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 4 

1. Introduction 5 

Many proxy records of sea-level change that cover recent centuries show a distinct positive 6 

inflexion in the late 1800s or the early 1900s, marking the transition from late Holocene 7 

background rates of sea-level change to the high rates that have been recorded by tide gauges 8 

and satellites during the 20th and 21st centuries (Shennan and Woodworth, 1992; Shennan and 9 

Horton, 2002; Gehrels et al., 2004; Bindoff et al., 2007; Engelhart et al., 2009; Woodworth et 10 

al., 2011a). Using evidence from proxy records, many authors have dated the inflexion, but 11 

results have been variable. The following inflexion dates have been suggested: the later half of 12 

the 19th century (Connecticut, USA; Donnelly et al., 2004), the period 1900-1920 (Nova Scotia, 13 

Canada; Gehrels et al., 2005), the start of the 20th century (southern New Zealand and 14 

Tasmania; Gehrels et al., 2008; Gehrels et al., 2012), the period 1880-1920 (northern Spain; 15 

Leorri et al., 2008), the period 1879-1915 (North Carolina, USA; Kemp et al., 2009) and the 16 

period 1865-1892 (also North Carolina, USA; Kemp et al., 2011). These possible 17 

inconsistencies raise the question whether the inflexions could be non-synchronous, which has 18 

implications for the interpretation of underlying driving mechanisms. Non-synchroneity would 19 

point at a regional cause for rapid sea-level rise, such as ocean dynamical change or thermal 20 

expansion, whereas a synchronous inflexion might signal forcing by melt of ice sheets and/or 21 

glaciers. Alternatively, the varying dates of the onset of modern rates of sea-level rise could be 22 

due to chronological limitations of the proxy records. 23 

https://doi.org/10.1016/j.gloplacha.2012.10.020


Sea-level records spanning several decades to centuries, whether from tide gauges or proxy 24 

information, are often parameterised in terms of a linear trend superimposed upon which is 25 

variability on interannual and decadal timescales. Relative sea-level trends arise from long term 26 

changes in the ocean and/or from vertical land movements and are the subject of great interest 27 

by study groups such as the Intergovernmental Panel on Climate Change (e.g. Bindoff et al., 28 

2007). ‘Accelerations’ in sea level can take the form of a gradual change in linear trends over 29 

the period of the entire record. These accelerations are often estimated by including a quadratic 30 

term in addition to the linear trend in the parameterisation, and the mean acceleration during 31 

the record is thereby calculated by multiplying the determined quadratic coefficient by two 32 

(Douglas, 1992). Many studies of tide-gauge time series (e.g. Douglas, 1992; Maul and Martin, 33 

1993; Church and White, 2006; Jevrejeva et al., 2006; Houston and Dean, 2011; Watson, 2011; 34 

Woodworth et al., 2011a) have focussed on century-scale accelerations as determined by 35 

quadratic regressions or low order polynomials through long datasets. 36 

When a record exhibits an abrupt change of linear trend at some time ‘t’, then instead of using 37 

a quadratic term it may be more appropriate to parameterise the time series as an ‘inflexion’, 38 

the record either side of ‘t’ being described adequately by its own linear trend and the two trend 39 

lines constrained to have the same value of sea level at ‘t’. The use of an inflexion 40 

parameterisation to characterise acceleration in European tide-gauge records spanning the 19th 41 

and 20th centuries was investigated by Woodworth (1990) who focused on a possible inflexion 42 

around 1930 in the longest tide-gauge records from northern Europe. Global and regional tide-43 

gauge compilations (such as in Figure 1) have recorded inflexions around 1930 (Church and 44 

White, 2006, 2011; Jevrejeva et al., 2008; Woodworth et al., 2009), and around 1850 (Jevrejeva 45 

et al., 2008). The aforementioned inflexions identified in proxy records fall roughly between 46 

these dates, creating a possible discrepancy between the instrumental and proxy records of 47 

recent sea-level change.  48 



Comparisons between proxy and tide-gauge records raise two main questions which are 49 

addressed in this review:  50 

(1) why does the timing and magnitude of inflexions appear to differ in proxy and instrumental 51 

records? 52 

(2) when did sea-level rise start departing from the long-term slow rate of sea-level rise that 53 

was persistent during much of the late Holocene?  54 

The main aim of this paper is to reconcile the proxy and instrumental records of sea-level 55 

change during the 19th and 20th centuries. More specifically, we test the hypothesis that 56 

instrumental and proxy datasets of sea-level change are actually in agreement and both record 57 

similar times when modern rates of sea-level rise were first attained. 58 

 59 

2. Instrumental records of sea-level change 60 

The history of systematic sea-level observations is over three centuries long, starting in 61 

Amsterdam in 1682. What we now call automatic (or ‘self-registering’) tide gauges that could 62 

record the full tidal curve were developed in the 1830s, with the first often credited to Palmer 63 

(1831). These instruments took the form of a stilling well inside which was a float that was 64 

connected by a wire run over pulleys to a pen that moved up and down as the tide rose and fell, 65 

thereby drawing a tidal curve on a rotating drum of paper. The resulting continuous water-level 66 

measurements could then be expressed relative to the height of a benchmark on the nearby 67 

land.  68 

By the end of the 19th century similar instruments had been installed at most major ports and, 69 

although sea-level measurements are often made nowadays by acoustic, pressure or radar 70 

techniques (IOC, 2006), it is important to recognise that the majority of the historical 71 



information in the archives of the Permanent Service for Mean Sea Level (PSMSL, Woodworth 72 

and Player, 2003, www.psmsl.org) stems from such conventional float and stilling well 73 

devices, and that they still constitute a large fraction of the global network. 74 

Reviews of sea-level recording in the ‘instrumental era’ of the late-18th century onwards can 75 

be found in Pugh (1987), Woodworth et al. (2011a,b) and Woodworth (2012) and references 76 

therein. There are five locations in northern Europe for which instrumental records exist with 77 

lengths of two centuries or more (Amsterdam, Brest, Liverpool, Stockholm and Swinoujscie). 78 

These have been presented several times with the most recent versions shown by Woodworth 79 

et al. (2011a). Early sections of some of the records were derived from mean high water 80 

(MHW) information, rather than mean sea level (MSL), with the data having been obtained as 81 

part of operational use of docks at high waters (Woodworth, 1999). The heights and times of 82 

high water were obtained from visual observations of water level at what were then called ‘tide 83 

gauges’, graduated markings on the outer stone walls of the dock to indicate water depth over 84 

the dock sill. Alternatively, wooden measuring rods called ‘tide-poles’ or ‘tide-staffs’ were 85 

used. Such visual measurements could have had centimetre-level accuracy in calm weather 86 

conditions, but would have been much less accurate in the presence of waves, especially in 87 

night-time during winter. 88 

If one applies a simple second-order fit (a + bt + ct2 where t is time) of the type discussed above 89 

to the long northern European records, then quadratic coefficients ‘c’ of order 0.005 mm/yr2 90 

are obtained (i.e. accelerations of order 0.01 mm/yr2), providing evidence for a long term 91 

acceleration in sea level and suggestive that the 20th century rise started at around the end of 92 

the 19th century (Woodworth, 1990; Wöppelmann et al., 2006; Woodworth et al., 2009, 93 

2011a,b). 94 

http://www.psmsl.org/


It is important to emphasise that any reported acceleration (or linear rate of change for that 95 

matter) applies only the epoch of the data from which it was computed and any such value 96 

cannot be assumed to be the same over another epoch. This is particularly true for the short 97 

term accelerations. However, it also applies to discussion at longer timescales. For example, it 98 

has been known for at least twenty years that many records from Europe and North America 99 

exhibited an overall negative acceleration (deceleration) during the 20th century (Woodworth, 100 

1990; Tsimplis and Baker, 1990), whereas, if earlier data from the 19th century are included, 101 

then a small positive acceleration is apparent (Woodworth et al., 2011a). This important fact 102 

has been ignored in the headline reporting of some recent studies of accelerations in sea level 103 

(e.g. as pointed out in a comment by Rahmstorf and Vermeer (2011) on the study of US sea-104 

level records by Houston and Dean (2011)). It is also clear that if we want to date the start of 105 

modern rates of sea-level rise, the lengths of the tide-gauge records are a serious limitation. 106 

The character of shorter term acceleration in sea level has been described many times in 107 

previous publications (e.g. Douglas et al., 2000). The ocean is variable on all timescales, but 108 

particular on those from years to decades owing to large-scale processes such as El Niño or the 109 

North Atlantic Oscillation (Trenberth et al., 2007). Shorter periods of higher or lower linear 110 

sea-level trend (i.e. periods of short term ‘acceleration’) can be studied by calculating the linear 111 

trends within individual windows of a decade (or similar) throughout the record. For example, 112 

Holgate and Woodworth (2004) and Holgate (2007) studied such ‘decadal trends’ in regional 113 

and global-average records, demonstrating that the high rates of change observed in the 1990s 114 

were not unprecedented earlier in the 20th century, while other authors have investigated the 115 

use of windows of 20-30 years (e.g. Church et al., 2008; Jevrejeva et al., 2006). Periods of 116 

fairly constant acceleration (or deceleration) can be identified by inspection of such short-term 117 

trends, determining whether the linear trends in the windows increase or decrease at a uniform 118 

rate. Boon (2012) discusses the use of ‘serial trend’ analysis to provide similar information, 119 



identifying possible recent acceleration along the Atlantic coast of North America (see also 120 

Sallenger et al., 2012). 121 

These short term accelerations can be considered as contributing to longer term ones which are 122 

our main interest. For example, in a review of the evidence for sea-level accelerations, 123 

Woodworth et al. (2009) pointed to a positive inflexion at many stations at around 1920-1930 124 

and a negative one around 1960 which have contributed to the overall accelerations reported 125 

for the late 19th century onwards or for the 20th century alone that are usually considered the 126 

most appropriate for climate studies. These inflexions are also apparent in global compilations 127 

of tide-gauge records (Figure 1a).  128 

 129 

3. Global compilations of instrumental sea-level records 130 

Many attempts have been made to compute a ‘global average’ sea-level time series for the 131 

instrumental era by making use of the Permanent Service for Mean Sea Level (PSMSL) data 132 

set. The main difficulty with such an exercise is that most historical tide-gauge information in 133 

the data set is from the northern hemisphere, while there are obviously fewer suitable records 134 

as one goes back in time (Woodworth and Player, 2003). 135 

The most elementary method of making a ‘global-average’ time series is to simply average all 136 

the available individual tide-gauge records, with each record corrected for vertical land 137 

movement using a geodynamic model of glacial isostatic adjustment (GIA) (e.g. Peltier, 2004). 138 

That method clearly biases the resulting average time series towards regions with most records 139 

(i.e. Europe, North America and Japan). A second approach involves the combining of 140 

regional-average time series into a global-average one (e.g. Douglas, 1991; Holgate and 141 

Woodworth, 2004) or averages in latitude bands into global averages (Merrifield et al., 2009). 142 



Inevitably, these methods cannot take into consideration the possible sea-level changes which 143 

have occurred either in coastal regions not represented in the PSMSL data set, or across the 144 

vast areas of the deep ocean. 145 

Efforts to account at least partly for sea-level variations in a more spatially-representative 146 

fashion include the use of low degree and order spherical harmonics to parameterise sea-level 147 

changes worldwide (Nakiboglu and Lambeck, 1991); empirical orthogonal functions (EOFs) 148 

of known modes of ocean variability since the 1990s when quasi-global sea level coverage 149 

became available from satellite altimetry (Church and White, 2011; Ray and Douglas, 2011); 150 

EOFs based on modes of variability in ocean circulation models with model runs performed 151 

over many decades and therefore, in principle, capable of representing lower-frequency sea-152 

level changes more reliability than the EOFs based on altimetry (Llovel et al., 2009); and cyclo-153 

stationary EOFs to represent progressive motions in sea-level variations instead of the standing 154 

waves of conventional EOFs (Hamlington et al., 2011). Each of these methods has drawbacks 155 

that are inevitable when using a sparse data set (e.g. see Christiansen et al. (2010), Ray and 156 

Douglas (2011) and Meyssignac and Cazenave (2012) for comments on techniques). 157 

Meanwhile, more sophisticated ways have been designed to average individual records in a 158 

region, or globally, without consideration of particular modes of variability. These methods 159 

include the ‘virtual station’ technique of Jevrejeva et al. (2006) wherein individual records, 160 

which may be quite short, are successively combined into regional and global time series. 161 

Wenzel and Schröter (2010) used 56 selected records from the PSMSL and combined them 162 

using a neural network technique which connects coastal sea level with the regional and global 163 

mean via a non-linear empirical relationship. 164 

In the next section we will make use of such ‘global’ and ‘regional averages’. The former is 165 

that of Church and White (2011), which is anyway similar to most others as described by 166 



Woodworth et al. (2011b).  The latter were obtained from Milne et al. (2009) and Woodworth 167 

et al. (2009) based on data from Jevrejeva et al. (2006). However, we would like to take the 168 

opportunity to make some general observations about the various global and regional 169 

‘reconstruction’ exercises. One is that while there is an interesting range of different statistical 170 

techniques employed, there is little oceanographic science behind any of them, other than 171 

perhaps the various forms of EOFs. For example, we know that the sea-level variations of the 172 

central North Atlantic are dominated by the strength of the sub-tropical and sub-polar gyres 173 

including the Gulf Stream: how can such complicated patterns of variability be parameterised 174 

by a limited number of base functions (EOFs)? Nevertheless, in spite of concern about 175 

individual methods, it is interesting that they all tend to result in a similar global sea-level time 176 

series, with the ‘accelerations’ and ‘inflexions’ discussed above (cf. Figure 3 of Woodworth et 177 

al., 2009). (An exception might be the time series of Wenzel and Schröter (2010) which appears 178 

more linear with time than the others.) This apparently reassuring conclusion has to be qualified 179 

by the realisation that the same data set (PSMSL) has been used in all analyses. 180 

In spite of the approximate agreement for the global time series, there is considerable 181 

uncertainty in providing corresponding reliable regional information using spatial 182 

parameterisation methods for those coastal regions where few or no historical data exist and 183 

for the deep ocean. This inability is hardly unexpected if one uses methods that have a 184 

statistical, rather than an oceanographic, basis. Moreover, while satellite altimetry shows that 185 

sea level is changing significantly on a regional scale, existing climate models are largely in 186 

disagreement about patterns and magnitudes of the observed variability, resulting in 187 

uncertainties on how accurate they may be in predicting future regional sea-level change. 188 

Concerns over these topics are summarised by Stammer and Gregory (2011).  189 

 190 



4. Proxy sea-level records 191 

Proxy records of relative sea-level change are derived from sea-level index points which are 192 

sediments, or fossils, with a known age and elevation that contain information about where sea 193 

level was in the past (Shennan, 1986). In Figure 2 we illustrate schematically the coastal 194 

stratigraphy which is typical for many settings along North Atlantic mid-latitude coastlines. In 195 

these settings sea-level index points are usually obtained from samples collected from salt-196 

marsh or estuarine deposits. The samples contain the fossil remains of microfauna (e.g. 197 

foraminifera, diatoms) and plants which allow the relationship with former sea level (or the 198 

‘indicative meaning’) to be established by comparison with the distribution of microfauna and 199 

plants on the modern coast (thus following a uniformitarian principle).  200 

Basal samples commonly overlie an uncompressible substrate and therefore are not affected by 201 

compaction. When the index points from basal samples are plotted in an age-altitude graph, 202 

they provide an estimate for the long-term, millennial scale, rates of relative sea-level rise 203 

(Figure 2) which are important to obtain a pre-industrial rate of sea-level change, i.e. a 204 

‘baseline’ against which modern rates of sea-level rise can be compared. The basal peat 205 

methodology was originally developed in the Netherlands to derive a Holocene sea-level curve 206 

(Jelgersma, 1961) and has been widely applied in other areas of northwest Europe (e.g. Denys 207 

and Baeteman, 1995; Shennan and Horton, 2002) and along the US East Coast (e.g., Redfield 208 

and Rubin, 1962; Bloom and Stuiver, 1963; Gehrels et al., 1996; Engelhart et al., 2009, 2011a). 209 

In these coastal lowlands, basal peat forms due to the rising groundwater table that is controlled 210 

by the Holocene rise in sea level, and the peat growth, although mostly of freshwater origin, is 211 

an accurate recorder of sea-level rise. In salt marshes along the east coast of North America 212 

basal peat is often formed in salt-marsh environments (Gehrels, 1999), which makes it possible 213 

to derive a more precise water-level relationship. While basal peats are widespread in the 214 

coastal lowlands of northwestern Europe and the estuaries and salt marshes of eastern north 215 



America, in many other coastal locations organic-rich deposits are absent. In Australia and 216 

New Zealand, for example, many Holocene sea-level reconstructions rely on shells preserved 217 

in tidal flat deposits (e.g. Gibb, 1986; Sloss et al., 2007) and, in lower latitudes, on dating of 218 

mangroves, micro-atolls and other corals (e.g. Woodroffe and Horton, 2005; Woodroffe, 2009). 219 

Sea-level index points derived from basal peat, shells, corals and other indicators do not 220 

provide sub-centennial precision which is required to reconstruct the most recent sea-level 221 

changes and to link the geological record with the instrumental record. For this reason 222 

continuous sequences in the upper sections of salt-marsh deposits are also sampled for sea-223 

level index points (Figure 2). It has been known for over three decades that salt-marsh 224 

stratigraphy, and the fossils contained within the sediments, can be used as precise indicators 225 

of sea-level change (e.g., Scott et al., 1978; Thomas and Varekamp, 1991; Gehrels, 1994; 226 

Horton et al., 1999; Edwards et al., 2004; Donnelly et al., 2004; Gehrels et al., 2005; Kemp et 227 

al. 2009), providing data for the centuries immediately preceding the observational period (i.e. 228 

last two centuries). When a tide-gauge is located nearby, such proxy records can be directly 229 

compared to instrumental observations for the period for which they overlap, thereby providing 230 

a useful check on the validity of the proxy reconstructions. The precision and accuracy of salt-231 

marsh proxy records depend on the integrity of the stratigraphy, i.e. low marsh sediments and 232 

tidal creeks are to be avoided (Kelley et al. 2001; Gehrels, 2006). Resolution is a function of 233 

the sedimentation rates in the marshes and is usually on the order of one data point per decade, 234 

obviously lower than observational records. The marsh records therefore do not provide 235 

information on interannual sea-level variability, but they are valuable archives of (multi-236 

)decadal relative sea-level trends. The vertical precision of sea-level estimates from salt-marsh 237 

sediments is typically ±5-20 cm and is constrained by the types of fossil indicators that are used 238 

to reconstruct sea level and by the local tidal range. Along microtidal coasts, the vertical ranges 239 



of the sea-level indicators are small and here the most precise sea-level reconstructions are 240 

possible (Southall et al. 2006; Callard et al. 2011). 241 

Limited precision of dating techniques provide additional uncertainties, but in recent years 242 

some important advances have been made to improve chronologies of salt-marsh based sea-243 

level reconstructions (e.g. Marshall et al., 2007). Dating methods include analyses of 244 

radioactive isotopes, such as 14C and 210Pb. The former has recently been applied to young 245 

sediments (e.g. Marshall et al., 2007; Gehrels et al., 2012) using high-precision Accelerator 246 

Mass Spectrometry (AMS) 14C dating of multiple samples. Errors are typically reduced to less 247 

than 10 radiocarbon years by matching a stratigraphically constrained set of radiocarbon ages 248 

to the calibration curve (Marshall et al., 2007). The 210Pb method can only be used to date 249 

sediments younger than ~120 years and results depend on the particular dating model that is 250 

applied, the selection of which can be aided by additional dating methods such as 137Cs which 251 

identifies the 1965 level (when nuclear bomb testing was globally at its peak) or local nuclear 252 

spill events. In addition to 137Cs, which can be diluted and transported within the sediment 253 

column, bomb-spike AMS14C dating can give very precise dates for the period after 1950. This 254 

method measures 14C activity in fossil samples and matches these to the known atmospheric 255 

bomb-spike curve, providing monthly precision (Marshall et al., 2007). Stratigraphic marker 256 

techniques, such as Pb isotopes and metal concentrations can usefully fill in some dating gaps 257 

in the 19th century, for example by matching levels in cores with archives of hemispheric 258 

atmospheric pollution, such as ice cores, and by comparisons with historical regional pollution 259 

records, such as mining histories (Gehrels et al., 2006, 2008, 2012; Marshall et al., 2007). 260 

Along the North American east coast, and in Tasmania and New Zealand, pollen markers and 261 

charcoal records provide additional chronological markers by revealing distinct changes in 262 

vegetation resulting from deforestation, land clearing, forest fires and agricultural activities by 263 

European settlers (Gehrels et al., 2005, 2008, 2012; Kemp et al., 2009). 264 



In this paper we re-analyse some key proxy records by plotting the sea-level index points from 265 

stratigraphic levels that have been directly dated by one of the methods described above. This 266 

approach is different from some of the published records (Gehrels et al., 2005; Leorri et al., 267 

2008; Kemp et al., 2009, 2011) which are based on age-depth models and also include sea-268 

level index points for which an age is derived by interpolation. In our re-evaluation we ignore 269 

these ‘synthetic’ data, because we take the view that they obscure the true age uncertainties of 270 

the records. We compare recent proxy and instrumental sea-level records with the late 271 

Holocene rate of relative sea-level change and determine the start of modern rates sea-level 272 

rise by identifying by visual inspection the time when sea-level rise departed from the long-273 

term background rate. We assume a linear rate of late Holocene relative sea-level change which 274 

is consistent with our data (see next section). An important point to note is that this method 275 

does not require any corrections of the relative sea-level records for land movements, as 276 

subtracting the background rate from the modern rate essentially eliminates all millennium-277 

scale relative sea-level processes from the record, including those resulting from GIA.  278 

 279 

5. Identifying start of modern rates of sea-level rise 280 

Establishing the timing of the onset of modern rates of sea-level rise can be achieved reliably 281 

in sites where two main criteria are fulfilled: (1) the available recent sea-level record, based on 282 

either instrumental or proxy data, is of sufficient length (~200 years); and (2) the ‘background’ 283 

rate of relative sea-level rise is known at the same location. These restrictions limit our analyses 284 

to the seven sites that are discussed below. It is perhaps surprising that there are only a small 285 

number of sites where this type of analysis can be carried out. There are many coastal sites 286 

around the world where late Holocene sea-level trends can be determined, but the recent sea-287 

level record, from either proxy or instrumental data, is often too short to determine when the 288 

modern sea-level rise departed from this background trend. For the seven sites where we are 289 



able to address this aim of our study we show the late Holocene and the recent sea-level data 290 

in Figures 3 and 4, respectively. Data that underlie our analyses are given in Tables 1 and 2. 291 

The late Holocene and recent sea-level records from the seven sites are briefly discussed in the 292 

following sections, but for additional details we refer to the original studies. 293 

5.1. Nova Scotia, Canada  294 

The reconstruction from Chezzetcook (Scott et al., 1995; Gehrels et al., 2004, 2005) is from a 295 

salt marsh on the central Atlantic coast of Nova Scotia (Figure 3a, 4a). Foraminifera were used 296 

as sea-level indicators. The tide-gauge record from nearby Halifax agrees well with the 297 

reconstruction for the overlapping period. The 20th century part of the proxy record is dated by 298 

210Pb ages, but there are no dates for the 19th century. The earlier part of the record contains the 299 

introduction of ragweed following European settlement dated at 1760-1800, and a radiocarbon 300 

measurement in the early 18th century. The background late Holocene rate is based on seven 301 

basal sea-level index points that are younger than 4000 years (Scott et al. 1995; Gehrels et al., 302 

2004). A linear regression through these dates gives a long-term rate of relative sea-level rise 303 

of 2.17 mm/yr (Figure 3a). The lower error bars of the proxy data overlap with the late 304 

Holocene trend until the 1970s, but the departure of the tide-gauge record from the background 305 

trend occurs in the period 1930-1940. This is 20 to 30 years later than the inflexion identified 306 

by Gehrels et al. (2005) who compared 19th and 20th century rates. 307 

5.2.  Connecticut, USA  308 

The Barn Island record by Donnelly et al. (2004) includes proxy data up to ~1900 AD (Figure 309 

3b, 4b) that are coupled with tide-gauge data from New York starting in 1856, and New London 310 

starting in 1939. The proxy data are 11 basal sea-level index points, all younger than 700 years, 311 

collected from the base of a salt-marsh section where it overlies a sloping glacial erratic. The 312 

indicative meaning of these samples was determined by analyses of fossil plant remains. The 313 



radiocarbon ages were calibrated, but some of the calibrated results were rejected on 314 

stratigraphic grounds, producing seemingly small age errors (Table 1). Two ages were 315 

stratigraphic pollen markers and one was a pollution marker. Donnelly et al. (2004) suggest 316 

that “the nearly three-fold increase in the regional rate of sea-level rise to modern levels likely 317 

occurred in the later half of the 19th century”. However, it can be seen in Figure 4b that the 318 

late Holocene background trend of 1.2 mm/yr continues until at least 1920-1930. 319 

5.3. North Carolina, USA 320 

The proxy record from Sand Point (Kemp et al., 2009, 2011; Engelhart et al. 20011a) contains 321 

a good chronology for the 20th century, based on bomb-spike 14C, 137Cs and 210Pb. The 322 

preceding 200 years are covered by two dates, one high-precision 14C and one pollen marker 323 

(ragweed introduction). The sea-level indicators that are used are foraminifera. Kemp et al. 324 

(2009, 2011) also discuss a second site (Tump Point), about 120 km to the southwest, but it is 325 

ignored in this analysis because the basal dates there show large scatter (Horton et al., 2009; 326 

Engelhart et al., 2011a) and the late Holocene background relative sea-level rise cannot be 327 

established with satisfactory precision. Twenty late Holocene basal sea-level index points from 328 

Sand Point (Engelhart et al., 2011a) are all younger than 2700 years and provide a background 329 

relative sea-level rise of 0.9 mm/yr (Figure 3c). The modern trend (Figure 4c) agrees well with 330 

tide-gauge data and diverges between 1925 and 1935, significantly later than determined by 331 

Kemp et al. (2011) using change-point analysis on age-modelled data. 332 

5.4 Southwest England 333 

Gehrels et al. (2011) published 10 late Holocene sea-level index points from a basal salt-marsh 334 

section in Thurlestone, southwest England, using foraminifera as sea-level indicators. There is 335 

some clustering in the ages of the index points, but overall they provide a late Holocene trend 336 

of sea-level rise of 0.9 mm/yr (Figure 3d). There are no proxy data for the last 200 years, but 337 



the western English Channel contains the longest continuous tide-gauge record in the world at 338 

Brest (Wöppelmann et al., 2006). We compare the background late Holocene rate with the 339 

Brest record, and also with the tide-gauge record at Newlyn, which is closer to Thurlestone and 340 

which shows a similar trend as Brest (Figure 4d). Despite the interannual variability in the tide-341 

gauge records it appears that the most recent trend of sea-level rise has exceeded the 342 

background trend for most of the 20th century. 343 

5.5 The Netherlands 344 

The Amsterdam instrumental record is one of the longest in Europe commencing in 1682 but 345 

terminating in 1925 prior to the closure of the Zuiderzee. Van Veen (1945) documented the 346 

series starting in 1700; we use a slightly amended version provided by the Rijkswaterstaat 347 

available from the PSMSL (www.psmsl.org/data/longrecords/ancill_rep.htm). The Amsterdam 348 

time series was extended by Woodworth et al. (2011a) with the use of modern MSL 349 

information from Den Helder, located on the open North Sea and some 65 km north of 350 

Amsterdam, with the two time series constrained to have the same values of sea level in their 351 

period of overlap 1865-1925. This composite record is shown in Figure 4e. 352 

The late Holocene rate of relative sea-level rise is estimated from the dataset of van de Plassche 353 

et al. (2005). This dataset (Figure 3e) is from Schokland, about 100 km to the northeast of 354 

Amsterdam. There are 31 basal sea-level index points, but only four of these are younger than 355 

4000 cal yr BP. If we include a further three dates that are between 4000 and 5000 years old, 356 

we obtain a background relative sea-level rise of 1.2 mm/yr for the central Netherlands between 357 

5000 and 1500 cal yr BP. However, these relatively old sea-level index points are likely to 358 

produce an overestimate, as relative sea-level rise during the middle to late Holocene gradually 359 

slowed down. We therefore include in our calculation of the background trend the sea-level 360 

position known from the Amsterdam tide gauge around 1700, which is about -0.15 m. This 361 

http://www.psmsl.org/data/longrecords/ancill_rep.htm


yields a background rate of -0.7 mm/yr for index points that are younger than 4000 cal yr BP 362 

and -0.8 mm/yr if we also include the three points between 4000 and 5000 cal yr BP. We use 363 

the more conservative rate (-0.7 mm/yr) as a best estimate of the late Holocene relative sea-364 

level trend in the central Netherlands (Figure 3e). The instrumental sea-level record and the 365 

late Holocene background trend diverge after ca. 1910. 366 

5.6 Tasmania, Australia 367 

The proxy record from Little Swanport in southeastern Tasmania is based on foraminifera and 368 

contains 31 sea-level index points (Figure 4f), including 6 that provide age control for the 19th 369 

century (Gehrels et al., 2012). Dating methods include 210Pb, 137Cs, bomb-spike 14C, high-370 

precision 14C, stable Pb isotopes, chemostratigraphy and pollen markers. The background rate 371 

of late Holocene sea-level change is less certain. Two middle Holocene sea-level index points 372 

from shells, one of which is basal, and a GIA model prediction (Lambeck et al. 2002) suggest 373 

that the background rate is close to zero (Figure 3f). Nearby tide gauges were only installed in 374 

recent decades and do not provide suitable records for comparison. There are short-term (ca. 2 375 

years) historical observations from the 1840s (Hunter et al., 2003), but they do not agree with 376 

the proxy reconstruction, for reasons that are not clear (Gehrels et al., 2012). The record departs 377 

from the zero trend between 1895 and 1920, but the poorly constrained late Holocene sea-level 378 

index points, as well as the lack of dates in the early 20th century, hinders the exact dating of 379 

the divergence. Also note that sea level has not risen by much in the second half of the 20 th 380 

century. This deceleration can also be seen in the regional compilations of tide-gauge data from 381 

the western Pacific and the Indian Ocean (Figure 1b). 382 

 383 

5.7 Pounawea, New Zealand 384 



The proxy record from New Zealand (Gehrels et al., 2008) relies on 137Cs, stable Pb isotopes, 385 

chemostratigraphy, pollen and charcoal analyses. Sea-level estimates are derived from 386 

foraminiferal analyses and for the 20th century they are in good agreement with the tide-gauge 387 

record from Lyttelton (Figure 4g) and Bluff (Gehrels et al., 2008). Similar to Tasmania, basal 388 

sea-level index points are not found in this setting. As in Tasmania, the flat background rate (-389 

0.1 mm/yr) is poorly constrained. It is calculated from middle and late Holocene sea-level index 390 

points (Figure 3g) derived from shells from Pounawea (Gehrels et al., 2008) and nearby 391 

Blueskin Bay (Gibb, 1986), and is confirmed by a GIA model prediction (Lambeck et al., 2002; 392 

Gehrels et al., 2012). There are no dates in the proxy record between 1895 and 1935, but the 393 

departure from the late Holocene background trend of relative sea-level rise occurs in this 394 

period.  395 

 396 

6. Discussion 397 

In Table 3 we have compiled the data from the seven sites that are investigated in this study. 398 

We also include an entry for the ‘typical’ global reconstruction mentioned above (Church and 399 

White, 2011) and a compilation of regional-averaged tide-gauge records for those ocean basins 400 

which are relevant to the sites (those of Figure 1b). For each of the global and regional entries 401 

we have estimated an inflexion timing in a similar way to the seven individual records above 402 

(i.e. by visual inspection). It is clear that, in both proxy and instrumental records, the inflexions 403 

are recorded in the early part of the 20th century, roughly between 1905 and 1945 (the average 404 

calculated from the inflexion ranges shown in Table 3, excluding the global average, is 1925).  405 

An unexplained exception is the regional subset for the NE Atlantic for which an inflexion is 406 

less clear in Figure 1b, unlike the situation for individual long instrumental and proxy records 407 

(Woodworth et al., 2011a). The difference may be due to the inclusion of shorter records in the 408 



Jevrejeva et al. (2006) analysis although that remains unconfirmed. As mentioned above, the 409 

longest European instrumental records all show an acceleration on the order of 0.01 mm/yr2 410 

(e.g., Woodworth, 1999). The 20th century rates of sea-level change are significantly higher 411 

than the 19th century rates at these locations, and also at four additional German stations 412 

(Warnemünde, Wismar, Travemünde and Cuxhaven) where records are available from the 413 

middle of the 19th century (Woodworth et al., 2011b).  414 

When combining instrumental sea-level data with proxy data it is important to be aware of 415 

limitations and (dis)advantages of both datasets. Tide gauges have advantages over the proxy 416 

methods in two main ways. First, modern tide gauges can sample sea-level change at any 417 

desired frequency. For example, many of the modern gauges in the Global Sea Level Observing 418 

System (GLOSS, Merrifield et al., 2009) also contribute data to tsunami warning networks, 419 

with measurements integrated over a minute or even more frequent sampling. Earlier, the paper 420 

charts of the pre-electronic era were digitised to provide hourly (or similar) values of sea level 421 

for the determination of tidal parameters and storm-surge statistics. Second, gauges provide 422 

values of sea level relative to benchmarks on the nearby land to sub-centimetre accuracy. As a 423 

consequence, tide gauges can provide accurate values of annual mean sea level (MSL) relative 424 

to a benchmark to centimetre accuracy or better, which contrasts with proxy information which 425 

has poorer temporal resolution (typically decadal, but depending on the particular situation) 426 

and often less accurate datum control. 427 

Conversely, tide gauges have two main disadvantages relative to the proxy records. First, the 428 

lengths of most of their records are limited to a century or less, with only a small number of 429 

longer records from northern Europe (Woodworth et al., 2011a). This compares to the several 430 

centuries or even millennia of some salt-marsh records. Second, it is well known that most of 431 

the historical instrumental information stems from the northern hemisphere (see Figure 1 of 432 

Woodworth et al., 2011b), while proxy techniques are in principle applicable worldwide 433 



(although the type of proxy, e.g. salt-marsh indicators or micro-atolls, are latitude dependent). 434 

It is therefore necessary to compare information from the two methods where available, and 435 

then to make maximum use of the proxy methods especially in parts of the world where little 436 

historical instrumental information exists. 437 

The use of age-depth models in proxy studies helps to explain seemingly incompatible age 438 

ranges for the onset of modern rates of sea-level rise. Construction of a best fit age-depth plot 439 

from the available dates and interpolation to estimate ages of intermediate samples result in 440 

many ‘synthetic’ data points. This approach essentially violates the established methodology 441 

of using sea-level index points (Shennan, 1986), because many samples are not directly dated. 442 

Age-depth models have been adopted from other palaeoenvironmental studies, in particular 443 

those that are concerned with environments where sedimentation rates are relatively constant, 444 

such as peatlands and the deep sea. However, salt-marsh sedimentation is notoriously episodic 445 

so that resolving changes in accretion rates would require a large number of dates. 446 

Sedimentation rates in salt marshes are, in fact, coupled with sea-level changes. When sea-447 

level rise slows, the frequency of submergence and sedimentation rates decrease. Dating 448 

resolution will be adversely affected. The converse is true for accelerating sea-level rise.  449 

To establish with confidence the timing of the onset of modern rates of sea-level rise in proxy 450 

records, it is undesirable to use age-depth models, because they can create inflexions that will 451 

bias the sea-level reconstruction. Information about the true age estimates and their 452 

uncertainties may be lost. For example, if microfossil assemblages are similar throughout a 453 

core the sea-level inflexions would be entirely driven by the age-depth model, so that a lack of 454 

dates in a section of the core becomes a critical limitation. Some studies (Kemp et al., 2009, 455 

2011) have used Bayesian change-point linear regression (Carlin et al., 1992) on sea-level 456 

reconstructions, but these analyses do not produce objective results when used in combination 457 

with age-depth models, again because inflexions in age-depth models strongly depend on the 458 



number of available dates (i.e. where there are gaps in the chronology an inflexion is produced 459 

midway between two dates). Our study demonstrates that when the interpolated sea-level index 460 

points are removed from analyses, the inflexions seen in proxy data are in good agreement with 461 

the instrumental datasets. 462 

Another issue related to chronology is the use of separate dating methods that each define a 463 

part of the chronology. An example is the use of 14C chronology for the older part of the sea-464 

level record in combination with 210Pb dating for the more recent part. An inflexion is often 465 

observed where the 14C and 210Pb-based reconstructions meet (e.g. Gehrels et al., 2005; Kemp 466 

et al., 2009), raising the possibility that the inflexion is an artefact of issues and limitations 467 

intrinsic to the dating techniques, such as selection and uncertainties of 210Pb models and/or 468 

14C calibration precision. For more robust estimates of inflexion ages in proxy sea-level records 469 

it is desirable that multiple dating methods are used, and that at least some techniques date the 470 

parts of the reconstructions before and after the inflexion. Examples of such complementary 471 

dating methods are stable Pb isotopic markers, Pb pollution markers and high-precision 14C 472 

dating (e.g., Marshall et al., 2007; Gehrels et al., 2008, 2012). All these methods can be applied 473 

to 19th century and early 20th century sediments and can therefore capture the inflexion more 474 

accurately than the combination of 210Pb and conventional 14C dating alone. 475 

Compaction is an important issue when dealing with sea-level reconstructions from intertidal 476 

sediments (Brain et al., 2011). Compaction can lower the altitude of sea-level index points in 477 

age-depth plots relative to the level of original deposition. The use of basal peats is an 478 

established method that provides sea-level index points that are immune to compaction 479 

(Jelgersma, 1961; Gehrels, 1999; Donnelly et al., 2004), resulting in reliable late Holocene sea-480 

level trends for our North Atlantic sites. The stiff tidal flat sediments in Tasmania and New 481 

Zealand from which late Holocene sea-level trends are derived can be considered as ‘over-482 

consolidated’ due to drying out and slow deposition rates during the stable sea levels that 483 



prevailed for many millennia during the middle and late Holocene. These sediments also 484 

provide a stable substrate for the overlying salt-marsh stratigraphies from which the recent sea-485 

level trends are reconstructed. However, it is possible that compaction within salt-marsh 486 

stratigraphies can lower the surface of the marsh and produce a transgressive signal that can be 487 

erroneously interpreted as a rise of sea level (Mörner, 2010). This issue has recently been 488 

studied by Brain et al. (2012) using a numerical modelling approach based on physical 489 

sediment properties and geotechnical theory. Importantly, they specifically scrutinised the 490 

recent proxy reconstructions that are discussed in this paper. Brain et al. (2012) conclude that 491 

the stratigraphies of the salt marshes in Tasmania and New Zealand are not conducive to 492 

compaction. The Connecticut record is derived from basal sea-level index points and is 493 

therefore also immune. In the other North Atlantic marshes, records with shallow (<0.5 m) 494 

uniform lithologies experience negligible compaction. Deeper sequences that contain 495 

transgressive stratigraphies, resulting in increases in the amount of minerogenic sediment 496 

towards the top, can add up to 0.4 mm/yr of local sea-level rise to the record (for a 3 metre long 497 

sequence). The Nova Scotia sequence is about 2 m long, but the lithology is relatively uniform. 498 

The North Carolina sequence is about 1 m long, and there is an increase in the minerogenic 499 

component in the upper part, including a sand layer at the top. Compaction in both the Nova 500 

Scotia and North Carolina records cannot be entirely ruled out, but two further observations 501 

make it unlikely that compaction is significant (Brain et al., 2012). Firstly, compaction 502 

processes are time dependent and do not produce abrupt inflexions as seen in the sea-level 503 

reconstructions. If compaction were important, the reconstructed curves would be gradual with 504 

continuous curvatures. Secondly, the reconstructed 20th century sea-level trends in Nova Scotia 505 

and North Carolina are similar to the trends observed in nearby tide-gauge records. Therefore, 506 

we conclude that compaction processes have little bearing on both the timing and the 507 

magnitude of inflexions observed in the proxy sea-level reconstructions. 508 



We cannot establish with great certainty the cause of the early 20th century inflexion, but we 509 

speculate that melting of northern hemisphere ice masses may have been an important 510 

contributor. The mass balance of Greenland changed in the 1920s to a more negative state 511 

according to several modelling studies (Wake et al., 2009; Hanna et al., 2011) as a result of 512 

considerable warming over Greenland (Chylek et al., 2006). These studies only deal with 513 

changes in surface mass balance of the Greenland Ice Sheet, but Box (in review) shows a model 514 

reconstruction that also includes rapid ice discharge and that suggests a contribution to global 515 

sea-level rise of 5.4 mm per decade for the period 1922-1932 (Figure 5a). Reconstructions 516 

based on the length of glaciers (LeClercq et al., 2011) show that glaciers started to contribute 517 

significantly to sea-level rise in the middle of the 19th century, with highest contributions to 518 

sea-level rise achieved in the 1930s (Figure 5b; Gregory et al., in revision). Given the warming 519 

that has been recorded in high northern latitudes in the 1920s and 1930s (Johannessen et al., 520 

2004), it is likely that Arctic glaciers contributed significantly to the signal shown in Figure 5b 521 

(Gregory et al., in revision). This is confirmed by the modelling study of Marzeion et al. (2012). 522 

According to their reconstructions, the overall contributions of glaciers to global sea-level rise 523 

were higher during the 20th century than calculated by LeClercq et al. (2011). Marzeion et al. 524 

(2012) suggest that this discrepancy could be due to a lack of records from the Canadian and 525 

Russian Arctic in the LeClercq et al. (2011) study, or to the inability of their own model to 526 

capture ice dynamics and distinguish between floating and land-based ice. They calculate a 527 

contribution of Arctic glaciers of up to 2 mm/yr in the 1920s/1930s (Figure 5c). 528 

Sea-level fingerprinting is an indirect method which can be used to constrain past contributions 529 

of ice melt. The method takes advantage of the observation that sea-level change caused by 530 

melting ice sheets and glaciers is not globally uniform but results in distinct spatial patterns, or 531 

fingerprints, whose geometries depend on the location of the melt source and result from the 532 

diminishing gravitational attraction which the ice mass exerts on the ocean surface while it is 533 



melting (Mitrovica et al., 2001). Water will migrate away from the ice sheet and the net effect 534 

is that the most rapid sea-level rise occurs up to 1000s of kilometres away from the ice mass, 535 

whilst nearby the melting ice mass sea level may actually be falling (Tamisiea et al., 2003). 536 

Using sea-level fingerprinting, Mitrovica et al. (2001) estimated that Greenland has contributed 537 

~0.6 mm/yr to global sea-level rise during the 20th century, whereas Nakada and Inoue (2005) 538 

suggested a Greenland melt contribution of ~1 mm/yr. Neither of these studies, however, 539 

provided a temporal framework for the melt, only overall 20th century estimates. These are high 540 

compared to direct measurements of Greenland Ice Sheet mass-balance changes, which show 541 

that, during the relatively warm 1960s, Greenland melted at a rate equivalent to a sea-level rise 542 

of 0.3±0.2 mm/yr (Rignot et al., 2008). There are no reliable direct observations from before 543 

the 1960s, only the modelled reconstructions discussed above, but if Greenland and high-544 

latitude glaciers contributed significantly to the global rise of sea level in the 1920s, one would 545 

expect to observe a spatial pattern that shows higher rates of sea-level rise in the southern 546 

hemisphere. The general pattern of Greenland mass loss (Mitrovica et al., 2001) is, at least 547 

qualitatively, in agreement with our data (Figure 6) which show that the differences between 548 

late Holocene and 20th century rates in the Tasmania and New Zealand records are of a greater 549 

magnitude than in the North Atlantic records. The same pattern for pre- and post-inflexion rates 550 

of sea-level change was discussed by Gehrels et al. (2012). There is also a suggestion of a 551 

latitudinal trend along the Atlantic coast of North America, also observed by Engelhart et al. 552 

(2009). As discussed above, Brain et al. (2012) rule out compaction problems in southern 553 

hemisphere sites, but they do point out that if North Atlantic salt-marsh sequences are corrected 554 

for compaction the existing contrast between northern and southern hemisphere sites would 555 

increase, thereby potentially amplifying the Northern Hemisphere melt signal that could be 556 

interpreted from the spatial fingerprint. The modelling study by Kopp et al. (2010) suggests 557 

that the southeastern Indian and the western Atlantic oceans are areas where ocean dynamics 558 



may obscure a gravitational sea-level fingerprint signal. It is therefore desirable that future 559 

studies using the fingerprinting technique explore the Greenland/Arctic melt hypothesis 560 

further, especially in other southern hemisphere locations (e.g. the southern Atlantic) where, 561 

according to Kopp et al. (2010), the Greenland mass-loss signal is predicted to be large and 562 

detectable.  563 

 564 

7. Conclusions 565 

This paper has addressed two main questions: 566 

(1) why does the timing and magnitude of inflexions appear to differ in proxy and instrumental 567 

records? 568 

(2) when did sea-level rise start departing from the long-term slow rate of sea-level rise 569 

persistent during much of the late Holocene?  570 

The timing of inflexions in published proxy records appears to be affected by the use of age-571 

depth modelling. When the sea-level data for which no firm age information is available are 572 

removed from the proxy datasets a consistent picture emerges. In the seven sites analysed in 573 

this study, two from the eastern North Atlantic, three from the western North Atlantic, one 574 

from the Tasman Sea and one from the southwest Pacific, it appears that modern rates of sea-575 

level rise started between 1905 and 1945. This change produced inflexions that are also seen 576 

in many compilations of tide-gauge records, and we therefore suggest that the proxy and 577 

instrumental sea-level datasets are compatible. The consistent timing across the globe points 578 

mainly at a glacio-eustatic origin of the inflexion, although some variability is to be expected 579 

due to oceanographic dynamical processes and steric overprints. It appears that the magnitude 580 

of the inflexion is larger in the southern hemisphere, which is consistent with a northern 581 



hemisphere melt source as suggested by sea-level fingerprinting theory. This hypothesis is 582 

supported by reconstructions of the contributions to global sea-level rise by the Greenland Ice 583 

Sheet and Arctic glaciers and requires further testing in other sites, especially in the southern 584 

hemisphere.  585 

 586 

 587 
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 1001 

Figure 1. a. Global tide-gauge compilations from Jevrejeva et al. (2008) and Church and White 1002 

(2011). Increased errors bands before 1850-1900 reflect the low number of tide-gauge records 1003 

that cover the 18th and 19th centuries. The range of global late Holocene sea-level trends (0-0.2 1004 

mm/yr), as proposed by Jansen et al. (2007), is also shown. b. Compilations of tide-gauge 1005 

records for four oceanic regions relevant to this study. From Milne et al. (2009), based on data 1006 

from Jevrejeva et al. (2006). 1007 



 1008 

Figure 2. Salt-marsh stratigraphy and sea-level index points. a. Dates on basal sediments 1009 

(squares) provide a long-term (millennial-scale) trend of sea-level change. The most recent 1010 

record of sea-level change is captured by the upper part of the salt-marsh stratigraphy (dots). 1011 

In the coastal lowlands of northwest Europe the salt-marsh units are typically very thin and 1012 

largely replaced by tidal flat deposits. In these settings only millennium-scale sea-level 1013 

reconstructions are possible from basal sea-level index points.  b. Age-altitude graph of sea-1014 

level index points. The squares and dots correspond with the basal points and upper salt-marsh 1015 

points in a, respectively. The sizes of the boxes reflect age and altitudinal errors. For the recent 1016 

record (dots) errors are typically much smaller. In this paper we define the onset of modern 1017 

rates of sea-level rise as the timing of the divergence of the recent sea-level record from the 1018 

long-term trend. Figure is adapted from Engelhart et al. (2011b). 1019 



1020 

Figure 3. Late Holocene rates of sea-level rise for the seven coastal sites considered in this 1021 

study as determined by linear regression through sea-level index points. Crosses reflect 1022 

altitudinal and age uncertainties. a. Chezzetcook, Nova Scotia (Scott et al., 1995; Gehrels et 1023 

al., 2004, 2005). b. Barn Island, Connecticut, USA (Donnelly et al., 2004). c. Sand Point, North 1024 

Carolina, USA (Kemp et al., 2009, 2011; Engelhart et al. 2011a). d. Thurlestone, Devon, United 1025 

Kingdom (Gehrels et al., 2011). e. Schokland, the Netherlands (van de Plassche et al., 2005). 1026 

f. Little Swanport, Tasmania, Australia (Gehrels et al., 2012). g. Pounawea and Blueskin Bay, 1027 

southeastern New Zealand (Gibb 1986; Gehrels et al., 2008). All sea-level index points from 1028 

North Atlantic sites are from basal organic sediments (see Figure 2). Those from Tasmania and 1029 

New Zealand are from intertidal shells found in tidal flat deposits and from salt-marsh 1030 

sediments (the three dates with the smallest vertical errors). Only a few of these are basal index 1031 

points. 1032 



 1033 



Figure 4. Recent sea-level changes (last 200-350 years) compared with late Holocene 1034 

background trend of sea-level change (from Figure 3). Red and blue lines are tide-gauge 1035 

records. Sea-level index points from proxy data are shown as crosses reflecting age and 1036 

altitudinal uncertainties. a. Chezzetcook, Nova Scotia (Gehrels et al., 2005), with tide-gauge 1037 

record from Halifax. b. Barn Island, Connecticut, USA (Donnelly et al., 2004), with tide-gauge 1038 

records from New York City (red line) and New London (green line). c. Sand Point, North 1039 

Carolina, USA (Kemp et al., 2009, 2011), with tide-gauge record from Charleston, South 1040 

Carolina. d. Tide-gauge records from Brest (red line) and Newlyn (green line) compared with 1041 

late Holocene trend of relative sea-level change at Thurlestone, Devon, United Kingdom 1042 

(Gehrels et al., 2011). e. Instrumental sea-level record from Amsterdam (red line) and tide-1043 

gauge record from Den Helder (blue line), compared with late Holocene trend of relative sea-1044 

level change at Schokland, the Netherlands (van de Plassche et al., 2005). f. Little Swanport, 1045 

Tasmania, Australia (Gehrels et al., 2012). g. Pounawea southeastern New Zealand (Gehrels et 1046 

al., 2008), with tide-gauge record from Lyttelton. 1047 



 1048 

Figure 5. a. Contributions to global sea-level rise from the Greenland Ice Sheet reconstructed 1049 

from modelling of surface mass balance and ice discharge (13 yr running average). The decade 1050 

1922-1932 produced 5.4 mm sea-level rise (Box et al., in review). b. Contributions to global 1051 

sea-level rise from glaciers and ice caps reconstructed from glacier length records (Leclercq et 1052 

al., 2011; Gregory et al., in revision). c. Contributions to global sea-level rise (5 yr running 1053 

average) from glaciers in Alaska, Canada, western USA, Greenland, Iceland, Svalbard, 1054 

Scandinavia and Russian Arctic (Marzeion et al., 2012). Uncertainty estimates in a and b are 1055 

shown in grey shading. Uncertainties in c vary by region (see Marazeion et al., 2012). 1056 

 1057 



 1058 

Figure 6. Model prediction (in mm) of how 1 mm of sea-level equivalent ice melt would be 1059 

redistributed across the world’s oceans were that water to come from the melting of the 1060 

Greenland Ice Sheet (Mitrovica et al., 2001). Superimposed are differences between late 1061 

Holocene and post-1930 rates of sea-level rise (mm/yr) from Table 3. The rate shown for 1062 

Tasmania (4.2 mm/yr) is for the period 1900-1950 and is based on proxy data (Gehrels et al., 1063 

2012). Fastest increases of 20th century sea-level rise have occurred in the two southern 1064 

hemisphere sites. 1065 

 1066 

 1067 

14C lab code / marker 14C age 

Cal yr age BP  

(2 range) RSL 
RSL 
error Reference 

     

Chezzetcook, Nova Scotia, Canada (44 44’N, 063 16’W)     

GX-18458 1735±120 1638.5 (1925-1353) -3.3 0.15 Scott et al. (1995) 

GX-18454 2710±155 2797.5 (3239-2356) -6.34 0.15 Scott et al. (1995) 

GX-5708 2495±115 3844 (4414-3274) -8.08 0.15 Scott et al. (1995) 

AA-47216 350±34 405.5 (308-503) -0.86 0.06 Gehrels et al. (2004) 

AA-47218 841±35 778 (674-882) -1.45 0.06 Gehrels et al. (2004) 

AA-47219 967±36 870 (789-951) -1.65 0.06 Gehrels et al. (2004) 

AA-47220 996±36 880.5 (794-967) -2.05 0.06 Gehrels et al. (2004) 

      

Barn Island, Connecticut, USA (41 20’N, 071 52’W)     



OS-26454 265±30 161.5 (153-170) -0.42 0.10 Donnelly et al. (2004) 

OS-26654 15±40 237 (224-250)) -0.47 0.10 Donnelly et al. (2004) 

OS-27765 240±35 295.5 (269-322) -0.53 0.10 Donnelly et al. (2004) 

OS-26452 305±40 380 (294-466) -0.63 0.10 Donnelly et al. (2004) 

OS-29653 330±35 389 (307-471) -0.69 0.09 Donnelly et al. (2004) 

OS-27764 540±40 537 (510-564) -0.78 0.09 Donnelly et al. (2004) 

OS-33644 475±40 509 (468-550) -0.82 0.09 Donnelly et al. (2004) 

OS-29652 570±35 614 (581-647) -0.91 0.09 Donnelly et al. (2004) 

pollen (Rumex) n/a 275 (250-300) -0.49 0.10 Donnelly et al. (2004) 

pollution (Cu, Pb) n/a 75 (50-100) -0.26 0.10 Donnelly et al. (2004) 

pollen (Plantago) n/a 125 (100-125) -0.34 0.10 Donnelly et al. (2004) 

      

Sand Point, North Carolina, USA (35 53’N, 075 41’W)     

OS-43066 185±30 150 (0–300) -0.50 0.20 Engelhart et al. (2011a) 

OS-43067 900±50 827 (727–927) -1.10 0.20 Engelhart et al. (2011a) 

OS-43068 1520±40 1427 (1333–1521) -1.80 0.20 Engelhart et al. (2011a) 

OS-43069 1920±45 1860 (1734–1986) -2.20 0.20 Engelhart et al. (2011a) 

OS-43070 2090±35 2051 (1951–2151) -2.30 0.20 Engelhart et al. (2011a) 

OS-43071 2420±35 2524 (2349–2699) -2.70 0.20 Engelhart et al. (2011a) 

OS-43266 2470±45 2538.5 (2363–2715) -3.00 0.20 Engelhart et al. (2011a) 

OS-58902 315±25 383 (305–461) -0.60 0.20 Engelhart et al. (2011a) 

OS-58897 535±30 572 (512–632) -0.80 0.20 Engelhart et al. (2011a) 

OS-58901 910±30 830 (743–917) -1.20 0.20 Engelhart et al. (2011a) 

OS-58896 1000±25 882 (800–964) -1.40 0.20 Engelhart et al. (2011a) 

OS-58713 1080±30 995 (933–1057) -1.50 0.20 Engelhart et al. (2011a) 

OS-58712 1190±30 1118 (1006–1230) -1.70 0.20 Engelhart et al. (2011a) 

OS-58711 1600±25 1475.5 (1413–1539) -1.90 0.20 Engelhart et al. (2011a) 

OS-58710 2120±25 2145 (2003–2287) -2.50 0.20 Engelhart et al. (2011a) 

OS-62716 2620±45 2696 (2543–2849) -2.60 0.20 Engelhart et al. (2011a) 

OS-64687 615±35 602 (546–658) -0.70 0.20 Engelhart et al. (2011a) 

OS-64688 2410±35 2522 (2346–2698) -2.40 0.20 Engelhart et al. (2011a) 

OS-64813 1390±110 1295 (1067–1523) -1.40 0.20 Engelhart et al. (2011a) 

OS-64689 2410±40 2522 (2345–2699) -2.60 0.20 Engelhart et al. (2011a) 

      

Thurlestone, SW England (50 18’N, 003 51’W)      
SUERC-20170 1321±35 1239 (1178-1300) -0.91 0.26 Gehrels et al. (2011) 

SUERC-20041 1310±35 1236 (1178-1294) -1.25 0.26 Gehrels et al. (2011) 

SUERC-20171 1385±37 1278 (1193-1363) -1.3 0.26 Gehrels et al. (2011) 

SUERC-20172 1306±37 1235.5 (1175-1296) -0.81 0.26 Gehrels et al. (2011) 

SUERC-20173 1342±37 1245.5 (1178-1313) -0.96 0.26 Gehrels et al. (2011) 

SUERC-20174 1270±37 1187 (1087-1287) -1.02 0.26 Gehrels et al. (2011) 

SUERC-20175 1539±35 1437.5 (1354-1521) -1.61 0.26 Gehrels et al. (2011) 

SUERC-23074 1610±35 1498.5 (1406-1591) -1.6 0.26 Gehrels et al. (2011) 

SUERC-23075 1619±35 1505 (1410-1600) -1.67 0.26 Gehrels et al. (2011) 

SUERC-23081 439±35 435.5 (335-536) -0.63 0.26 Gehrels et al. (2011) 

      



Schokland, Netherlands (52 39’N, 005 47’E)      

Amsterdam tide gauge n/a 250 -0.15 0.05 Van Veen (1945) 

GrA-16219/16225 3365±40 3588 (3481-3695) -2.28 0.25 van de Plassche et al. (2005) 

GrN-16381 3350±140 3647 (3321-3973) -2.31 0.26 van de Plassche et al. (2005) 

GrA-16216/16217 3655±40 3979 (3867-4091) -2.76 0.24 van de Plassche et al. (2005) 

GrN-16382 3740±160 4086.5 (3644-4529) -3.14 0.23 van de Plassche et al. (2005) 

GrA-12714 4340±50 4936.5 (4846-5027) -3.79 0.26 van de Plassche et al. (2005) 

GrN-15128 4330±70 4966 (4655-5277) -3.91 0.33 van de Plassche et al. (2005) 

GrN-15129 4420±100 5075.5 (4838-5313) -4.12 0.33 van de Plassche et al. (2005) 

      

Little Swanport, Tasmania, Australia (42 21’S, 147 56’E)     

SUERC-29114/29115 664±11 442 (329-555) -0.29 0.1 Gehrels et al. (2012) 

SUERC-28447 4414±37 4563 (4236-4890) -0.4 0.4 Gehrels et al. (2012) 

SUERC-28448 5677±38 6106 (5830-6382) -0.34 0.5 Gehrels et al. (2012) 

      

Pounawea, SE New Zealand (46 29’S, 169 41’E)      

Wk20397 1665±48 1533 (1382-1684) -0.22 0.2 Gehrels et al. (2008) 

Wk15813 3756±36 4032 (3911-4135) -0.2 0.2 Gehrels et al. (2008) 

Beta 20652 413±23 425 (335-515) -0.385 0.05 Gehrels et al. (2008) 

NZ5270 413±30 425.5 (331-520) 0 0.5 Gibb (1986) 

NZ6485 907±62 814 (698-930) 0.02 0.9 Gibb (1986) 

NZ1973 1970±50 1935 (1818-2052) -0.5 0.9 Gibb (1986) 

NZ5269 2250±50 2249 (2151-2347) 0 0.5 Gibb (1986) 

NZ1975 3240±60 3487 (3359-3615) 0 0.9 Gibb (1986) 

NZ1974 3440±60 3714 (3560-3868) -0.5 0.9 Gibb (1986) 

NZ1978 5600±70 6413.5 (6281-6546) 0.2 0.9 Gibb (1986) 

NZ1976 5640±70 6461 (6295-6627) 0.3 0.5 Gibb (1986) 

NZ1977 6000±70 6905.5 (6668-7143) 0.2 0.9 Gibb (1986) 

NZ6484 6750±150 7633.5 (7334-7933) -0.97 0.5 Gibb (1986) 

 1068 

Table 1. Proxy data used to calculate late Holocene trends of sea-level change in our study sites 1069 

(Figure 3). 1070 

 1071 

 1072 

 1073 

 1074 



Year 
AD 

Age error 
(yr) 

RSL 
(m) 

RSL 
error (m) 

dating 
method/marker 

Chezzetcook, Nova Scotia, Canada (Gehrels et al. 2005) 

1996 0.2 -0.01 0.06 210Pb 

1993 0.4 -0.02 0.06 210Pb 

1989 1.0 -0.03 0.06 210Pb 

1986 1.1 -0.05 0.06 210Pb 

1982 1.0 -0.06 0.06 210Pb 

1979 1.3 -0.07 0.06 210Pb 

1976 1.8 -0.08 0.06 210Pb 

1974 1.2 -0.08 0.06 210Pb 

1971 1.9 -0.09 0.06 210Pb 

1970 2.6 -0.11 0.06 210Pb 

1967 2.8 -0.12 0.06 210Pb 

1966 1.8 -0.13 0.06 210Pb 

1962 1.6 -0.13 0.06 210Pb 

1960 2.5 -0.12 0.06 210Pb 

1959 3.6 -0.15 0.06 210Pb 

1957 3.7 -0.19 0.06 210Pb 

1956 3.2 -0.23 0.06 210Pb 

1955 3.9 -0.18 0.06 210Pb 

1953 3.1 -0.17 0.06 210Pb 

1950 4.5 -0.14 0.06 210Pb 

1942 4.9 -0.19 0.06 210Pb 

1940 3.4 -0.22 0.06 210Pb 

1938 6.1 -0.23 0.06 210Pb 

1931 5.5 -0.23 0.06 210Pb 

1929 5.9 -0.24 0.06 210Pb 

1926 7.5 -0.25 0.06 210Pb 

1920 8.5 -0.27 0.06 210Pb 

1916 6.4 -0.27 0.06 210Pb 

1912 7.6 -0.28 0.06 210Pb 

1909 7.3 -0.28 0.06 210Pb 

1902 9.3 -0.31 0.06 210Pb 

1899 7.9 -0.32 0.06 210Pb 

1894 8.9 -0.33 0.06 210Pb 

1780 20.0 -0.53 0.06 pollen 

1710 32.0 -0.74 0.06 14C 

     

Sand Point, North Carolina, USA (Kemp et al. 2009, 2011) 

1975 3.0 -0.06 0.05 210Pb 

1974 1.0 -0.07 0.05 14C 

1971 4.0 -0.11 0.05 210Pb 

1968 4.0 -0.11 0.05 210Pb 

1964 4.0 -0.12 0.05 210Pb 

1963 0.0 -0.12 0.05 137Cs 

1960 5.0 -0.14 0.05 210Pb 



1958 0.4 -0.16 0.05 14C 

1957 0.7 -0.16 0.05 14C 

1956 5.0 -0.17 0.05 210Pb 

1953 5.0 -0.18 0.05 210Pb 

1949 6.0 -0.19 0.05 210Pb 

1945 5.6 -0.18 0.08 14C 

1945 6.0 -0.18 0.08 210Pb 

1942 7.0 -0.18 0.08 210Pb 

1934 7.0 -0.24 0.05 210Pb 

1931 8.0 -0.26 0.05 210Pb 

1927 8.0 -0.30 0.05 210Pb 

1923 9.0 -0.30 0.05 210Pb 

1919 9.0 -0.30 0.06 210Pb 

1916 9.0 -0.28 0.06 210Pb 

1906 10.0 -0.32 0.05 210Pb 

1896 11.0 -0.32 0.05 210Pb 

1789 11.5 -0.40 0.05 14C 

1720 20.0 -0.52 0.05 pollen 

     

Little Swanport, Tasmania, Australia (Gehrels et al. 2012) 

2000 7.5 0.03 0.10 210Pb 

1994 5.5 0.03 0.10 14C 

1994 5.5 0.03 0.10 210Pb 

1990 8.0 0.01 0.10 14C 

1990 8.0 0.01 0.10 210Pb 

1990 8.0 0.01 0.10 geochemistry 

1980 9.5 0.01 0.10 210Pb 

1968 6.0 -0.04 0.10 210Pb 

1963 2.0 -0.01 0.10 14C 

1963 2.0 -0.01 0.10 210Pb 

1963 2.0 -0.01 0.10 137Cs 

1962 2.0 -0.03 0.10 210Pb 

1962 2.0 -0.03 0.10 14C 

1959 1.5 0.00 0.10 14C 

1959 1.5 0.00 0.10 210Pb 

1955 2.5 0.04 0.10 14C 

1948 4.0 0.03 0.10 geochemistry 

1940 7.0 0.00 0.10 210Pb 

1938 7.5 -0.01 0.10 210Pb 

1938 7.5 -0.01 0.10 14C 

1926 9.0 -0.05 0.10 geochemistry 

1922 9.0 -0.07 0.10 14C 

1896 10.5 -0.19 0.10 14C 

1892 13.0 -0.24 0.10 geochemistry 

1881 13.0 -0.31 0.10 14C 

1863 16.0 -0.31 0.10 pollen, geochemistry 



1828 15.0 -0.27 0.10 pollen, charcoal 

1824 29.5 -0.29 0.10 14C 

     

Pounawea, New Zealand (Gehrels et al. 2008) 

1991 0 0.03 0.05 geochemistry 

1986 0 -0.02 0.05 geochemistry 

1965 1 -0.01 0.05 137Cs 

1955 5 -0.03 0.05 pollen 

1948 3 -0.125 0.05 geochemistry 

1935 0 -0.195 0.05 charcoal 

1895 5 -0.285 0.05 geochemistry 

1880 5 -0.285 0.07 pollen 

1815 0 -0.31 0.05 geochemistry 
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Table 2. Proxy data used to reconstruct recent sea-level change in four of our sites (Figure 1076 

4a,c,f,g). 1077 

 1078 

 1079 

 1080 

 1081 



 1082 

Table 3. Onset of recent rapid sea-level rise (‘inflexion’) determined from proxy sea-level 1083 

records, tide gauges near proxy sites, and compilations of regional tide-gauge records. The 1084 

post-1930 rates are calculated from tide-gauge records that are listed in the next column 1085 

(www.psmsl.org). The tide-gauge compilation for the northeast Atlantic does not have a clear 1086 

inflexion, but the longest individual records do (see text for discussion). Sites with proxy data 1087 

are marked by an asterisk (*) and regional tide gauge compilations by a square (□). 1088 

 1089 

 1090 

 Inflexion Late Holocene 

rate (mm/yr) 

Post-1930 

rate (mm/yr) 

Tide gauge Reference(s) 

NW Atlantic      

Nova Scotia* 1930-1940 2.2 3.2 Halifax Scott et al., (1995), Gehrels et al., (2005) 

Connecticut* 1925-1935 1.2 3.1 New York City Donnelly et al. (2004) 

North Carolina* 1925-1935 0.9 3.0 Charleston Kemp et al., (2009), (2011) 

Tide gauges□ 1925-1935 n/a 2.7 many Jevrejeva et al., (2006), Woodworth et al., (2009); Milne et al., (2009) 

NE Atlantic      

SW England* 1920-1940 0.9 1.7 Newlyn Gehrels et al., (2011), Wōppelmann et al., (2006) 

Netherlands* 1905-1915 0.7 1.6 Den Helder Van de Plassche (2005), Woodworth et al., (2011a) 

Tide gauges□ none n/a 1.8 many Jevrejeva et al., (2006), Woodworth et al., (2009), Milne et al., (2009) 

SW Pacific and Tasman Sea      

SE New Zealand* 1895-1925 -0.1 2.4 Lyttelton Gehrels et al., (2008) 

Tasmania* 1895-1920 0.0 n/a none Gehrels et al., (2011) 

W Pacific tide gauges□ 1930-1945 n/a 3.6 many Jevrejeva et al., (2006), Woodworth et al., (2009); Milne et al., (2009) 

Indian Ocean tide gauges□ 1925-1935 n/a 1.8 many Jevrejeva et al., (2006), Woodworth et al., (2009); Milne et al., (2009) 

Global      

Tide gauges 1935 0.0-0.2 1.8 many Jansen et al., (2007), Church and White (2011) 

 

http://www.psmsl.org/

