
 1

14 December 2007; Journal of Climate 
 
 
 
 

Evolution of the Deep and Bottom Waters of the Scotia Sea,  
Southern Ocean, during 1995-2005 

 
 
 
 

Michael P. Meredith1*, Alberto C. Naveira Garabato2,  
Arnold L. Gordon3, Gregory C. Johnson4 

 

 

 

 

 

1British Antarctic Survey, Cambridge, U.K. 

2National Oceanography Centre, Southampton, U.K. 

3Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, U.S.A. 

4NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington, U.S.A. 

 
 
 
 
 
*corresponding author: mmm@bas.ac.uk 

mailto:mmm@bas.ac.uk


 2

 

Abstract 

 

The Southern Ocean hosts the formation of the densest layers of the oceanic overturning circulation, 

and provides a climatically sensitive element of deep ocean ventilation.  An oceanographic section 

across the eastern Scotia Sea occupied in 1995, 1999 and 2005 reveals significant variability in the 

deep and bottom waters of Southern Ocean origin.  Warming (~0.1ºC) of the warm mid-layer 

waters in the Scotia Sea between 1995 and 1999 reversed through to 2005, reflecting changes seen 

earlier upstream in the Weddell Sea.  The volume of deep waters with potential temperature less 

than 0ºC decreased during 1995-2005, though such a reduction was only clear between 1995 and 

1999 at the southern end of the section.  The abyssal waters of the eastern Scotia Sea apparently 

changed circulation between 1995 and 1999, with the dominant point of their entry to the basin 

shifting from the south to the northeast; by 2005, the former route had regained dominance.  These 

changes are best explained by interannual variations in the deep waters exiting the Weddell Sea, 

superimposed on a longer-term (decadal) warming trend.  The interannual variations are related to 

changes in the strength of the Weddell Gyre, reflecting large-scale atmospheric variability that may 

include the El Niño / Southern Oscillation phenomenon.  The Scotia Sea is the most direct pathway 

for dense waters of the overturning circulation emanating from the Weddell Sea to fill much of the 

world ocean abyss.  The regional changes reported here have the potential to affect the climatically 

significant ventilation of the global ocean abyss. 
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1. Introduction 

 

Immediately east of Drake Passage, the Scotia Sea is a basin with rough bottom topography, and is 

separated from the Weddell Sea to the south by the South Scotia Ridge (Figure 1).  The horizontal 

zonation of water masses in the Scotia Sea is dominated by the Antarctic Circumpolar Current 

(ACC) (Orsi et al., 1995).  This current has a banded structure, with the main fronts being (north-to-

south) the SubAntarctic Front, Polar Front, and Southern ACC Front.  The southern limit of the 

ACC is marked by the Southern Boundary, south of which are found the waters of the Weddell-

Scotia Confluence. These are characterised by low vertical gradients at mid-depths due to the 

injection of dense waters that spill off the shelf close to the tip of the Antarctic Peninsula 

(Whitworth et al., 1994). 

 

The Scotia Sea receives waters from both Drake Passage, via the ACC, and the Weddell Sea, via 

the northern limb of the Weddell Gyre.  Water masses of Weddell Sea origin include Warm Deep 

Water (WDW; Table 1), characterised by a potential temperature (Ө) maximum near 500 m and a 

salinity (S) maximum near 800 m.  WDW is derived from the Circumpolar Deep Water (CDW) of 

the ACC that is entrained into the eastern limb of the Weddell Gyre (Orsi et al., 1993), and 

thereafter advected cyclonically within the Gyre. 

 

Waters of Weddell Sea origin also include Weddell Sea Deep Water (WSDW; Table 1), the densest 

water mass found in the Scotia Sea.  WSDW is an essential component of the Antarctic Bottom 

Water (AABW) that forms the abyssal layer of much of the world’s oceans.  WSDW is formed by 

the mixing of dense shelf waters with variants of WDW on the shelves and slopes of the western 

and southwestern Weddell Sea (Foster and Carmack, 1976; Gill, 1973; Gordon, 1998).  Different 
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types of WSDW are found in the Weddell Sea reflecting distinct formation processes and regions.  

The outer rim of the gyre features relatively fresh and oxygen-rich WSDW compared with that 

found closer to the centre of the gyre.  The enhanced ventilation is due to injection of relatively 

fresh shelf water found near the northern end of the Antarctic Peninsula (Gordon et al., 2001).  

WSDW is underlain in the Weddell Sea by the denser Weddell Sea Bottom Water (WSBW; Table 

1), which forms via similar processes to WSDW but contains a higher proportion of dense shelf 

waters.  WSBW is too dense to escape the Weddell Sea directly, and must first mix upwards into 

the WSDW density class.  Within the Weddell Sea, WSDW can also incorporate recently ventilated 

deep waters imported from the Indian Ocean sector to the east (Meredith et al., 2000). 

 

The Scotia Sea (Figure 1) is the most direct route for WSDW to flow northward and contribute to 

the global overturning circulation (Locarnini et al., 1993).  WSDW can enter the Scotia Sea via 

deep gaps in the South Scotia Ridge, of which the ~3200-m deep Orkney Passage is the deepest 

(Gordon et al., 2001; Naveira Garabato et al., 2002b), or via gaps in the South Sandwich Island arc 

(Meredith et al., 2001; Naveira Garabato et al., 2002a).  The northward flow of WSDW on the 

western edge of the Orkney Passage derives from the more ventilated form of WSDW (Gordon et 

al., 2001).  Upon entering the Scotia Sea, WSDW can spread westward toward Drake Passage, 

however there is little or no net flow of this water mass through the narrowest part of the Passage 

into the Pacific Ocean (Gordon, 1966; Sievers and Nowlin, 1984; Nowlin and Zenk, 1988).  

WSDW exits the Scotia Sea primarily in the vicinity of the ~3200-m deep Georgia Passage, 

southeast of South Georgia (Figure 1). 

 

Upon leaving the Scotia Sea, WSDW spreads northwards into the Georgia Basin, whence it can 

continue northward into the Argentine Basin or recirculate southeastward back toward the Weddell 
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Sea.  Conventionally, WSDW is divided into Upper and Lower components in this region (Table 1) 

(Arhan et al., 1999; Meredith et al., 2001).  The division between Upper and Lower WSDW 

(established by Arhan et al. (1999) and used here) is such that Upper WSDW is able to flow 

through the Scotia Sea to reach the Georgia Basin, whereas Lower WSDW is topographically 

constrained to enter the Georgia Basin via the eastern side of the South Sandwich Islands (Figure 

1). The direction of abyssal Lower WSDW flow at Georgia Passage was inferred to have reversed 

between 1995 and 1999, with the flow being northeastward out of the Scotia Sea prior to 1995, but 

then changing to be southwestward into the Scotia Sea (Meredith et al., 2001). 

 

Various changes have been reported in the properties of water masses originating from the Weddell 

Sea.  Analysis of a long compilation of hydrographic data revealed that the coldest WDW was 

associated with the Weddell Polynya years of the 1970s (Robertson et al., 2002).  Subsequently, this 

water mass warmed at a rate of around 0.012 (± 0.007) ºC yr-1 up to the 1990s.  This warming was 

not compensated by a salinity increase, with the WDW becoming less dense as a result.  The Scotia 

Sea exhibited a warming of WDW of around 0.1-0.2 ºC between 1995 and 1999, as changes 

originating in the Weddell Sea arrived (Meredith et al., 2001), however more recent data from close 

to the Greenwich Meridian in the Weddell Sea revealed a cooling of around 0.05 ºC between 1998 

and 2003 after the end of the warming signal (Fahrbach et al., 2004).  Tentative explanations for 

these changes include a change in CDW properties in the ACC (e.g. Gille, 2002) combined with 

variations in the rate of inflow of this water to the Weddell Gyre.   

 

Weddell Sea temperature profiles suggest warmer WSDW between 1500 and 3500 m  in the 1990s 

compared with the 1970s (Robertson et al., 2002).  However, high variability in the data prevented 

identification of a well-defined trend.  Relatively little change in WSDW properties in the Weddell 
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Sea was evident during 1990 – 2003, with variations being close to the detection level (Fahrbach et 

al., 2004).  The areas from which data were collected for that study are, however, likely to 

emphasise basin-wide bulk changes in properties rather than changes in the recently-ventilated 

forms of WSDW in the boundary currents at the periphery of the sea. The comparative stability of 

WSDW properties contrasts with the continuous warming (by ~0.025 ºC) experienced by WSBW 

between 1989 and 2003 (Fahrbach et al., 2004). 

 

Temperature changes in the bottom waters spreading northward in the Atlantic Ocean from the 

Weddell Sea are apparent all the way to the equator.  Directly downstream from the Scotia Sea, in 

the Argentine Basin, a comparison of hydrographic data collected in 1989 to data from 1980–87 

showed that the coldest abyssal layer warmed significantly in that interval (Coles et al., 1996).  Also 

in the Argentine Basin, comparison of 2005 and 1989 hydrographic section data revealed a further 

~0.05 °C warming of the abyssal layer (Johnson and Doney, 2006).  In the Vema Channel, the 

deepest conduit between the Argentine Basin and the Brazil Basin to the north, the coldest bottom 

waters have warmed by as much as 2.8 × 10-3 °C yr-1 from 1991 through to 2006, after being 

relatively stable from 1972 to 1991 (Zenk and Morozov, 2007).  In the Brazil Basin, the abyssal 

layers warmed by ~0.04 °C between 1989 and 2005 (Johnson and Doney, 2006).  Finally, at the 

equator, bottom Ө values increased by nearly 0.1 °C between 1993 and 1999 (Andrié et al., 2003). 

These changes relate to abyssal temperatures, and whilst it is important to note that there are 

differences in bottom temperatures and lateral bottom temperature gradients between each of these 

locations, the order of magnitude and timing of the changes are suggestive of a decadal warming 

trend propagating northward in the South Atlantic. 
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In this paper, we use repeat hydrographic data to examine the evolution of the water mass properties 

and circulation of Weddell Sea-derived waters in the eastern Scotia Sea over a recent decade (1995 

– 2005), and investigate the causes of the observed changes.  Given these waters’ fundamental 

contribution to the deepest layers of the global overturning circulation, it is important to monitor 

and ultimately identify the causes of their variability.  

 

2. Methods 

 

Hydrographic data were collected from three cruises in the eastern Scotia Sea that occupied 

virtually identical tracks (Figure 2).  Each of these ran northward from the South Scotia Ridge along 

~31ºW, then diverted at ~58ºS toward the island of South Georgia (Figure 1). The first section was 

conducted in April 1995 from the British Antarctic Survey vessel RRS James Clark Ross, and was a 

component of the World Ocean Circulation Experiment (WOCE) A23 section (Heywood and King, 

2002).  The second section was conducted from the same vessel in April 1999 (Naveira Garabato et 

al., 2002a), and the third was conducted in January 2005 from the NOAA ship Ronald H. Brown, as 

part of the U.S. CLIVAR/CO2 Repeat Hydrography Program (Johnson and Doney, 2006). 

 

Meredith et al. (2001) described the methods and data for the first two of these sections in detail.  

To summarise, the 1995 data were collected with a Neil Brown MKIIIb conductivity-temperature-

depth (CTD) profiler, with S data being calibrated relative to IAPSO P-series standard seawater 

using bottle salts collected with a 24-bottle rosette.  The accuracy of this data is 0.001ºC for Ө and 

0.002 for S.  The 1999 data were collected and calibrated in the same manner but using a Neil 

Brown MKIIIc CTD, with comparable accuracies achieved.  The 2005 data were collected using a 

SeaBird Electronics (SBE) 9plus CTD fitted with SBE3 temperature sensors and SBE4 conductivity 
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sensors, and with discrete samples obtained using a 36-position rosette.  The accuracy of the Ө and 

S data from 2005 are 0.001ºC and 0.002 or better, respectively (Johnson and Doney, 2006). 

 

3. Zonation and water masses 

 

Vertical sections of Ө, S and neutral density (γn) are presented in Figures 3-5 respectively for each 

of the years. The major feature of horizontal zonation along this line is the Southern Boundary, 

found at ~58.5ºS on the 1995 section, ~59ºS on the 1999 section, and between 58.5 and 59ºS on the 

2005 section.  Narrow eddy-like features containing water from south of the Southern Boundary are 

seen in the 1995 and 1999 sections at stations 45 and 111 (around 57ºS and 57.5ºS respectively) 

(Meredith et al., 2001).  The Southern ACC Front is present at the northern end of the sections, 

close to stations 50, 118 and 101 in 1995, 1999 and 2005, respectively. 

 

North of the Southern Boundary, the sections are occupied by the ACC’s poleward flank, in which 

vertical Ө and S maxima indicate the cores of the upper and lower components of the CDW 

(Figures 3 and 4, respectively). South of the Southern Boundary lies the Weddell-Scotia 

Confluence; this features WDW centred around 500 m, identifiable as the vertical Ө maximum 

(Figure 3).  WDW of γn < 28.20 kg m-3 is constrained to lie south of the Southern Boundary, except 

for its presence in the narrow eddy-like features noted above.  A denser form of WDW is observed 

farther north at greater depths (> 500m), and has its origins in the modification of Southeast Pacific 

Deep Water by mixing with Weddell deep waters (Naveira Garabato et al., 2002a). Beneath the 

WDW and CDW on the section lies WSDW, here defined as waters of γn > 28.26 kg m-3 (Figure 5).  

This layer resides below ~1800 m at the southern end of the section, thins northwards, and 

disappears at around 55.5-56ºS.   
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4. Variability in water mass properties and circulation 

4.1 Warm Deep Water variability 

 

The WDW layer south of the Southern Boundary exhibits substantial variability in Ө and S 

measured during the three cruises (Figure 6).  In 1995, the peak WDW Ө value encountered was 

close to 0.41ºC, with the majority of stations showing WDW core Ө values of 0.35 – 0.40ºC.  In the 

1999 occupation of the section, the WDW core Ө values were all much higher than this, from 0.50 

– 0.65ºC.  In the 2005 section, the WDW core Ө had decreased again, with values below 0.45ºC.  

These changes are reflected in WDW maximum S values also, which increased by ~0.004 between 

1995 and 1999, before decreasing by a similar amount through to 2005 (Figure 6).  Note that there 

are some changes in the lateral position of the Southern Boundary in the sections (e.g. Figure 3), 

however our comparison considers only the waters south of this feature for each of the years, thus 

the changes we see cannot be due to such movements.   

 

4.2 Weddell Sea Deep Water 

 

Vertical sections of γn (Figure 5) indicate that the volume of WSDW (γn > 28.26 kg m-3) decreased 

from 1995 to 1999, and decreased again from 1999 to 2005.  In particular, surfaces of γn > 28.26 kg 

m-3 appear to sink progressively, and their intersections with the seabed move southward, between 

1995 and 2005.  As an example, γn = 28.30 kg m-3 intersected the seabed close to station 47 in 1995, 

i.e. around 56.4ºS.  In 1999, this surface intersected the seabed around 56.8ºS (station 113), and in 

2005 its intersection was close to 57.4ºS (station 61). 
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Although different station positioning among the years (most notably 2005; Figure 2) makes 

station-by-station comparisons problematic, further indications of this shift can be obtained by 

consideration of vertical Ө and S profiles from north of the Southern Boundary (Figure 7).  The 

deeper profile depths in 2005 are a reflection of the different station positioning in this year.  This 

complication notwithstanding, the 2005 stations are all warmer and saltier than the 1995 stations by 

around 0.1ºC and 0.005, respectively.  The 1999 stations are intermediate, and overlap with both 

1995 and 2005.  The changes are largely density compensating, such that the Ө – S curves from 

these stations are not significantly different within the accuracy level of the S measurements, except 

that the densest water present becomes progressively warmer and saltier (not shown). 

 

South of the Southern Boundary there is a somewhat different pattern of change in Ө within the 

WSDW (Figure 8).  The warming of around 0.05ºC is present between 1995 and 1999, as discussed 

previously (Meredith et al., 2001).  However, subsequent to this there are no further significant 

changes between 1999 and 2005, with Ө values remaining constant on pressure surfaces.  The 

changes in S suggest a possible shift towards saltier WSDW during the sequence of observations 

(Figure 8, lower panel), but it is small compared with the accuracy of the measurements. 

 

4.3 Lower Weddell Sea Deep Water variability 

 

As with WSDW as a whole, there is a reduction in Lower WSDW volume during the sequence of 

measurements, though it is most notable between 1999 and 2005 for this layer.  In 1995, the 

northern terminus of this water mass (defined as γn > 28.31 kg m-3; Figure 5) was near 57ºS, before 

moving slightly southward to ~57.25ºS in 1999, then farther southward than 58ºS in 2005. Within 

the Lower WSDW, an inflection in the Ө – S relation at γn = 28.31 kg m-3 is present in the 1999 



 11

data, with the curves below this level diverting saltier, but is absent from the 1995 and 2005 data 

(Figure 9).  The 1999 curves thus reflect the presence of an additional water mass in the Scotia Sea 

that was absent in the other years, namely a thin, abyssal layer of comparatively salty Lower 

WSDW that entered the Scotia Sea via Georgia Passage and possibly other deep gaps in the South 

Sandwich Island arc (Meredith et al., 2001) (Figure 1).  To reach these gaps, this water mass flows 

northward on the eastern side of the South Sandwich Islands, and its southward and westward entry 

to the Scotia Sea in 1999 contrasts with the 1995 and 2005 results which indicate that the deepest 

layer of Lower WSDW had crossed the South Scotia Ridge into the Scotia Sea instead. The Ө – S 

inflection is not evident north of the Southern Boundary in 1999, or south of the Southern Boundary 

in either of the other years.  The 1999 pattern (an inflection south of the Southern Boundary but 

absent to the north) indicates that the Southern Boundary constitutes a dynamical barrier that plays 

an important role in controlling the spreading of Lower WSDW into and within the Scotia Sea.   

 

5. Discussion 

5.1. Warm Deep Water 

 

The pattern of Ө and S variations in WDW in the Scotia Sea is qualitatively consistent with changes 

observed further south in the Weddell Sea (Fahrbach et al., 2004; Robertson et al., 2002), with 

warming and salinification up to the mid- and late-1990s followed by a subsequent cooling and 

freshening.  These combined results are strongly suggestive of large-scale changes in the WDW 

properties in the Weddell Gyre being fed through to the Scotia Sea from upstream following the 

general circulation, with transit times of roughly a few years between the southern Weddell and 

Scotia Seas.  We note that the ~0.03ºC and ~0.002 increases in WDW Ө and S values observed 

during the late 1990s by Fahrbach et al. (2004) (their Figure 5) at the Greenwich Meridian in the 
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Weddell Sea are distinctly less than the increases presented here between 1995 and 1999 in the 

Scotia Sea, and similarly the decrease in Ө of ~0.05ºC in the Weddell Sea after the turn of the 

century is less than the cooling of WDW in the Scotia Sea between 1999 and 2005.  However, the 

Weddell Sea figures are based on basin-wide averages that integrate some complex patterns of 

warming and cooling (Fahrbach et al., 2004), thus the derived magnitudes of the changes here are 

expected to be smaller.  

 

An analysis of WDW Ө changes in “inflowing” and “outflowing” regions of the Weddell Gyre 

showed WDW Ө peaking in 1995 in the inflowing region, with more recent values falling by 

around 0.2ºC through to 1999 (Robertson et al., 2002).  In the outflowing region, a large scatter in 

WDW Ө values during the late 1990s made trends in this area hard to identify. The magnitudes of 

the changes in the WDW values in the Scotia Sea we present here are somewhat less than the long-

term (~30 year) warming trends seen in the WDW in the Weddell Sea (Robertson et al., 2002).  

This latter time series includes several instances of cooling within the general upward trend, and it 

is unclear whether the recent cooling seen in the Weddell Sea (Fahrbach et al., 2004) is a reversal of 

the long-term warming trend or another instance of interannual variability against a background of 

continuing rising temperatures.   

 

With regard to the timing of the peak WDW temperatures in the Weddell and Scotia Seas, the 

sparse temporal sampling in the latter precludes clear identification of the year of highest 

temperatures, and thus we cannot be precise concerning a lag between the two basins. 

Notwithstanding, the connection between WDW properties in the Weddell Sea and Scotia Sea 

established here implies that continued changes within the Weddell Sea are likely to be reflected as 

changes in the Scotia Sea in years to come. 
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5.2. Weddell Sea Deep Water 

 

The changes identified in WSDW in the Scotia Sea are complex, and are summarised here by three 

main observations:- 

1) North of the Southern Boundary, WSDW warmed by around 0.05 ºC between 1995 and 

1999, and again by the same amount between 1999 and 2005.  A concurrent small 

salinification (0.005) occurred during the 1995-2005 period.  The overall volume of WSDW 

in this part of the Scotia Sea decreased through the sequence of measurements. 

2) South of the Southern Boundary, a comparable level of warming was seen between 1995 

and 1999, but there was no significant warming between 1999 and 2005, and no significant 

salinity change was detected.   

3) Within the Lower WSDW layer, changes in circulation were observed, with the densest 

waters crossing the South Scotia Ridge prior to the 1995 and 2005 sections, but entering the 

Scotia Sea from its eastern and northeastern flanks prior to 1999. 

 

The observations presented here are best explained by a superposition of a large-scale decadal trend 

toward higher Ө and S in the WSDW of the northern Weddell Sea, and shorter-period (interannual) 

variability in the export of the densest classes of WSDW to the Scotia Sea (see below).  There are 

two factors that dictate the degrees to which these processes combine to control the observed 

properties of WSDW in the Scotia Sea, namely the residence times of different classes of WSDW in 

the basin, and the Southern Boundary’s role as a dynamical barrier to the northward spreading of 

this water mass.  

 



 14

The mean residence time of a particular class of WSDW in the Scotia Sea is the characteristic 

period over which the properties of inflowing waters are averaged.  This period determines the 

timescales of variability that the class of WSDW exhibits, and hence indicates the degree to which 

the variability could be aliased by temporally sparse sampling.  Mean residence times (Table 2) are 

calculated here by dividing the volume of each WSDW density class within the basin by the volume 

transport of that density class over the South Scotia Ridge (Heywood et al., 2002; Naveira Garabato 

et al., 2003).  These suggest that the overall WSDW layer in the Scotia Sea is renewed on average 

every ~5 years, whereas the Lower WSDW sublayer is flushed more rapidly (around every 3 years).  

The densest classes of WSDW present in the Scotia Sea (here taken as γn > 28.35 kg m-3) are 

renewed on approximately annual timescales.  These are found only south of the Southern 

Boundary, and the difference in mean residence times for these classes compared with WSDW 

overall reflects the role of the Southern Boundary as a dynamical barrier to the northward flow of 

the water mass. The time intervals between the sections used here is comparable to the mean 

WSDW residence time in the Scotia Sea, but is significantly longer than that of the densest WSDW 

classes.  The variability in denser WSDW properties is thus likely to be aliased within the 

hydrographic data, whereas the changes in WSDW characteristics north of the Southern Boundary 

will be well represented.  

 

5.2.1. Observation (1): continuous warming and salinification of WSDW north of the Southern 

Boundary 

 

Knowing the potential extent of aliasing associated with our sampling interval allows us to 

elucidate which of the two aforementioned processes (a large-scale decadal trend toward higher Ө 

and S in the WSDW of the northern Weddell Sea, and interannual variability in the export of the 
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densest classes of WSDW to the Scotia Sea) may explain each of our observed WSDW changes.  

The decadal trend alone may account for the first observation, because the residence time 

calculation indicates that WSDW north of Southern Boundary reflects long-term changes in the 

properties of the WSDW exported from the Weddell Sea. 

 

Several previous studies (Andrié et al., 2003; Coles et al., 1996; Johnson and Doney, 2006; Zenk 

and Morozov, 2007) have documented a warming at a comparable rate in the WSDW in the South 

Atlantic as far north as the equator, consistent with the bulk warming of WSDW observed here 

“upstream” in the Scotia Sea.  Decadal warming of the recently ventilated WSDW in the Weddell 

Sea has not been unambiguously demonstrated, due to the lack of a long time series of observations 

in the boundary currents directly upstream of the overflow regions at the South Scotia Ridge, but 

we note here that such a warming would be compatible with the observed decadal-scale warming of 

WSBW during the 1989-2003 period (Fahrbach et al., 2004). WSBW contains a significant 

proportion of recently-ventilated shelf waters, and is not directly exported from the Weddell Sea 

after formation, so changes within this layer are very possibly echoed by changes within the 

boundary current of WSDW (which contains a higher proportion of recently-ventilated waters than 

the recirculated WSDW in the central Weddell Sea) that feeds the Scotia Sea.  

 

As with the warming trend, a potential salinification of the recently-ventilated WSDW in the 

northern Weddell Sea has not been shown unambiguously due to lack of appropriate observations. 

Robertson et al. (2002) were unable to deduce significant temperature trends for WSDW in the 

northwestern Weddell Sea due to large scatter in their data, and the same would appear true for 

salinity (the change of salinity we observe in the Scotia Sea, around 0.005, is small compared to the 

scatter shown in Figure 9 of Robertson et al. (2002), for example). 
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5.2.2. Observation (2): cessation of warming of WSDW south of the Southern Boundary after 1999 

 

Mean residence times for WSDW density classes that lie exclusively south of the Southern 

Boundary are of order 1 year.  Therefore, in the southern Scotia Sea, the impact of the decadal-scale 

warming trend discussed in 5.2.1 is likely to be superposed on interannual variability in the WSDW 

overflows of the South Scotia Ridge. The mechanisms controlling the variability in these overflows 

were outlined by Meredith et al. (2001), and are illustrated here schematically (Figure 10). It has 

been argued that changes in the intensity of the baroclinic component of the Weddell Gyre 

circulation (most likely associated with changes in integrated wind stress curl over the Weddell 

Sea) will affect the depth levels at which isopycnals intersect with the South Scotia Ridge, and 

hence determine the densest class of WSDW able to overflow into the Scotia Sea.  A decrease 

(increase) in the density of the deepest layer of WSDW overflowing the ridge will result in a 

warming (cooling) on pressure surfaces within the Scotia Sea, but no discernable change on density 

surfaces. Accompanying S changes will occur, but of a magnitude comparable to the level of 

detectability.  In the context of this conceptual model, a spin-up of the Weddell Gyre between 1995 

and 1999 followed by a spin-down prior to 2005 would explain our pattern of observations, with the 

absence of significant changes south of the Southern Boundary between 1999 and 2005 being due 

to the opposing effects of interannual variability associated with Weddell Gyre intensity (cooling) 

and longer-term (decadal) warming. 

 

The extent to which the baroclinicity of the Weddell Gyre varies is poorly known, but there is some 

evidence that changes of the magnitude required to explain our observations occur.  One piece is 

provided by a 6-year time series of water mass properties collected with moored instrumentation 
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immediately upstream of the Orkney Passage (Figure 1) as part of the CORC / ARCHES 

programme (Visbeck et al., 2001).  Although this mooring does not cover the densities that typify 

the WSDW in the Scotia Sea, and is of shorter duration than the time period covered by our 

sections, it does provide useful information on the characteristic variability in density on a depth 

surface exhibited by WSDW in the boundary current of the northern Weddell Sea. The records 

show that, at three different levels within 500 dbar of the seabed in water depths of around 3059m, 

pronounced excursions of order 0.005 kg m-3 on interannual timescales (around 1-3 years) are 

prominent within the core of recently ventilated WSDW in the northern Weddell Gyre (Figure 11).  

The interannual changes in density show a large degree of vertical coherence, consistent with these 

signals being due to variations in the baroclinicity of the gyre.  Hydrographic profiles from this 

region indicate that a change in density at the mooring of order 0.005 kg m-3 corresponds to a 

change in isopycnal depth of around 100 m, with associated changes of approximately 0.04°C in Ө 

and 0.002 in S on a pressure surface.  These changes are comparable with the variability in Ө and S 

observed in the mooring data on interannual timescales (Gordon et al., in preparation, 2007).  An 

interannual perturbation to the baroclinicity of the Weddell Gyre of the magnitude implied by the 

mooring density data would be sufficient to account for the cessation of the warming of the WSDW 

south of the Southern Boundary after 1999, whilst resulting in no detectable change in S, in 

agreement with our observations. 

 

Further evidence for variability in the intensity of the baroclinic Weddell Gyre circulation is given 

by Martinson and Iannuzzi (2003), who use available hydrographic data from across the gyre to 

investigate periods of spin-up and spin-down during the last quarter of the 20th century.  These 

authors note significant changes in the gyre’s baroclinicity on interannual timescales, which they 

relate to variations in the phase of the El Niño / Southern Oscillation (ENSO) phenomenon.  During 
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an El Niño event, the Weddell Gyre was deduced to have spun-up in response to changing winds, 

and the converse was inferred in response to La Niña.  If this relationship applies consistently, as 

Martinson and Iannuzzi (2003) propose, it might suggest that the apparently anomalous conditions 

that we observed in the Scotia Sea during 1999 could be connected to the very strong El Niño event 

that occurred in 1997/98, allowing for a 1-2 year lag for baroclinic spin-up and for the anomalous 

WSDW that crosses the South Scotia Ridge to spread to the location of our section. 

 

5.2.3. Observation (3): changes in Lower WSDW circulation 

 

The change in circulation of Lower WSDW between 1995 and 1999 (Meredith et al., 2001) was 

seen to subsequently reverse up to 2005.  This pattern of change is consistent with observation 2 

(section 5.2.2), and is similarly controlled by variations in the intensity of the Weddell Gyre (see 

Figure 10).  The increase in the density of the deepest WSDW overflowing the South Scotia Ridge 

associated with the baroclinic spin-down of the Weddell Gyre after 1999 would have precluded the 

import of the more saline variety of Lower WSDW through Georgia Passage and gaps in the South 

Sandwich Arc. (A denser outflow through these gaps would act to block the southwestward flow of 

LWSDW through Georgia Passage into the Scotia Sea abyss). Consequently, 1999 was the only 

year of the three that showed the influence of the more saline type of Lower WSDW, due to the 

reversals in direction of abyssal flow at the northeastern and eastern edges of the Scotia Sea before 

and after this date. 

 

6. Conclusions 
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A hydrographic section in the eastern Scotia Sea of the Southern Ocean was occupied three times 

(in April 1995, April 1999 and February 2005), and significant changes in water mass properties 

were observed. The WDW south of the Southern Boundary warmed and salinified between 1995 

and 1999, then cooled and freshened through to 2005.  These changes appear to be the consequence 

of decadal-scale variability in the properties of this water mass upstream in the Weddell Sea, 

propagated into the Scotia Sea via the Weddell Gyre.  The likely influence of the Weddell Polynya 

on WDW properties has been highlighted (Robertson et al., 2002), and it has been argued that this 

event may have been triggered by anomalous atmospheric forcing associated with the Southern 

Hemisphere Annular Mode, and possibly linked to a La Niña event (Gordon et al., 2007).  In the 

context of these studies, our results indicate that climate-scale forcing over the Weddell Sea has 

impacts that are seen outside the region as the variations induced are propagated northward. 

 

We have reported several changes to the WSDW flowing through the Scotia Sea.  North of the 

Southern Boundary, WSDW warmed and salinified between 1995 and 2005, whereas south of the 

Southern Boundary the warming was only observed through to 1999.  Reversals in the abyssal 

circulation of the densest classes of WSDW were also observed.  The observed WSDW changes are 

best explained by a superposition of a large-scale decadal trend toward higher Ө and S in the 

WSDW of the northern Weddell Sea, and shorter-period (interannual) variability in the export of 

the densest classes of WSDW to the Scotia Sea. 

 

We have argued that the interannual variability in the export of WSDW to the Scotia Sea is likely 

related to changes in the baroclinicity of the Weddell Gyre.  These changes may be controlled by 

cyclonic atmospheric forcing over the Gyre, which has been shown to be modulated by ENSO on 

interannual timescales (see Martinson and Iannuzzi (2003) and references therein).  We conjecture 
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that if the interannual modulation of WSDW export by ENSO were also active on longer (decadal) 

timescales (as implied by the work of Martinson and Iannuzzi, 2003), it may contribute to the 

WSDW warming observed throughout the South Atlantic.  ENSO has undergone long-period 

changes in recent decades, with a higher preponderance of El Niño events since the 1970s; this 

would enhance the Weddell Gyre’s baroclinicity, and hinder the export of the coldest WSDW. 

 

The WDW and WSDW changes that we observe have potential climatic consequences that 

transcend regional scales.  For example, if the decrease in volume of WSDW in the Scotia Sea 

between 1995 and 2005 is indicative of a longer-period trend, this will have implications for 

circulation and climate in much of the world ocean.  Warming of the abyssal layer has been 

reported for recent decades as far north as the equator in the western Atlantic Ocean.  This warming 

is evidence of a major change in the properties of the lower limb of the oceanic overturning 

circulation, originating in the Weddell Sea and transiting through the Scotia Sea. 

 

To put some of these changes in perspective, climate models suggest that the Earth's energy 

imbalance is currently about 0.85 (±0.15) W m-2, with the oceans absorbing a large fraction of that 

heat gain (Hansen et al., 2005).  The evolution of the heat content of WDW in the eastern Scotia 

Sea is equivalent to a local heat gain of ~3 W m-2 between 1995 and 1999, and a similar local heat 

loss through to 2005 (c.f. the local heat gain of 4 W m-2 implied by the warming of the Weddell Sea 

between 1977 and 2001; Smedsrud, 2005). In turn, the temperature increase of the WSDW layer in 

the eastern Scotia Sea between 1995 and 2005 associated with the decadal warming trend yields a 

local heat gain of ~1 W m-2.  If the vertical profile of warming rate below 3000 m between 60°S and 

the equator in the western basins of the South Atlantic for recent decades (Johnson and Doney, 

2006) were typical of the entire global ocean abyss, it would account for ~0.2 W m-2 of the Earth’s 
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energy imbalance.  Abyssal Pacific warming rates are smaller (Johnson et al., 2007), nonetheless 

abyssal water temperature variations such as those presented here are not only of high regional 

importance, but may also contribute significantly to the global heat budget.
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Figure Captions 

 

Figure 1.  Location of repeat section used here (red line) and position of the CORC/ARCHES M2 

mooring (black dot) immediately southeast of the South Orkneys (SO), with bathymetry (Smith and 

Sandwell, 1997) color shaded in meters.  Antarctic Circumpolar Current fronts marked 

schematically:  Subantarctic Front (SAF), Polar Front (PF) and Southern ACC Front (SACCF) 

positions from Boehme et al. (2007), and Southern Boundary (SB) from Orsi et al. (1995).  Marked 

topographic features include SG = South Georgia, SO = South Orkneys, OP = Orkney Passage, GP 

= Georgia Passage, and SSI = South Sandwich Islands.  The primary route of spreading of Weddell 

Sea Deep Water through and around the Scotia Sea is shown schematically (yellow solid arrows), 

with the intermittent inflow of its densest component through GP also marked (yellow dashed 

arrow). 

 

Figure 2.  Locations of CTD stations used here (See Fig. 1 for broader context).  Data were 

collected during (a) 1995, (b) 1999, and (c) 2005.  Background shading is depth (m). 

 

Figure 3.  Vertical-meridional sections of potential temperature (ºC) from hydrographic sections 

(Figure 1 shows location) occupied in (a) 1995, (b) 1999 and (c) 2005.  Individual station locations 

marked along the upper horizontal axis (see also Figure 2). Locations of the Southern Boundary 

(SB) and Southern ACC Front (SACCF) are also marked. 

  

Figure 4.  Vertical-meridional salinity (PSS-78) sections.  Details follow Figure 3.  Non-uniform 

contour interval used. 
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Figure 5.  Vertical-meridional neutral density (γn; kg/m3; Jackett and McDougall, 1997) sections.  

Details follow Figure 3. Note the change in contour interval for γn > 28.28 kg/m3. 

 

Figure 6.  Potential temperature (ºC; upper panel) and salinity (lower panel) versus pressure south 

of the Southern Boundary for 1995 (black), 1999 (red) and 2005 (green). Profiles have been 

smoothed with a 20-dbar Butterworth filter. Station locations are shown in Figure 2. 

 

Figure 7.  Potential temperature (ºC; upper panel) and salinity (lower panel) versus pressure for 

stations in the latitude range 56 to 57ºS, north of the Southern Boundary and the narrow eddy 

feature seen in 1995 and 1999, for 1995 (black), 1999 (red), and 2005 (green). Profiles have been 

smoothed with a 20-dbar Butterworth filter. Station locations are shown in Figure 2. 

 

Figure 8.  Potential temperature (ºC; upper panel) and salinity (lower panel) versus pressure for 

stations south of the Southern Boundary in 1995 (black), 1999 (red), and 2005 (green). Profiles 

have been smoothed with a 20-dbar Butterworth filter. Station positions are shown in Figure 2.  

 

Figure 9.  Potential temperature - salinity curves for 1995 (upper panel), 1999 (middle panel) and 

2005 (lower panel) for stations south of the Southern Boundary.  An inflection at γn = 28.31 kg m-3, 

the Lower Weddell Sea Deep Water upper boundary, visible in 1999, is absent in 1995 and 2005. 

 

Figure 10. Schematic of the impact of changing atmospheric cyclonic forcing on Weddell Gyre 

intensity, and the consequences for the export of Weddell Sea Deep Water (WSDW) across the 

South Scotia Ridge (SSR) and the abyssal circulation of Lower WSDW. The inset (adapted from 

Coles et al., 1996) shows schematically the steepening (A) or slumping (B) of isopycnal surfaces in 
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the Weddell Sea in response to Gyre spin-up/down, and the consequent change in the density of the 

deepest WSDW exported across the SSR to the Scotia Sea. The top panel illustrates case (A), where 

a stronger Weddell Gyre leads to less dense (warmer) WSDW crossing the SSR, and Lower 

WSDW entering the Scotia Sea through Georgia Passage and environs at the northeastern edge of 

the basin. The lower panel illustrates case (B), where a weaker Weddell Gyre leads to denser 

(colder) WSDW crossing the SSR, and the absence of an inflow of Lower WSDW through Georgia 

Passage and environs. 

 

Figure 11. Time series of potential density (σ0, top) and neutral density (γn, bottom) at the 

CORC/ARCHES M2 mooring site, color-coded to indicate pressure separations of  instruments 

from the seabed (red = 345 dbar; black 1999-2001 = 15 dbar; black 2001-2003 = 31 dbar; blue = 

478 dbar).  Moorings deployed in 3059-m water depth (see Figure 1).  Pronounced excursions in 

density (~0.005 kg m-3) on timescales of around 1-3 years exhibit significant vertical coherence. 
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Figure 1.  Location of repeat section used here (red line) and position of the CORC/ARCHES M2 
mooring (black dot) immediately southeast of the South Orkneys (SO), with bathymetry (Smith and 
Sandwell, 1997) color shaded in meters.  Antarctic Circumpolar Current fronts marked 
schematically:  Subantarctic Front (SAF), Polar Front (PF) and Southern ACC Front (SACCF) 
positions from Boehme et al. (2007), and Southern Boundary (SB) from Orsi et al. (1995).  Marked 
topographic features include SG = South Georgia, SO = South Orkneys, OP = Orkney Passage, GP 
= Georgia Passage, and SSI = South Sandwich Islands.  The primary route of spreading of Weddell 
Sea Deep Water through and around the Scotia Sea is shown schematically (yellow solid arrows), 
with the intermittent inflow of its densest component through GP also marked (yellow dashed 
arrow).
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Figure 2.  Locations of CTD stations used here (See Fig. 1 for broader context).  Data were 
collected during (a) 1995, (b) 1999, and (c) 2005.  Background shading is depth (m).



 32

 
 
Figure 3.  Vertical-meridional sections of potential temperature (ºC) from hydrographic sections 
(Figure 1 shows location) occupied in (a) 1995, (b) 1999 and (c) 2005.  Individual station locations 
marked along the upper horizontal axis (see also Figure 2). Locations of the Southern Boundary 
(SB) and Southern ACC Front (SACCF) are also marked. 
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Figure 4.  Vertical-meridional salinity (PSS-78) sections.  Details follow Figure 3.  Non-uniform 
contour interval used. 
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Figure 5.  Vertical-meridional neutral density (γn; kg/m3; Jackett and McDougall, 1997) sections.  
Details follow Figure 3. Note the change in contour interval for γn > 28.28 kg/m3. 
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Figure 6.  Potential temperature (ºC; upper panel) and salinity (lower panel) versus pressure south 
of the Southern Boundary for 1995 (black), 1999 (red) and 2005 (green). Profiles have been 
smoothed with a 20-dbar Butterworth filter. Station locations are shown in Figure 2. 
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Figure 7.  Potential temperature (ºC; upper panel) and salinity (lower panel) versus pressure for 
stations in the latitude range 56 to 57ºS, north of the Southern Boundary and the narrow eddy 
feature seen in 1995 and 1999, for 1995 (black), 1999 (red), and 2005 (green). Profiles have been 
smoothed with a 20-dbar Butterworth filter. Station locations are shown in Figure 2. 
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Figure 8.  Potential temperature (ºC; upper panel) and salinity (lower panel) versus pressure for 
stations south of the Southern Boundary in 1995 (black), 1999 (red), and 2005 (green). Profiles 
have been smoothed with a 20-dbar Butterworth filter. Station positions are shown in Figure 2.  
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Figure 9.  Potential temperature - salinity curves for 1995 (upper panel), 1999 (middle panel) and 
2005 (lower panel) for stations south of the Southern Boundary.  An inflection at γn = 28.31 kg m-3, 
the Lower Weddell Sea Deep Water upper boundary, visible in 1999, is absent in 1995 and 2005. 
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Figure 10. Schematic of the impact of changing atmospheric cyclonic forcing on Weddell Gyre 
intensity, and the consequences for the export of Weddell Sea Deep Water (WSDW) across the 
South Scotia Ridge (SSR) and the abyssal circulation of Lower WSDW. The inset (adapted from 
Coles et al., 1996) shows schematically the steepening (A) or slumping (B) of isopycnal surfaces in 
the Weddell Sea in response to Gyre spin-up/down, and the consequent change in the density of the 
deepest WSDW exported across the SSR to the Scotia Sea. The top panel illustrates case (A), where 
a stronger Weddell Gyre leads to less dense (warmer) WSDW crossing the SSR, and Lower 
WSDW entering the Scotia Sea through Georgia Passage and environs at the northeastern edge of 
the basin. The lower panel illustrates case (B), where a weaker Weddell Gyre leads to denser 
(colder) WSDW crossing the SSR, and the absence of an inflow of Lower WSDW through Georgia 
Passage and environs. 
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Figure 11. Time series of potential density (σ0, top) and neutral density (γn, bottom) at the 
CORC/ARCHES M2 mooring site, color-coded to indicate pressure separations of  instruments 
from the seabed (red = 345 dbar; black 1999-2001 = 15 dbar; black 2001-2003 = 31 dbar; blue = 
478 dbar).  Moorings deployed in 3059-m water depth (see Figure 1).  Pronounced excursions in 
density (~0.005 kg m-3) on timescales of around 1-3 years exhibit significant vertical coherence. 
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Water mass  Abbreviation Identifiers 
Warm Deep Water WDW Θmax near 500m  

Smax near 800m  
γn < 28.20 in the ACC 

Weddell Sea Deep 
Water 

WSDW 28.26 < γn < 28.40 

Upper Weddell Sea 
Deep Water 

Upper WSDW 28.26 < γn < 28.31 

Lower Weddell Sea 
Deep Water 

Lower WSDW 28.31 < γn < 28.40 

Weddell Sea Bottom 
Water 

WSBW γn > 28.40 

 
 
 
Table 1. Scotia Sea and Weddell Sea water masses of Southern Ocean origin discussed in this 
paper. γn is the neutral density variable of Jackett and McDougall (1997), with units kg m-3. 
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γn of upper 
water mass 

boundary [kg 
m-3] 

Area in Scotia 
Sea [m2] 

Volume in 
Scotia Sea [m3] 

Inflowing 
volume 

transport [Sv] 

Mean residence 
time [yr] 

28.26 (1.1 ± 0.2) × 
1012 

(8.7 ± 1.9) × 
1014 

5.9 ± 1.7 4.7 ± 1.7 

28.31 (7.0 ± 1.5) × 
1011 

(3.1 ± 0.8) × 
1014 

3.5 ± 1.2 2.8 ± 1.2 

28.35 (1.1 ± 0.4) × 
1011 

(5.2 ± 2.4) × 
1013 

1.7 ± 0.5 1.0 ± 0.5 

 
 
 
 
Table 2. Area, volume, inflowing volume transport and mean residence time of three overlapping 
density classes of WSDW with varying upper boundaries.  Areas and volumes estimated by 
objective mapping of density profiles obtained from historical atlas data, the three sections used in 
this study, and six occupations of a transect across Drake Passage.  Method described more 
extensively in Heywood et al. (2002).  Uncertainties in the areas and volumes estimated ad hoc by 
varying objective mapping parameters.  Volume transports over the South Scotia Ridge estimated 
from the box inverse model solution of Naveira Garabato et al. (2003).  Errors correspond to one 
standard deviation uncertainties from the inverse model.  Mean residence times calculated by 
dividing volumes by volume transports.  


