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Flood frequency estimation using a joint probability approach within a

Monte Carlo framework

Prédétermination des crues en utilisant une méthode de probabilité

combinée dans une structure basée sur la méthode de Monte-Carlo.

Cecilia Svensson?, Thomas R. Kjeldsen?, David A. Jones®

Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford,
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Abstract

Event-based methods are used in flood estimation to obtain the entire flood hydrograph. Previously,
such methods adopted in the UK have relied on pre-determined values of the input variables (e.g.
rainfall and antecedent conditions) to a rainfall-runoff model, which is expected to result in an output
flood of a particular return period. In contrast, this paper presents a method that allows all the input
variables to take on values across the full range of their individual distributions. These values are then
brought together in all possible combinations as input to an event-based rainfall-runoff model in a
Monte Carlo simulation approach. Further, this simulation strategy produces a long string of events
(on average 10 per year), where dependencies from one event to the next, as well as between different
variables within a single event, are accounted for. Frequency analysis is then applied to the annual

maximum peak flows and flow volumes.





Résumé

Les méthodes basées sur des événements sont utilisées dans la prédétermination des crues afin
d’obtenir un hydrographe de crue complet. Précédemment, ces méthodes adoptées au Royaume-Uni
dépendaient de valeurs pré-déterminées des variables d’entrées (ex. données de pluies et conditions
antérieures) au modele qui devrait produire en résultat une crue correspondant a une certaine période
de retour. Par opposition, cet article présente une méthode permettant aux variables d’entrée de
prendre I’ensemble des valeurs de leur distribution propre. Ces valeurs sont alors assemblées en
décrivant toutes les combinaisons possibles de données d’entrée au modéle pluie-débit d’événements
avec une approche basée sur des simulations de Monte-Carlo. De plus, cette stratégie de simulation
produit une longue séquence d’événements (en moyenne 10 par an) ou sont pris en compte aussi bien
les dépendences entre un évenement et le suivant que celles entres diverses variables relative au méme
évenement. Une analyse de fréquence est alors appliquée aux maxima annuels de débits de pointe et

de débits volumiques.

Keywords

Flood frequency estimation; joint probability; Monte Carlo simulation; hydrological event modelling;

uncertainty analysis; sensitivity analysis, river flow, rainfall, soil moisture deficit, Great Britain.

Mots-clefs

Estimation des fréquences de crues, probabilité combinée, simulation de Monte-Carlo, modélisation
d’évenements hydrologiques, analyse des incertitudes, analyse de sensibilité, débit fluvial,

précipitation, déficit hydrique des sols, Grande Bretagne.





1 INTRODUCTION

Estimation of design floods is a key task for practicing hydrologists, and the importance of the topic is
illustrated by the sheer number of methodologies that can be found in the scientific and practical
literature: see for example Lamb (2005) for a comprehensive review. The methods can involve simply
fitting a probability distribution to a series of annual maximum peak flows and perhaps bringing in
data from neighbouring stations in a regionalisation scheme to improve the flood estimates. However,
when a design volume is required, the full flow hydrograph rather than just the peak flow is needed,
and event-based or continuously simulated flow modelling is used. The latter may involve
sophisticated rainfall-runoff modelling systems combined with stochastic rainfall generators. The
actual choice of method for a particular study is often determined by practical considerations such as
type and importance of the study, existing guidance documents (e.g. Bulletin 17B in the US or the
Flood Estimation Handbook in the UK), previous experience of the analyst, and the availability of

relevant data on which to base the analysis.

In most event-based methods, which are the concern of the present study, a set of pre-defined input
values of antecedent conditions and a design rainfall are transformed into a design flood hydrograph
of a particular return period via a rainfall-runoff method. Examples of event-based methods that have
found widespread use in practise include, for example, the American TR-55 method (SCS 1986), the
Australian rainfall-runoff method (IOEA 2001) and the British revitalised rainfall-runoff method
(CEH 2007). However, a drawback of these methods is the difficulty in selecting the appropriate
magnitude of the pre-determined input values, as poor choices can lead to biased flood estimates. A
key question is therefore the treatment of the joint probability of occurrence between the individual
flood producing processes and the resulting flood response. In a seminal paper, Eagleson (1972)
provided a foundation for establishing a flood frequency relation in the absence of streamflow records
by deriving it from storm and basin variables. An advantage of using such a joint probability method
is that a combination of moderately high values of the input variables, which can be well estimated

within their observed range, can result in a large flood. Therefore, the output flood can be estimated





through a method using less extrapolation (and expected greater precision) than would be involved if

the flood were to be estimated from flow records alone.

Since Eagleson’s paper was published, further studies of joint probability methods have been
undertaken. With the advent of improved computing power, the generation of multiple realisations of
the input variables within a Monte Carlo simulation framework has become a useful tool. The Monte
Carlo-type methods generally involve the stochastic simulation of input variables (such as rainfall,
antecedent soil moisture, initial flow), followed by the use of these as input to a rainfall-runoff model
that may be fully deterministic or have stochastic components (e.g. Aronica and Candela 2007, Kwon
et al. 2007, Sivapalan et al. 2005, Arnaud and Lavabre 2002, Loukas 2002, Rahman et al. 2002). The
output consists of many realisations of flood hydrographs, which can be used for frequency analysis
of peak flows or volumes. The aim of the present study is to use such a Monte Carlo framework to
estimate frequencies of peak flow and total event flow volume. New, relatively simple models for the
input variables will be constructed that adequately represent any dependencies between them, as well

as any seasonality.

Compared with event-based methods, the flood estimates from continuous simulation methods are not
as sensitive to potentially biased estimates of the initial conditions at the start of the model run. Here,
the rainfall-runoff model automatically provides continuous model estimates of the antecedent soil
moisture and initial river flow, that influence the river’s response to a rainfall event. However, for
simulating long flow series, the continuous simulation method relies on a rainfall generator that is
correctly formulated to generate dry spells and low, moderate and extreme rainfalls in a realistic
manner. In an event-based approach, only the larger rainfalls need to be specified, which makes for a
simpler rainfall model. In the past, researchers have sometimes assumed independence between
rainfall duration and rainfall intensity. Others have developed elaborate methods to account for the
dependence between duration on the one hand, and rainfall intensity or total on the other (e.g.
Balistrocchi and Bacchi 2011, Zegpi and Fernandez 2010, Rahman et al. 2002, Kurothe et al. 1997).

We propose using a simple variable transformation to obtain independence between (transformed)





rainfall duration and intensity. Frequency distributions fitted separately to observations of the two

transformed variables can then be used for simulation of the rainfall input to the rainfall-runoff model.

Purely event-based methods do not necessarily incorporate a seasonal component, although, for
example, Sivapalan et al. (2005) and Swain et al. (1998) use observed monthly values to derive
seasonally varying distributions for one or more of the input variables. However, individual events are
simulated independently of each other (apart from any serial dependence arising from the seasonal
component), which may only be appropriate provided that the time between events is long enough.
We propose models of the input variables that are seasonally varying, and in addition we build in
serial dependence between successively simulated events. This reflects the actual dependence that
occurs for observed events and should lead to improved frequency estimates because any dependence
in the flows for distinct events will affect the distribution of derived quantities such as annual

maxima.

The paper is organised as follows. The overall simulation strategy is outlined in section 2, the original
data is described in section 3, and the preparation of event data and exploratory analysis is presented
in section 4. Lastly, the results are shown and discussed in section 5, and conclusions are summarised

in section 6.

2 SIMULATION STRATEGY

This joint probability approach to flood estimation is based on modelling individual hydrological
events through consideration of the major flood producing mechanisms and their mutual dependences.
The proposed method allows all the input variables (rainfall, soil moisture, initial flow) to take on
values across the full range of their individual distributions. These values are then brought together in
all possible combinations as input to the rainfall-runoff model in a Monte Carlo simulation approach
(Kjeldsen et al. 2010), as shown in Fig. 1. In a further extension of the event-based methodology, the

simulation strategy proposed here will produce a long string of events, where dependencies from one





event to the next, as well as between different variables within a single event, are accounted for (Fig.

2). The method can be described as having the following steps:

1) Calibration of the rainfall-runoff model based on continuous hourly input data (observed
series of hourly rainfalls, potential evaporation and river flows).

2) Selection of representative observed events (on average 10 per year), based on total event
rainfall.

3) Estimation of the distributions of the input variables (inter-event arrival time, soil moisture
deficit (SMD), initial flow, duration and intensity of rainfall) based on the characteristics of
the selected observed events in Step 2.

4) Simulation of values from the fitted distributions in Step 3, and using them as input when
running the calibrated rainfall-runoff model from Step 1 on an event basis, many times
(Monte Carlo simulation).

5) Analysis of long strings of simulated events, for example, extraction of the annual maximum

peak flows and fitting of a flood frequency curve.

3 DATA

The joint probability flood estimation method presented here was developed using four different
catchments in Great Britain. Continuous series of catchment average rainfall, river flow, SMD and
evaporation were used. These data series are 17 or 18 calendar years long depending on catchment,

and are described below.

3.1 The test catchments

The four catchments were selected for their long concurrent hourly records of rainfall and river flow,
and to represent different catchment permeabilities and climates (Table 1 and Fig. 3). Catchments

further north were not included because snowmelt may feature more prominently, which was deemed





to be an unwanted complication for this initial study. Britain lies in the path of the mid-latitude
westerly circulation, and is dominated by rainfall of frontal origin. Orographic enhancement of the
rainfall is a feature in the mountainous north and west, whereas convective thunderstorms are more

prominent in the continentally influenced climate of the southeast (Mayes and Wheeler 1997).

The smallest catchment in the study, the 28.3 km? Bumpstead Brook at Broad Green (in the
southeast), is also the least permeable and fastest responding catchment. The most slowly responding
catchment is the Kennet at Marlborough, which does not have the largest area, but has a very high

base flow contribution to the total runoff due to its chalk geology.

3.2 Hourly river flow data and catchment average hourly rainfalls

Hourly river flow data for the four catchments were supplied by the Environment Agency (EA). The
EA also provided the gauged hourly rainfalls for the calculation of the catchment average hourly
rainfalls used in the study. The latter were derived by Lamb and Gannon (1996) and Crooks et al.
(2002): areal average rainfall calculated from gauged daily data (provided by the UK Met Office) was
distributed proportionally over the day using observations at an hourly gauge. When no hourly data

were available, a fixed temporal profile was used to distribute the rainfall over the day.

3.3 Potential evaporation

Catchment average potential evaporation was calculated for each of the catchments based on monthly
gridded data with a 40 km resolution from the UK Met Office Rainfall and Evaporation Calculation
System (MORECS). These records span the study period for each of the catchments. A fixed seasonal
profile of potential evaporation was used for the Monte Carlo simulations. This was calculated as the
average for each month separately, i.e. the average over all Januaries, the average over all Februaries,

etc.





3.4 Soil moisture deficit

A continuous hourly series of SMDs was derived for each catchment through continuous simulation
using the PDM rainfall-runoff model (Moore 2007). See further details in section 4.1. Note that
although continuously modelled SMDs are necessary for the development of the methodology, it is
envisaged that when generalising the method to ungauged catchments, relationships will be sought

directly between the (event) SMD model parameters and catchment/climate descriptors.

4 PREPARATION OF EVENT DATA AND EXPLORATORY ANALYSIS

The model building task was preceded by extraction of event data, and an exploratory analysis of
marginal and joint distributions (dependence structures) of the flood producing variables, considering
both variation within and between events. Individual, large rainfall events were identified from the
continuous hourly series of catchment average rainfall. The initial flow at the beginning of each
rainfall event was then extracted from the observed hourly river flow series, as was the associated
flood peak. SMD at the beginning of each rainfall event was estimated from continuous simulation

using the PDM rainfall-runoff model.

41 Continuous simulation

Continuous simulation using a rainfall-runoff model at an hourly time step was undertaken to i)
provide continuous hourly series of SMD, ii) in a few cases to fill in missing flood peak data, and iii)
to provide calibrated parameters of the rainfall-runoff model to use for the joint probability study. A
lumped conceptual rainfall-runoff model was used; the probability distributed model (PDM) as
described by Moore (2007) and previously applied to a range of flood studies in the UK (e.g. Lamb

1999, Kay et al. 2007, Roberts ez al. 2009). The PDM represents runoff by individual point cylinders





whose storage capacity varies across the catchment according to a Pareto probability distribution. As
the cylinders fill during rainfall, excess saturation occurs and the direct runoff is split between a fast
and a slow (baseflow) routing component. Between rainfall events, the cylinders are depleted from
evaporation and drainage. For this study, a 7 parameter form of the model was selected, which is
similar to the 5-parameter model described in Calver ez al. (2005) except that the soil store is
characterised by the parameters c,.;,, and b in addition to c,.... Using concurrent time series of observed
streamflow, catchment average rainfall and potential evaporation, the model parameters of the PDM
model were optimised to provide as good an agreement as possible between observed and simulated
runoff. As well as simulated streamflow, the output of the PDM includes a continuous time series of
soil moisture content, which has been converted into a continuous series of SMD, allowing a

catchment SMD to be associated with the start of each selected observed event.

4.2 Rainfall event selection and associating flow peaks

On average 10 events per year were selected, based on the largest observed rainfall event total. The
events were defined from rainfall rather than flow to ensure a sample representing a broader coverage
of the joint distribution between the major runoff producing factors; rainfall and soil moisture. The
catchment average hourly rainfall series and the catchment time-to-peak were used to define
individual hydrological events. The event separation criteria were chosen so that each rainfall event
could easily be associated with a peak in the river flow series, and are an adaptation of the criteria
used by Rahman et al. (2002). Rainfall events were separated by at least a time span, Cq, during which
the average rainfall did not exceed a threshold C;, and no individual hour had more than C, mm of

rain. After some trial and error these values were set as follows:

C;=0.05R

where R is the 2-year return period 1-hour duration catchment average areal rainfall from the FEH
depth-duration-frequency model (CEH 2009) for the particular catchment: for the selected catchments

C, is roughly 0.5 mm. The parameter C; is determined by

9





C1=12GC,/ Cy.

An event is accepted as valid provided it exceeds Cy times Cj in total, and has at least one hour
exceeding C,. Using a fixed separation time for Cy (e.g. 4h or 6h) resulted in climatologically sensible
rainfall durations, i.e. shorter durations in eastern Britain (where there is more convection) and longer
durations in the west (which is dominated by longer, orographically enhanced, frontal events).
However, particularly for the slowly responding catchments, there were often two rainfall events on
the rising limb of the hydrograph, so that the flood peak was associated with two, rather than a single,
rainfall event. This was overcome by relating Cy to the catchment time-to-peak, 7, i.e. the time

between a pulse of rain falling over the catchment and the flow peaking at the catchment outlet, as

Cd =0.75 Tp.

This led to longer separation times, and longer rainfall event durations, for the more slowly

responding catchments.

The parameter 7, was estimated using impulse response function analysis. An auto-regressive model
was fitted to the continuous hourly rainfall series, and then applied to both the rainfall and the river
flow series. The lagged correlation coefficients between the residuals of the two series then represent
the impulse response function, and the time lag for which the correlation is highest can be used as an
estimate of 7;,. Models were also fitted to the differenced series (1 time step) to remove any effects of
trend or seasonality, to different seasons, and using different numbers of maximum lags. The time lag
for which the correlation was largest was similar for the different variants of the analysis. Because
there is a more direct relationship between rainfall and runoff in winter when SMDs are low, the final
choice of 7, (Table 1) was based on the auto-regressive model with a maximum 5-hour lag, fitted

directly to the original series for the winter season (November-April).

Lastly, the flow peak associated with the rainfall event was located. The search was undertaken in two
stages, first looking at an interval close to the rainfall event, and then if no peak could be found,
looking further ahead. This was advantageous for resolving any timing issues, particularly for the case

when hourly rainfall data was unavailable, and an assigned rainfall profile had been used for
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disaggregating the daily rainfall data to an hourly resolution. It also reduced the risk of linking a
rainfall event to a flow peak that was really associated with a later rainfall event. The length of the
first search period started at the time-of-centroid of the rainfall event and ended 1.5 T}, after the end of
the rainfall event. The length of the second search period was 7, starting at the end of the first search
period. Where there were missing data in the observed hourly river flow series, the peak flow from the

continuously modelled series was substituted.

4.3 Characteristics of the hydrological event

The total duration of the flow event, hereafter referred to as the hydrological event, was determined as
starting at the beginning of the rainfall event and ending 3 7, after the end of the rainfall event. The
total flow volume for an event was defined as the area under the flow hydrograph for the duration of
the hydrological event. A simple measure of hydrograph shape was used to characterise the length of
the recession. The hydrograph shape was defined as the time elapsed between 25% and 75% of the

total flow volume occurring.

44 Cross-correlation in the input variables

Initial scatter plots and correlation analyses of the event data revealed that there was dependence
between some of the input variables, which needed to be taken into account when building the joint
probability model. Examples of scatter plots for a selection of variables (in log space) are shown in
Fig. 4 for the Taf at Clog-y-Fran. In these plots, the inter-event arrival time (IEAT) is the time elapsed
from the end of one hydrological event to the start of the next rainfall event. The rainfall intensity is
the total event rainfall divided by the rainfall event duration, and the fast response flow is the peak

flow minus the initial flow at the start of the event.

The peak flow and the fast response flow variables generally show dependence with all the other

variables except for the inter-event arrival time, for the year, summer and winter. However, the
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relationships are rather sketchy for the rainfall duration. There is also dependence between SMD and
initial flow, and between total event rainfall or intensity, on the one hand, and rainfall duration, on the
other. For each variable, the samples for the winter and summer seasons generally suggest that these
come from different populations, and that seasonality therefore has to be taken into account for the

stochastic modelling of the input variables to the rainfall-runoff model.

A particular feature of the Taf catchment is the comparatively large number of days for which there
was no recording raingauge nearby to use for distributing the daily rainfall observations over the
hours of the day. Hence the standard temporal profile was used, which can be seen in the scatter plots
involving the rainfall duration: there is a disproportionate number of rainfall events with a duration of

17 hours.

45 Serial correlation in the input variables

There is serial correlation in some of the input variables, which needs to be taken into account for the
Monte Carlo simulation. Figure 5 shows the Spearman’s rank autocorrelation and 95% significance
level for the inter-event arrival time, SMD, and various rainfall and river flow variables for the Taf at

Clog-y-Fran.

There is no lag-1 correlation in the rainfall variables, and the Taf is the only catchment with
significant lag-1 correlation in the inter-event arrival time. However, this correlation is no longer
significant when the analysis is done on a seasonal basis (not shown), which suggests that at least
some of the dependence is due to seasonality and that this therefore has to be taken into account for
the Monte Carlo simulation. The transformed rainfall intensity used for this analysis is described in

section 5.2.

The SMD and initial flow variables always have significant correlations for at least one lag, which is
generally carried over to the peak flow. For the fast response flow, i.e. the peak flow minus the initial

flow at the start of the event, the correlations are generally reduced but remain quite large for the
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Bumpstead Brook and the Kennet. They are reduced further in the seasonal analysis for these two

catchments, but do not quite become insignificant.

5 STOCHASTIC MODELS FOR GENERATING INPUTS TO THE RAINFALL-

RUNOFF MODEL

Stochastic models were developed for the variables controlling the simulations:

e Inter-event arrival time
o Rainfall duration, intensity and temporal profile
e SMD at the onset of the event

e Initial flow

The stochastic models were developed with a view to keeping the model structure simple, and for the
parameter values for each catchment to be derived from climate or catchment characteristics. This
keeps open the possibility of generalising the method at a later stage, so that it can be used for flood

estimation in ungauged catchments.

5.1 Inter-event arrival time

The inter-event arrival time is the time elapsed from the end of one hydrological event (3 T}, after the
end of the rainfall event) to the start of the next rainfall event. Histograms of extracted IEATS for the
summer and winter seasons are shown in Fig. 6 for the Taf at Clog-y-Fran. In some cases the next
observed rainfall event starts before the river flow recession is complete, and the IEAT is negative.
The number of such events varies, from one event only for the Taf to nearly 18% of events for the
slowly responding Kennet, with the number roughly increasing with increasing 7}, of the catchment.
Different statistical distributions were explored for the IEAT, but for simplicity a one-parameter

exponential distribution was fitted to IEATS that had been shifted to ensure they were always positive.
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The distributions were fitted separately for summer and winter, depending on the season in which the
previous event occurred (Fig. 6). The shift was fixed at 2.25 T, as the IEAT cannot be smaller than
-2.25 T, when taking into account the criteria for rainfall event separation. When the IEAT is
negative, the SMD and the initial flow for the next event are taken from the output from the event-
based PDM rainfall-runoff model (for the previous event), rather than being derived from the

stochastic models. On average, 10 events per year will be simulated.

5.2 Rainfall duration and intensity

The selection of rainfall events results in a lower bound for both event duration, D, and depth, P. As
indicated in Fig. 4, there is evidence of positive dependence between duration and total event rainfall
depth, whereas there is negative dependence between duration and rainfall intensity because of the
artificial lower bound due to the event selection criteria. This artificial dependence can be removed by
transforming the intensity, taking into account the lower bounds (Fig. 7). The lower bound of the
rainfall depth is the threshold used for the rainfall event selection, Py, For the duration, the lowest
value that can occur is one hour, which is the resolution of the rainfall data. To avoid division by zero

the transformed intensity, /', is defined as

_P_Pmin

 D-05 @)

The shifted duration, D'= D — 0.5, and transformed intensity, /', are uncorrelated using Spearman’s
rank correlation. The marginal distributions of D'and /' are modelled using a one-parameter
exponential distribution for the transformed intensity and a two-parameter gamma distribution for the
shifted duration. Separate models are fitted for the summer and winter half-year, and when using these

for the Monte Carlo simulation the generated durations are rounded to the nearest whole hour.

Figure 7 shows histograms and fitted distributions for the shifted duration (x-axis) and transformed

intensity (y-axis) for the Taf at Clog-y-Fran. There is not much difference between the seasons for this
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catchment, but other catchments show longer durations and lower intensities in winter than in
summer. The grey crosses in Fig. 7 represent 100 Monte Carlo simulations of 17 years, and suggest a

good correspondence between the observations and the simulated values.

5.3 Rainfall temporal profile

After investigation of several temporal rainfall profiles, a double triangle was chosen. The effect of
five different temporal rainfall profiles on the simulated peak flow, event flow volume and
hydrograph shape was investigated. These simulated flow characteristics were compared with the
corresponding observed ones using scatter plots and histograms. The profiles included a single
triangle, a double triangle, two triangles separated by a dry period, a uniform rectangle and two equal-
sized rectangular pulses in the first and last quarter. The three different triangular profiles showed
very similar results to each other. The uniform and double rectangular pulse profiles tended to
produce smaller peak flows and flow volumes than the triangular profiles, although all the profiles
tended to produce somewhat smaller events than observed. There is a bias towards too long recessions
(large hydrograph shapes) for all the profiles for all the catchments except for the slowly responding
Kennet, but this is more pronounced for the uniform and double rectangular pulse profiles than for the

triangular profiles.

The selected double triangle profile can be considered to reflect two bursts of rainfall. The profile
consists of two immediately adjacent triangles (see the examples in Fig. 2). The duration of the first
triangle is allowed to vary between 30 and 70% of the total event duration, and is randomly generated
from a uniform distribution. The total rainfall depth in the first triangle is generated in the same way
to vary between 30 and 70% of the total event rainfall depth. The second triangle makes up the
balance. This simplified temporal profile does not capture the full variability of observed rainfalls,

and, as discussed above, therefore does not produce quite as large flow events as observed.
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5.4 Soil moisture deficit

A model for generating an appropriate value of SMD at the onset of an event has been defined as a
typical value of SMD at a particular time of year, combined with a deviation from this typical value
depending on both the time elapsed since the end of the previous event, and the SMD at the end of the
previous event (denoted here by SMD"). This concept is illustrated in Fig. 8. Based on exploratory

analysis, the study finally settled on the following model structure:

%%}: u(f) + In{ (smD, )1/3} u(f”) lexp(=6, [EAT) + &, (2)

Sl/3 _SMD1/3 1/3 ( *
max i | Typical SMD Smax - SMDi—l Decay with Model
Measure of SMD at the time of SMD anomaly at the time since error
year when previous event

end of the previous event
event i starts

where Shax is the total available soil moisture storage obtained through calibration of the PDM model.
The term " is the time of year (as a fraction of a year) of the onset of event i, and /* is the

corresponding time at the end of the hydrological event i-1. The typical SMD value at any time of the

SMD*®
year, u(f), can be thought of as the value that the variable In[ TER ZI\/ID”3 } strives to return to,
max i
and it is modelled as
u(f) =6, +6,sin(2af) + 0, cos(2f), 3)

where @ is a vector of model parameters.

Because very low values of the SMD can cause problems in the later model for the initial flow, a final

calculation is carried out when simulating from this model:
SMD;"™ = max(SMD;, SMDyin) , (4)

where SMDy,ir, Was set to an arbitrary low value of 0.05 mm.
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Figure 9 shows “observed” SMD (i.e. output from the continuous PDM simulation, see section 4.1) as
red circles, the predicted typical u(f) curve (in orange) and values of SMD generated for 100 Monte
Carlo simulations of 17 water years (1 October — 30 September) each (grey crosses) for the Taf at

Clog-y-Fran.

The model error ¢, is independent and identically distributed, with a mean value of zero and constant

variance O'SZMD (Fig. 10). However, it is also assumed that it should follow a normal distribution,

which it does not do well for several of the catchments according to the Cramér-von Mises test, but
particularly badly for the Bumpstead Brook. The fractions of the variance explained by the SMD

models for the four catchments vary from 66% (the Taf) to 91% (the Kennet).

SMD*"®
Sl/3 _SMDI/S

max

The particular formulation of the quantity { } has the following reasons. The

logarithm of the ratio is similar to a logit transformation, which allows the transformation of values

1/3

within a bound (in this case SMD, which varies between 0 and Sy ) to an unbounded variable (the

ratio) to which an error can be added at any scale. Compared with using the simpler expression

SMD. ) .
! , the cube root transformed quantity has an effect particularly on the top end of the

S, — SMD,

max
SMDs, drawing them closer to the typical curve. It makes the residuals more identically distributed
over the year and also makes them follow a normal distribution somewhat better. The explained
variance of this model is slightly higher (between 1 and 6 percentage units) than for the corresponding
model without the cube root transformation, but there is not much difference to the final flood

frequency curves.
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5.5 Initial flow

The initial flow, QINI,, at the onset of the event i is modelled as a function of the SMD at the onset of

the event and the time of year at the onset of the event, and also depends on the error, ¢,, from the

SMD model.
: SMD"?
IN(QINI,) = ¢, + ¢, Sin(2Af) + ¢, cosrf) + ¢, In R D + gﬁi + T (5)
Measureof Typicalinitial flow max d Error Model
initial flow at the time of year Measureof SMDat fromSMD  error
wheneventi starts thestart of eventi modelfor

eventi

where ¢ is a vector of model parameters, and 7 is a set of errors that are assumed to be independent
and identically distributed, and to follow a normal distribution with zero mean and constant variance
aé,N,. The inclusion of the term ¢, allows the dependence between QINI; and SMD;, (that is not

explained by SMD,) to be represented in the model. The QINI model residuals for the Bumpstead
Brook again show the worst match to a normal distribution, as they did for the SMD model, and there

is serial correlation for four lags events for the Kennet.

Several formulations of the relationship between Q/NI and SMD were explored, but In(QINI) versus

SMD}"®
n{sl/3 _SMDl/?:

max

} shows good linearity for all the catchments. The fractions of the variance

explained by the initial flow models vary between 71% (the Bumpstead Brook) and 84% (the Taf).
The addition of the term for the error &, from the SMD model was mainly needed for the very
permeable Kennet and the reasonably permeable Taf catchments. However, it is still significant at the

5% level for the Bumpstead Brook and at the 10% level for the Blyth, although the parameter values

for these catchments are negative rather than positive as for the two permeable catchments. Because

the error ¢, is used as a predictor, it is convenient that both the SMD and the initial flow models use
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SMD}"?
the same SMD transformation, InLﬂ/3 S]l\/le } , as the relationship between the error and
max i

In(QINI) might otherwise have been less linear.

6 RESULTS AND DISCUSSION

6.1 Frequency analysis of flood peaks

The results from the joint probability model in the Monte Carlo framework will be shown together
with the corresponding results based on the observed flow series, and in some cases also with the
results based on the continuous hourly PDM simulation of river flows, hereafter referred to as the

“continuous simulation”.

Figure 11 shows flood frequency results for the Taf at Clog-y-Fran. The grey lines are the annual
(water year) maximum flood peaks from 100 16-year long Monte Carlo simulations, which is the
number of water years in the observed hourly series. Each simulation starts from a different random
seed, and the figure therefore shows the effect of the sampling variability on the produced flow peak
series. The red lines show 10 much longer simulations (2000 years long), and it can be seen that the
lower parts of the frequency curves stabilise with increased simulation period, whereas the upper parts
still diverge. These curves fit slightly better to the annual maxima from the continuously simulated
flow series (crosses) than to those from the observed flow series (circles), which seems reasonable
since the annual maxima from both the event-based Monte Carlo simulation and from the continuous
simulation are outputs from the rainfall-runoff model (and therefore will share the same bias from its
calibration). The observed rainfall events, on which the rainfall model is based, are also subject to the
same standard rainfall profile as the continuous rainfall record used for the continuous simulation, for
days when there was no recording gauge available to distribute the daily rainfall total over the hours
of the day. Note that there are fewer annual maxima in the observed than in the continuously
simulated series, because of missing data in the observed hourly flow series. At least 75% of
observations in a year had to be present for an annual maximum to be derived.
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A Generalised Extreme Value (GEV) distribution is fitted using L-moments to the observed maxima
(thick black line), with a 95% confidence interval (dashed blue line) around the GEV frequency curve
calculated based on a bootstrap method. The observed annual maxima series was resampled 999
times, and for each resample a GEV was fitted. For a selection of percentiles, the 999 quantile
estimates for each percentile were ranked, and the 25" and 974" values were used to describe the 2.5
and 97.5 points of the distribution. The upper and lower confidence limits were plotted by connecting

all the 2.5, and the 97.5, points, respectively.

The 95% confidence interval encompasses the bulk of the 16-year long Monte Carlo simulations for
the return periods below about 5 years, but simulated outliers disperse the curves (grey lines) at higher
return periods. The 2000 year long simulations (red lines) are less dispersed, and give a reasonable
indication of the flow frequency curve corresponding to the joint probability model that has been
fitted. The joint probability model thus suggests that the catchment could be expected to experience
more high flow events in a typical 16-year period than observed during these particular 16 years of the

data record.

6.2 Uncertainty analysis of predicted flood peaks

The uncertainty of the flood peak magnitudes, as predicted by the joint probability model, can be
described by 95% confidence intervals estimated using a bootstrap method (Fig. 12). The original
event data were resampled in blocks of one year (to retain seasonality), and the parameters for the
stochastic models described in Section 5 were estimated for each of these new data series, 199 in total.
One 2000-year long series was simulated for each set of parameters, and the resulting annual maxima
were ranked separately for each of the 199 series. For each rank, the 5™ and 195" values were plotted
using the Gringorten plotting position and used to denote the 2.5 and 97.5 points of the distribution,
i.e. the 95% confidence interval (dotted red lines in Fig. 12). Similarly, the 100" value for each rank

was used to illustrate a “median” flood frequency curve (solid red line).
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These model runs all start using the same random seed, so that the spread outlines the variability in
the parameter estimates rather than the randomised sampling from the distributions. Figure 12 also
shows the GEV distributions (solid black line) fitted to the observed annual maxima (circles) for each
catchment, and the 95% confidence intervals around the GEV (as in Fig. 11). The confidence intervals
around the fitted GEVs are larger and generally overlap the confidence interval for the Monte Carlo
simulations at low return periods. However, they can diverge quite considerably for higher return
periods. Particularly, the joint probability model predicts peak flow distributions that are not bounded
above for any of the catchments, and does not reflect the bounded distributions suggested by the GEV
fitted to the observed data for some of the catchments. The observed series are short, and as discussed

earlier the low annual maxima may be a result of sampling variability.

6.3 Uncertainty analysis of predicted flood volumes

The method used to estimate the uncertainty of the predicted flood volumes is the same as that for the
predicted flood peaks in the previous section. The results are shown in Fig. 13. It can be seen that the
confidence intervals for the predicted volumes largely overlap the confidence interval of the GEV
fitted to the observed annual maximum flood volumes (from the dataset comprising on average 10
events per year). Here, the poorest fit is for the Kennet at Marlborough, where the predicted curve
turns upwards whereas the frequency curve fitted to the observations is bounded above. Similarly to
the frequency curves for the flood peaks, the predicted frequency curves for the flood volumes are not

bounded above for any of the catchments.

6.4 Sensitivity analysis for predicted flood peaks and volumes

The sensitivity of the flood frequencies to the sampling variability of the different stochastic model
parameters described in Section 5 can be investigated using a bootstrap-based approach. Once a

confidence interval for each estimated parameter has been calculated, the upper and lower bounds can

21





be used to generate the inputs to the rainfall-runoff model. This will show how sensitive the peak flow
(or volume) estimates are to sampling variability in each parameter. A comparison of the relative
sensitivities of the parameters is shown in Fig. 14 for the Taf at Clog-y-Fran, using the resulting
frequency curves for peak flows. In each diagram, all parameters except the target parameter have
been estimated using the original data set. The target parameter has been given the value of the upper
and lower confidence interval, and hence the results are shown in pairs of frequency curves. Two
different colours denote two different sensitivity measures: the pairs of red dash-dotted lines are
derived from the unconditional variance for a given parameter and the pairs of blue dashed lines are
from the conditional variance given all the other parameters (see Appendix). The central black line on
each diagram is the frequency curve estimated using only parameters based on the original data set.
Each frequency curve is a GEV fitted to a single 500 year long simulation. That is, in total five model
runs were made to produce the five curves for each diagram. Each model run started from the same
random seed so that any variation in the frequency curves will result from the difference in the

parameter values, rather than from the effects of sampling from the parameter distributions.

The unconditional variance from the bootstrap results represents how well-determined a given
parameter is by the data-fitting, given that a poor choice of value for that parameter could be

compensated for by changing the values of other parameters.

The conditional variance that is derived from the covariance matrix obtained from the bootstrap
results represents an approximation of how well-determined a given parameter is by the data-fitting,
given that the other parameters are left at fixed values. This is just a convenient approach used here to
avoid the more computationally expensive task of undertaking multiple bootstrapping experiments,
with each of them fitting just one parameter while retaining fixed values for the others. The
approximation assumes that the statistical relationships (arising from fitting the parameters to a finite
amount of data) among the fitted parameters are approximately linear with constant unexplained

variance.
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The pair of frequency curves based on the unconditional variance generally envelopes the pair for the
conditional one and the central estimate, as might be expected. This sometimes doesn’t happen,
presumably reflecting a nonlinearity in the behaviour of the modelled flow-frequencies in response to

changes in the parameters.

Figure 14 shows that the peak flow frequency estimates are sensitive to sampling variability mainly in
the IEAT and rainfall parameters. This is true for all the catchments. For some catchments, the
duration parameters have comparatively tight ranges for the conditional bands compared to those for
the unconditional ones, suggesting that the limited amount of data makes it difficult to estimate both
the parameters of the gamma distribution being used here. However, there seems no reason to select
any particular value for the shape parameter which might be a possible course of action: fixing the
value to correspond to an exponential distribution was judged unsuitable. In addition, in the two more

permeable catchments, the Kennet and the Taf, 8, and ¢, , the parameters controlling the main non-

seasonal components in the SMD and initial flow models, are poorly determined by the available
datasets. This also applies to the non-seasonal component of the SMD model for the fast-responding
Bumpstead Brook catchment. The intercepts, seasonal components and model errors are generally

well determined apart from, for the Kennet, the intercepts, &, and ¢, , and the variance of the initial

2
flow model error, oy, -

The results for the flow volumes are very similar to those for the flow peaks (hot shown).

6.5 Extrapolation to high return periods and future research

The uncertainty and sensitivity analyses have highlighted the limitations of the method that has been
developed when applying it to estimate flood frequencies in the range of return periods exceeding,
say, 50 to 100 years. The uncertainties mainly arise because of sensitivity to the rainfall model
parameters, both for the duration and the intensity, and possibly also sensitivity to the rainfall model

structure. Future studies may therefore include an exploration of a link between the
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structure/parameters of the rainfall model used in this study, and the rainfall estimation models
derived from regional studies using longer rainfall records pooled from a number of observation sites.
It may also be useful to explore how the parameter values vary with rainfall/flood event magnitude.
This could be done by using a smaller number of events per year than currently used, say, on average
2-3 events per year rather than 10. However, because the events are selected based on the rainfall,
extra care would need to be taken to ensure that the full ranges of the distributions of the other
variables are represented in the set of selected events. In particular, the sensitivity analysis showed
that, for some of the catchments, the parameters controlling the main non-seasonal components in the
SMD and initial flow models are poorly determined by the available datasets. Therefore, further
limiting the dataset to fewer events would not be helpful, although longer series may mitigate the

reduction in the number of events per year.

7 SUMMARY AND CONCLUSIONS

A joint probability method for flood estimation has been developed using an event-based rainfall-
runoff model within a Monte Carlo simulation framework. This allows the input variables (rainfall,
soil moisture, initial flow) to take on values across the full range of their distributions, thus avoiding
the potential bias that can occur when a single set of pre-determined input values are used. In contrast
to the continuous simulation method, a full weather generator is not needed, but a simpler model for

extreme rainfall only can be used.

The overall approach is to model a string of individual hydrological events through consideration of
the major flood producing mechanisms and their mutual dependences. In particular, it uses a
procedure which improves on previous work on event-based simulation, by modelling the dependence

between the conditions at the end of an event and those at the start of the next.

When deriving the input variables to the rainfall-runoff model, seasonality needs to be taken into
account. However, this alone would not account for all the variability in the SMD and initial flow.
The SMD depends also on the time elapsed since the previous event, and the initial flow depends

24





strongly on the SMD at the start of the event. For each event, the initial flow is modelled in a way
which takes account of dependence on SMD both at the end of the previous event and at the
beginning of the current event, which was found to be particularly important for the more permeable
catchments. This effect was achieved by incorporating the residual from the SMD model as a

component of the initial flow model.

Dependence between rainfall intensity and duration (for the same event) was removed by using
transformed variables. The transformed duration was modelled using a gamma distribution and the

transformed intensity using an exponential distribution.

The flood frequency curves derived using the new method do not replicate the upper bound suggested
by the GEV fitted to the observed annual maxima. However, the observed series are short, and may

not reflect the true distribution.

Some of the input variables are more sensitive to sampling variability than others. A bootstrap method
showed that, for most catchments, the intercepts, seasonal components and model errors are generally
well estimated. However, for all catchments the uncertainties in the parameters of the distributions of
the time between events (IEAT), and of the rainfall descriptors, have the largest effects on the final
results for the flood frequency curve. The parameters controlling the main non-seasonal components
in the SMD and initial flow models are sensitive to sampling variability mainly for the two more

permeable catchments.

The methodology presented here could be generalised to ungauged basins, provided that the
parameters for the models of the input variables (rainfall, soil moisture, initial flow) can be derived
from catchment and climate descriptors. An aim has therefore been to keep the number of parameters

for these models as low as possible.
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APPENDIX
Bootstrapping, and conditional and unconditional variances

For the sensitivity analysis, a total of 999 new data series were derived by resampling the original data
set in blocks of one year, and the 19 model parameters were estimated for these new series. A block
bootstrap was necessary because of the seasonality of the series. Confidence intervals were then
calculated in three ways. Firstly, the 95% confidence interval for each parameter was estimated by
taking the 2.5% and 97.5% points of the empirical distribution comprising the 999 parameter
estimates from the bootstrap resamples. Secondly, confidence intervals were estimated using the
conditional and unconditional variance, as described below. It is the sensitivities based these latter

two estimates that are presented in Fig. 14.

The 19 by 19 covariance matrix was estimated from the 999 sets of 19 parameters. The unconditional
(or marginal) variance for the parameter i is the [, /] element of the covariance matrix. Denote this

[, 7] element 4, and let B be the ith column of the covariance matrix, but without element [7, {]. Let C
be the covariance matrix without the ith column and the ith row. Then the conditional variance for the

parameter i is: « — B’C™'B, where B’ is the transpose of B.

The 95% confidence interval, CI, for each parameter, 7, can be calculated using the conditional or

unconditional variance by

CI = u+1.96vVar
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where 4 is the central estimate of the parameter based on the original observed data set, Var is either

the conditional or unconditional variance, and 1.96 is the quantile of the standard normal distribution

corresponding to the 97.5% point.

The unconditional variance is similar in size to the variance obtained by estimating the confidence
interval directly from the 2.5% and 97.5% points of the empirical distribution of parameter values
from the block bootstraps, as described at the beginning of this Appendix. However, this is only true
when the empirical distribution is symmetrical. When it is not, then both the conditional and the
unconditional variances are only indicative. The 19 parameters generally have reasonably

symmetrical distributions, apart from &, , whose distribution is skewed for the Kennet and the Taf.
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Table 1 River catchment characteristics and periods of data record.

Catchment Catchment | Area’ | Base | Standard Annual Time 2-year | Period of
name number* (km? | flow | average average to return record
index* | annual potential peak® | period
“) rainfall evaporation® | (h) 1-h
1961- (mm) areal
1990° rainfall*
(mm) (mm/h)
Blyth at 22006 269 0.35 | 696 558 13 8.3 1985-2001
Hartford Bridge
Bumpstead 36010 28.3 0.23 | 589 629 5 11.9 1984-2001
Brook at Broad
Green
Kennet at 39037 142 094 | 772 616 24 10.1 1985-2001
Marlborough
Taf at Clog-y- 60003 217 0.56 | 1420 607 7 10.1 1985-2001
Fran
Notes:

'From Marsh and Hannaford (2008). The base flow index is a measure of the proportion of the river runoff that derives from stored sources. The more
permeable the rock, drift and soil material of a catchment the higher the base flow index.

2 From the National River Flow Archive, Centre for Ecology and Hydrology, Wallingford, UK. Data source: Met Office.
*Calculated from the project data for the period of record.

*From the Flood Estimation Handbook rainfall depth-duration-frequency model (Faulkner, 1999) as implemented on the FEH CD-ROM 3 (CEH, 2009).
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Figure captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Schematic diagram showing the input variables to the rainfall-runoff model and the

output event flow hydrograph.

Simulated string of events. The variables used for the flow simulation include
rainfall, soil moisture deficit at the onset of the event (SMD) and at the end of the
previous event (SMD¥), the initial flow (QINI), and the inter-event arrival time

(IEAT).
Location of the four study catchments.

Scatter plots in log space of the event-based input variables, and other diagnostic
variables, for the Taf at Clog-y-Fran. Events occurring in summer are plotted in red

and events occurring in winter are plotted in blue.

Rank auto-correlations for the event-based input variables, and other diagnostic
variables, for the Taf at Clog-y-Fran. The transformed rainfall intensity is calculated

as in equation (1).

Observed inter-event arrival time (IEAT), and fitted exponential distributions (thick
black line), for winter and summer for the Taf at Clog-y-Fran. The histogram bars

outlined by thin black lines show the observed annual IEAT.

Scatter plot, histograms and fitted marginal distributions for shifted rainfall duration,
D' , and transformed intensity, /', for summer (red) and winter (blue) observed
rainfall events, for the Taf at Clog-y-Fran. Monte Carlo simulated events are shown

as grey crosses.

Concept figure of the typical seasonal variation in SMD (black line), and the

modelled SMDs influenced by the previous event (dashed red line). SMDl* is the
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Fig. 9

Fig. 10

Fig. 11

Fig. 12

SMD at the end of a PDM simulated event occurring in spring. The figure shows how
the SMD modelled according to equation (2) then gradually tails off and becomes
more similar to the typical seasonal curve (equation (3)) as time progresses. There is

an abrupt change as a second event is simulated by the PDM in the autumn, ending

with SMD; . The modelled SMD then slowly approaches the typical curve again.

“Observed” SMD (red circles) at start of the event, predicted typical x(f) curve
(orange) and values of SMD generated for 100 Monte Carlo simulations of 17 years

each (grey crosses) versus the time of year, for the Taf at Clog-y-Fran.

Plots of residuals from model fitted to the SMD at the start of the event (equation (2))
for the Taf at Clog-y-Fran. Residuals versus time of year (top left), residuals versus
IEAT (top right), g-g plot for Normal distribution (bottom left) and autocorrelation

function (bottom right).

Uncertainty due to limited record length for the Taf at Clog-y-Fran: 100 Monte Carlo
simulations each 16 (water) years long (grey lines), and 10 simulations each 2000
years long (red lines), all starting from different random seeds and plotted using
Gringorten’s plotting position. Observed (circles) and continuously simulated
(crosses) annual maximum peak flows are also shown, together with a GEV
distribution (thick black line) fitted to the observed annual maxima and the 95%

confidence intervals around the fitted GEV frequency curve (blue dashed lines).

Uncertainty in the flood frequency curve due to sampling variability (all four
catchments). The full black line is the GEV distribution fitted to observed annual
maxima (black circles), with the 95% confidence interval around the fitted GEV in
dashed blue lines. The full red line is the “median” flood frequency curve from 199
2000-year long model runs (solid red line), with 95% confidence intervals based on a

block bootstrap method (dotted red lines).
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Fig. 13

Fig. 14

Uncertainty in the frequency curve for flood volumes due to sampling variability (all

four catchments). Notations as for Fig. 12.

Relative sensitivity of the flood frequency curve to sampling variability in the
individual parameters. The black line is the GEV fitted to annual maxima (black dots)
from a model run based on the parameters estimated for the observed data set. This is
surrounded by pairs of frequency curves where, for each diagram, the target
parameter has been replaced by the value corresponding to the upper or lower limit of
the 95% confidence interval of the parameter. The confidence interval is estimated
using the conditional (dashed blue lines), or unconditional (dash-dotted red lines),

variance.
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