steel gas bombs, teflon lined gas bags or 
pressurised  cylinders  (Gresham  tubes),  and  stored  at  room  temperature  until  analysed. 
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The samples were analysed using the apparatus shown  in Figure 1. Gas from the sample 
container was carried at a steady rate through  the  system  in a nitrogen  stream. It passed fist 
through an ammoniacal barium chloride solution, where CO2 precipitated out as barium 

carbonate. This was later filtered and dried  for determination of the CO2 carbon stable 

isotope ratio. The remaining  sample  passed  through a drying trap  where  water  was  removed, 
then  to  an  850°C  furnace  containing  copper (11) oxide  (cupric  oxide);  this  oxidised  the  CH4 to 

C02 and H20, which  were collected in a liquid nitrogen trap. These components were later 

separated by dry ice-methanol for stable  isotope ratio determination. 

Initially some analytical problems were encountered for dl3CCH4 in samples with a high 

CO2 content,  and  for d2H for samples with a low concentration of CH4. Most of the 

dl3CCH4 samples were successfully reanalysed, but for a few only the original data are 

available. All data are reported,  including  those of doubtful  accuracy. 

4 RESULTS AND DISCUSSION 

The major gas compositions and stable isotope data of the gases collected are given  in Table 
2. Those samples from which CO2 was not completely removed before dl3CCH4 analysis 

are marked  with  an  asterisk;  the @HpH4 and d13CCo2 results from  them  remain  valid. 

The frequency  distribution of stable  isotope  ratios of biogenic  and  thermogenic  methane (both 

literature  and  this  study) are shown in Figure 2. This illustrates vividly  the  distinct  groupings 
resulting from the  two formation processes and serves to emphasise the diagnostic value of 
stable isotope ratios. 

Some of the stable isotope ratio ranges found in  the literature (and collected in Table 1) are 
plotted in Figure 3, along  with data from  this  study.  Although  in  most cases the  new data fall 
within the literature-defined boundaries, some points lie outside and serve to extend the 
database. This is particularly useful where reported data are scarce as, for example, in  the 
case of landfills. 
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Figure 2 Biogenic  and  thermogenic  methane:  frequency  distribution  of 
stable  isotope  ratios 
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Given the lack of stable isotope data on landfill gas in the literature, the ~ ~ C C H ~  values 

produced by this investigation (-64 to -54%o) are remarkably close to  the range quoted (-58 to 
-38%0). The a 2 H c ~ 4  data are also fairly tightly clustered; the exception is the sample from 

Brogborough cell 6 (domestic/commercial waste), at -108%0. It  is possible that this is a 
result of microbial oxidation: either due to the rate of filling, or because the nature of  the 
commercial component of the waste - cardboard, wood etc. - might make compaction less 
efficient and allow air ingress to a greater  extent  than  in  other  wastes. The composition of  the 
landfilled waste seems otherwise not to affect  the  stable  isotope  ratios of the resultant gas. 

It is of interest that  the two abattoir waste  anaerobic digester gas samples are at opposite ends 

of the a13C~-2 range found for digesters. These specimens came from the same digester, 

albeit  separated by several months. The heterogeneous nature of the source material 
(different herds, different diets etc.)  may be one explanation; another might be  that different 
stable isotope ratios are produced as degradation progresses, with factors such as time spent 
in the reactor, mix of older and  newer  material,  temperature etc. governing  the  output. 

Where al3CCH4 and their corresponding a2Hc-14 values are given in the literature they are 

plotted in Figure 4, along with their counterparts from this study. The rough -6Woo division 

between 8 3 C c ~ ~  values of biogenic and thermogenic gases can be clearly seen, although 

contemporary biogenic methane tends to blur the interface, being somewhat heavier than 
-6Woo. The various gas sources are differentiated quite well, although  some overlap exists, 
most notably between landfill gas and the coal gas collected in this study. There is also a 
degree of association between  landfill  gas and marsh,  wetland,  and  lake  mud  gas. The terms 
"marsh", wetlands" and, possibly, "lake mud" appear to an extent interchangeable, their 
usage depending on individual authors' preferences. Other biogenic sources - such as deep 
marine reserves, deep and  shallow marine sediments - are also well  defined in Figure 4. 

The BGS North Sea samples are identified as dry gas in Figure 3, and in Figure 4 are very 
close to the literature dry gases, also of North Sea origin (Schoell, 1980), and quite distinct 
from from those associated with oil (wet  gas). 

Despite the differences in  both  type  of coal gas analysed  and  the  mode  of  sampling (desorkd 
from coal samples, collected from boreholes, or from  seam drainage) there is a measure of 
congruity to the BGS  coal data points  shown  in  Figures 3 and 4 (the  exception is the point on 
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the right of the graph, one of the drainage gas samples  from the Deep  Soft  Seam; the 
grouping of the remaining coal data points would suggest this to be analytical error). While 

all BGS samples are within the reported d13CcH4 range (-12 to -71%0), they are lighter than 

those shown  in  Figure 4 (from Schoell, 1980), and most of the d 2 H c ~ 4  values  are  well 

outside the  anticipated  range. The large span (-60 to -265%0) suggests further investigation is 
needed. Rather than matching Schoell's coal gas points, the BGS coal gases correspond 
better with wet natural gas (associated with oil). Wet gas is younger than non-associated 
(dry) gas, and it is possible that the 3 1 3 C c ~ ~  value may reflect the maturity of the coal. 

Alternatively, microbial processes may have caused isotope fractionation, leading to 
changes in the characteristic coal gas signature; if this were so however, the residual 
methane  would be expected to be enriched in I3C and 2H rather than depleted. 

Where the samples contained sufficient CQ2, the d 1 3 C ~ ~ 2  analyses are included in Table 2; 

these are plotted against dl3CCH4  in Figure 5 ,  along with literature data. The contrast 

between gases according to source is clear, particularly for coal and landfill gases, and even 
landfill and marsh/wetland/lake mud gases can be differentiated. In cases where plotting 

d 2 H c ~ 4  against dl3CCH4 is inconclusive, the  d13Cc02 value provides an additional basis for 

differentiation. 

5 CONCLUSIONS  AND  FUTURE WORK 

The carbon stable isotope ratios (i.e. 13C/W) of different methane gases vary according to 
their formation  process.  This  fact has long been used in hydrocarbon exploration to 
recognise exploitable reservoirs. The hydrogen stable isotope ratio (i.e. 2H/1H ) of methane 
and  the carbon stable  isotope  ratio of any  associated  carbon dioxide also vary, and  application 
of these three factors  can  lead to identification  of  the  source of methane-containing  gases. 

The literature provides ranges for values of d 1 3 C ~ ~ 4 ,  1 3 2 % ~ ~  and d13Cco2, but, with a few 

exceptions, a limited  amount  of  actual  data;  this is particularly so for those  sources  potentially 
hazardous to man-made structures. This study has extended the database considerably with 
the more probable hazardous sources, notably  landfills, emphasised. 

13 
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Stable carbon and  hydrogen isotope ratios in methane should be sufficient in most cases to 
identify  the  source,  particularly if samples  from  rival  candidates  can  be compared. Problems 

could arise in overlap areas,  most  notably  between coal and  landfill gases, but where CO, is 

present  the a13Q02 should distinguish  the  two. The use of stable isotope ratios is therefore 

not proposed as a sole  method in all cases, but  with other evidence on gas  composition will 
increase  the  weight of evidence for a particular  source. 

Work is  also underway to  assess  changes in methane  composition  during  migration, 
particularly  as a result of aerobic  and anaerobic methane  oxidation (Williams and Hitchman, 
1989). 
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