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25 ABSTRACT 
 

26 Soil texture and the soil water characteristic (SWC) are key properties used to estimate 
 

27 flow  and  transport  parameters.  Determination  of  clay  content  is  therefore  critical  for 
 

28 understanding of plot scale soil heterogeneity. With increasing interest in proximal soil sensing, 
 

29 there is the need to relate obtained signals to soil properties of interest. Inference of soil texture, 
 

30 especially clay mineral content, from instrument response from electromagnetic induction and 
 

31 radiometric methods is of substantial interest.  However, the cost of soil sampling and analysis 
 

32 required  to  link  proximal  measurements  and  soil  properties,  e.g.  clay  mineral  content,  can 
 

33 sometimes outweigh the benefits of using a fast proximal technique. In this paper, we propose 
 

34 that determination of a soil’s hygroscopic water content at 50% atmospheric relative humidity 
 

35 (RH
50

), which is time and cost efficient, and particularly suitable for developing countries, can 
 

36 act as a useful surrogate for clay content in interpreting soil spatial patterns based on proximal 
 

37 signals. We used standard clays such as kaolinite, illite and montmorillonite to determine the 
 

38 water release characteristic as a function of hygroscopic water content. We also determined clay 
 

39 content  of  soils  from  temperate  (Arizona,  USA)  and  tropical  (Trinidad)  regions  using  the 
 

40 hydrometer method, and hygroscopic water content for soils equilibrated at RH
50

. We found 
 

41 linear dependence of clay percentage and RH
50  

for a range of soil mineralogies. Hygroscopic 
 

42 water measurements offer an inexpensive and simple way to estimate site specific clay mineral 
 

43 content that in turn can be used to interpret geophysical signal data in reconnaissance surveys. 

 
44 

 

45 Keywords: Hygroscopic water, clay, water release curve, soil texture, geophysics, radiometrics, 
 

46 electromagnetic induction 
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47  Abbreviations:  EMI,   electromagnetic  induction;  RH,   relative   humidity;  SWC,   soil   water 

 
48  characteristic. 

 

 

49 
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50 INTRODUCTION 
 

51 Soil texture (percentage of sand, silt and clay) is a fundamental parameter in soil science 
 

52 (Gee and Bauder, 1986) and a major component of the soil natural capital (Robinson et al., 
 

53 2009a). Texture is widely used in agriculture and engineering as well as in basic research to 
 

54 estimate for example water release curves in flow and transport modeling (Schaap et al., 2001). 
 

55 Soil texture, especially clay content, controls magnitude and rates of many physical, chemical 
 

56 and hydrological processes in soils. Important soil phenomena such as nutrient storage, nutrient 
 

57 availability, water retention, and stability of aggregates may vary across the field in response to 
 

58 the spatial variability of clay percentage.  Soil moisture which is the major control for rainfall- 
 

59 runoff  response  in  a  watershed  (Robinson  et  al.,  2008a)  has  been  directly  linked  to  clay 
 

60 variability (Crave and Gascuel-Odoux, 1997). Net nitrification and CO2 release has been shown 
 

61 to depend on water content and clay content (Schjonning et al., 2003). Knowledge of texture, 
 

62 especially the spatial distribution of clay content, is therefore important for a range of ecosystem 
 

63 services,   including   provisioning   through   agricultural   production   and   regulating   of   the 
 

64 hydrological cycle through filtering and buffering. A growing challenge in soil science is to map 
 

65 soil natural capital, of which texture is a component, in a way that allows us to scale from the 
 

66 soil profile, to field, to regions. 
 

67 Proximal sensing techniques, especially geophysical sensors that infer spatial textural 
 

68 information  from  instrument  response  to  ions  adsorbed  on  clay  minerals  (Robinson  et  al., 
 

69 2008b), provide an invaluable means for filling the ‘intermediate’ scale data gap. 
 

70 Electromagnetic induction (Doolittle et al., 1994; Triantafilis et al., 2001; Triantafilis and Lesch, 
 

71 2005),  resistivity  (Samouelian  et  al.,  2005),  induced  polarization  (Slater  et  al.,  2006)  and 
 

72 radiometrics (Rawlins et al., 2007) are techniques progressively used to determine soil properties 
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73 or spatial patterns related to texture, inferred from mineralogy and cation binding. In case of 
 

74 electrical methods, cations adsorbed to 2:1 clay minerals can be used to interpret, or determine, 
 

75 the spatial pattern of clay percentage in non-saline soils (Triantafilis et al., 2001; Triantafilis and 
 

76 Lesch, 2005; Sudduth et al., 2005; Harvey and Morgan, 2008). This method is limited to clays 
 

77 that adsorb cations to counter balance negative charge sites, and is less likely to work for clay 
 

78 minerals with low surface areas, e.g. kaolinites. In case of radiometrics, many clay minerals e.g. 
 

79 hydrous micas and illites can be detected through their potassium isotope signal (Taylor et al., 
 

80 2002). Knowledge of clay content is therefore critical for the signal interpretation of proximal 
 

81 sensing instruments. 
 

82 Direct,  grid-like  soil  sampling  for  identifying  spatial  textural  patterns  has  several 
 

83 limitations among which the need for high-intensity sampling and associated costs for analyses 
 

84 are the most constraining ones. In addition, minimizing soil disturbance, i.e. not filling the 
 

85 landscape  with  holes  is  vital  for  many  hydrological  process  studies.  In  many  cases,  an 
 

86 understanding of soil spatial patterns, and delimiting of hydrological functional units, is more 
 

87 important than the exact knowledge of soil properties (Grayson and Blöschl, 2000). The costs for 
 

88 independently measuring soil properties for calibration of proximal signals have always been an 
 

89 issue, such that Lesch et al. (1995 a, b) developed efficient sampling methods for interpreting 
 

90 EMI signal response from directed soil sampling. Even with approaches like theirs, the particle 
 

91 size analysis presents a substantial cost for calibration, especially if multiple fields are sampled. 
 

92 In  this  paper  we  propose  that  under  many  circumstances,  a  site  specific  calibration 
 

93 between clay percentage and hygroscopic water content could be used to greatly reduce the 
 

94 number of particle size analyses that might be done for a proximal sensing site calibration. 
 

95 Estimating clay percentage from hygroscopic water content presents a cost efficient, simple and 
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96 reliable surrogate for correlating proximal signal response to soil clay content; although the 
 

97 paper does not specifically explore EMI calibration. Our major goal is to investigate if simple, 
 

98 cost and time efficient hygroscopic water content measurements can be used to estimate clay 
 

99 contents for soils with varying mineralogies. 
 

100 In  soils,  soil  solution  electrical  conductivity  ECe,  volumetric  soil  water  θv   and  clay 
 

101 contents are the major factors influencing bulk soil electrical conductivity ECa (Friedman, 2005) 
 

102 and EMI signal response. In the case of radiometrics, clay content, and to a lesser extent soil 
 

103 moisture  are  the  driving  factors.  The  intimate  relationship  between  soil  clay  content  and 
 

104 hygroscopic water content is well established (Briggs and Shantz, 1912, Banin and Amiel, 1970; 
 

105 Petersen et al., 1996), but not widely exploited. It was proposed as a method for determining soil 
 

106 surface area, but largely abandoned because water tends to cluster on charged clay mineral 
 

107 surfaces, not forming a monolayer like EGME, which has a lower dielectric constant, or non- 
 

108 polar nitrogen (Quirk and Murray, 1999). Therefore, we hypothesize that soil hygroscopic water 
 

109 content, whose determination is fast and technically less involved than particle size analysis, 
 

110 positively correlates with clay percentage in both temperate and tropical soils, and can provide a 
 

111 useful  surrogate  for  soil  clay  content.  Other  research  groups  have  presented  results  that 
 

112 emphasize  the  strong  correlation  between  hygroscopic  water  and  clay  contents  (Banin  and 
 

113 Ameil, 1970; Petersen et al., 1996, Tuller and Or, 2005; Resurreccion et al., 2011), however, 
 

114 there is no specific water potential or relative humidity agreed upon at which these relationships 
 

115 should be determined. 
 

116 Clay content and type of clay minerals determine the magnitude of the soil specific 
 

117 

 
118 

surface area (Petersen et al., 1996). Banin and Amiel (1970) presented data with specific surface 

area showing a strong linear dependence (r
2
=0.902) to clay contents. In the studies of Banin and 
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119 

 
120 

Amiel (1970) and Dirksen and Dasberg (1993), hygroscopic water content had a strong linear 
 

correlation (r
2
=0.936) with soil specific surface area. Recently, Logsdon et al. (2010) determined 

 

121 hygroscopic water content of soils in a vapor-tight container over distilled water at ~99 % 
 

122 relative humidity and concluded that higher hygroscopic water content is associated with high 
 

123 soil specific surface area. To come to an agreement about a specific relative humidity level at 
 

124 which hygroscopic water content ought to be determined, in-depth knowledge of the water 
 

125 release characteristics of different clay minerals is required. Therefore, the objectives of the 
 

126 present study were to: (1) determine the water release characteristics for standard source clays; 
 

127 (2) define a suitable relative humidity level for estimating clay content for the source clays; and 
 

128 (3) examine the relationship between hygroscopic water content and clay content using the 
 

129 defined  relative  humidity  for  soils  with  varying  mineralogies  from  temperate  and  tropical 
 

130 

 
131 

regions. 

 

132 MATERIALS AND METHODS 
 

133 Clay Minerals 
 

134 Standard 100 % source clay minerals were used to determine the hygroscopic water 
 

135 content as a function of relative humidity. The selected samples were the same as used in Lebron 
 

136 et al. (2009) and included: Silver Hill illite from Montana (IMt-1) and Ca-montmorillonite from 
 

137 Cheto, AZ (SAz-1) obtained from the Clay Mineral Society’s Source Clay Repository; Wyoming 
 

138 bentonite (Aqua Technologies of Wyoming, Casper); and kaolinite from the Lamar pit (Bath, 
 

139 SC). The SAz-1 montmorillonite was saturated with Na, Ca or Mg to produce clay samples 
 

140 

 
141 

saturated with a single ion (Goldberg and Glaubig, 1987). 
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142 Soil Samples 
 

143 The first set of samples contained tropical soils from the University of the West Indies 
 

144 

 
145 

soil sample collection in Trinidad. Trinidad is the southernmost of the Islands of the Lesser 
 

Antilles in the Caribbean Sea and is situated 10
o
3′N 60

o
55′W and 10

o
50′N 61

o
55′W. The 23 soils 

 

146 used for this study were collected from different locations across the island, representing a range 
 

147 of soil types including kaolinitic, micaceous, and montmorillonitic soils (Table 1). In addition, 
 

148 20 temperate soils from the University of Arizona Department of Soil, Water and Environmental 
 

149 Sciences’  source  soil  collection,  again  representing  a  wide  range  of  mineralogies  and  clay 
 

150 content were analyzed (Table 1). 
 

151 Furthermore, a number of datasets originating from both Trinidad and the USA that were 
 

152 previously used for EMI calibration were investigated. Soils from Trinidad were collected from 
 

153 Guayaguayare, Moruga, Centeno and Woodland from locations identified via an EMI-directed 
 

154 soil sampling method (Lesch et al., 2000). Data from the USA were obtained from the T.W. 
 

155 Daniel  Experimental  Forest  (TWDEF)  in  northern  Utah  and  the  Reynolds  Mountain  East 
 

156 catchment within the Reynolds Creek Experimental Watershed in southwestern Idaho (Abdu et 
 

157 

 
158 

al., 2008). 

 

159 Clay and Soil Sample Analysis 
 

160 The water release characteristics for the source clays were measured with a Dewpoint 
 

161 

 
162 

 
163 

Potentiameter (WP4-T, Decagon Devices, Inc., Pullman, WA, USA). The clay samples were 

oven  dried at  105
o
C and  then  left equilibrating  with  the ambient  laboratory atmosphere  at 

controlled temperature (25
o
C) for several months. Once the humidity level of interest had been 

 

164 reached and was stable for 2-3 days, samples were weighed with an analytical balance and the 
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165 soil water potential was determined with the WP4-T. Relative humidity was measured using a 
 

166 humidity sensor (Thermo Hygro, Thermo-Fisher, Waltham, MA). In order to establish a range of 
 

167 humidities this experiment lasted about 5 months. Soil water potential was converted to relative 
 

168 humidity via the well-known Kelvin equation: 
 

 

RT w
  e 

169  w  
M

 ln 
e
 (1) 

w   0  


170 

 
171 

where Ψw  is soil water potential, R is the universal gas constant (8.31 J K
-1  

mol
-1

), T is the 
 

absolute temperature (
o
K), w is the density of water (kg m

-3
) and Mw is the molecular weight of 

 

172 water (0.018 kg/mol). The ratio of e, the water vapor pressure, to e0, the saturation vapor 
 

173 pressure, is the temperature-dependent relative humidity, which can be rewritten as: 
 
 

 

174 

 

RH   
e 

e 0 

M w  w 

 exp 
w R T

 

 

 

(2) 

 

175 

 
176 

The soil samples originating from Trinidad were first oven-dried at 105 
o
C and then equilibrated 

 

with the ambient atmosphere of a temperature-controlled room (25 
o
C) with a monitored relative 

 

177 

 
178 

 
179 

humidity (Thermo Hygro, Thermo-Fisher, Waltham, MA) of ~50 %. The steps developed to 

measure hygroscopic water content (θhw) at RH
50 

are described below: 

 

180 1. Weigh the sample containers using a four-decimal analytical balance (Wc). 
 

181 

 
182 

2. Weigh approximately 10 g of air-dried sample into the sample containers and place them in 
 

the oven to dry at 105 
o
C for 24 hours, weigh again directly from the oven before cooling, using 

 

183 a thermal isolator to protect the balance (Wovendry). 
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184 3. Allow the oven-dried samples to equilibrate to RH
50 

at ambient conditions in the laboratory. 
 

185 Equilibration of our samples was achieved within 48 to 72 hours when RH was monitored using 
 

186 a thermohygrometer sensor. 
 

187 4. Measure the humidity, monitor over a 2 hours period, if 50 % is maintained reweigh the 
 

188 

 
189 

equilibrated samples to determine the moisture gain (WRH50). 
 

5. The θhw at RH
50 

in the sample is calculated gravimetrically as: 
 

190 
 

 
191 

 
 
 

(W  � W ) � (W  � W  ) 
   

RH 50 c ovendry c 

 

 
 
 

(3) 
hw 

W  � W
 

(   ovendry c ) 

 
192 

 
193 

 

 
 

The samples from Arizona were equilibrated at 50 % humidity and 25 
o
C using a temperature 

 

194 and  humidity  controlled  environmental  chamber  (1007H  Temperature/Humidity  Chamber, 
 

195 TestEquity, LLC, Moorpark, CA, USA). An additional experiment was conducted to determine 
 

196 

 
197 

how fast soils re-adsorb water following oven-drying. To achieve this, oven-dried soil samples 
 

were weighed and kept in the environmental chamber at 50 % relative humidity and 25 
o
C. The 

 

198 soil samples were then weighed in 3 hour intervals to capture the initially highly dynamic change 
 

199 in water content. The time interval was then stepwise increased to 6, 12, and 24 hours for a total 
 

200 time period of 15 days. The clay content was determined with the hydrometer method (Gee and 
 

201 Bauder,  1986).  Organic  matter  was  removed  using  hydrogen  peroxide  (35  %  H2O2)  and 
 

202 

 
203 

 
204 

 
205 

 
206 

dispersed using 5 %-sodium hexametaphosphate. 
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207 RESULTS 
 

208 Source Clay Samples 
 

209 Results for hygroscopic water content (θhw) as a function of relative humidity are 
 

210 presented in Fig. 1. The data for 2:1 clay minerals show a substantial increase in θhw at low 
 

211 humidities, a levelling off at RH values between about 50-60 % and then increasing water 
 

212 

 
213 

content again at RH values above 80 %. Both the 2:1 clays montmorillonite and illite adsorbed 
 

more than 0.05 m
3 

of water per gram of oven dry soil at RH values of ~50 %. However, kaolinite 
 

214 

 
215 

 
216 

 
217 

didn’t adsorb water until ~80 % humidity or higher. 
 
 
 
 

Determination of Hygroscopic Water Content at RH
50

 

 

Based  on  results  from  the  water  release  curves  (Fig.  1)  we  adopted  the  RH
50   

for 
 

218 equilibrating our soils as a compromise value considering the range of mineralogies. This also 
 

219 

 
220 

represents a relatively stable point at which the change of θhw  with humidity is at a minimum; 
 

RH
50  

is also commonly attained in the laboratory meaning no special equipment is required to 
 

221 

 
222 

 
223 

 
224 

equilibrate the soils at this humidity. 
 
 
 
 

Water Uptake and Equilibration of Samples at RH
50

 

 

After adopting the RH
50 

for equilibrating our soils, we determined the time for samples to 
 

225 readsorb water in the lab following oven drying. The results of the rate at which water uptake 
 

226 occur using the Arizona soils data set after oven drying is presented in Fig. 2. The facilities at the 
 

227 laboratory  in  Arizona allowed  samples  to  be analyzed  in  greater  detail  under more  tightly 
 

228 

 
229 

controlled conditions. In our experimental method soils are oven dried and then allowed to re- 

equilibrate  at  RH
50   

to  determine  the  fraction  of  hygroscopic  water.  The  samples  tend  to 
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230 equilibrate within ~2 days (Fig. 2). We suggest leaving the samples for a minimum of 54 hours, 
 

231 which seems appropriate for re-equilibration. This is convenient for laboratory scheduling, as 
 

232 soils may be removed from a drying oven, after drying overnight, and then be weighed with the 
 

233 start of equilibration at ~9 am. Samples can be left to equilibrate for two days and then measured 
 

234 

 
235 

 
236 

around 3 pm or later to determine the water uptake. 
 
 
 
 

Effect of Organic Matter Removal on Water Adsorption at RH
50

 

 

237 Hygroscopic water content as a function of the clay percentage of untreated and treated 
 

238 Arizona soils that have had organic matter removed are presented in Fig. 3. The purpose of this 
 

239 was to determine if the presence of organic matter strongly affected the relationship between the 
 

240 hygroscopic water content and clay percentage. The removal of organic matter results in slightly 
 

241 lower water adsorption, confirming that the clay percentage is the major factor in determining 
 

242 the amount of water adsorbed. Based on the regression lines shown, and assuming that the 
 

243 organic matter is largely responsible for any additional water adsorption, ~5 % difference in 
 

244 organic matter for a soil with ~50 % clay may result in an 8 % difference in the estimated clay 
 

245 percentage, which is acceptable for using field soil for a reconnaissance survey. This indicates 
 

246 that for these soils, organic matter was not a major issue, but in future work we might want to 
 

247 examine how different types of organic matter adsorb water and whether the relationship is 
 

248 linear. 
 

249 Fig. 4 compares the measurement error associated with determining the hygroscopic 
 

250 water content of soil samples based on mass gained, with the measurement error associated with 
 

251 determining  clay  content  from  sedimentation  analysis  using  the  hydrometer  method.  As 
 

252 expected, the measurement errors are generally smaller at higher clay contents, with the % error 
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253 increasing rapidly at low clay contents. The error for the hygroscopic water content is generally 
 

254 lower at low clay contents because our ability to weigh accurately is greater than our ability to 
 

255 detect clay via sedimentation at low clay contents; from clay contents of 10-50 % the errors 
 

256 involved are similar. This indicates that the greatest errors in estimating clay percentage from 
 

257 hygroscopic water will be dependent on the spatial variability of organic matter, if not removed 
 

258 

 
259 

 
260 

from samples. 
 
 
 
 

Hygroscopic Water Content as a Function of Clay Content for Soils Equilibrated at RH
50

 

 

261 

 
262 

Hygroscopic water content as a function of clay percentage for both the Arizona and 
 

Trinidad soil data sets equilibrated at RH
50 

is presented in Fig. 5. The Trinidad soils are divided 
 

263 according  to  major  mineralogy,  kaolinitic,  micaceous  and  mixed  clays,  sesquioxides  and 
 

264 montmorillonitic; the Arizona soils were dominated by mica and illite clay minerals. These soils 
 

265 represent the range of 2:1 and 1:1 clay mineralogies (Table 1) and indicate strong consistency in 
 

266 response compared to the trendlines indicated for the different pure clay minerals. The soils 
 

267 dominated by sesquioxides and montmorillonite have distinctively higher hygroscopic water 
 

268 content values than the other soils. The montmorillonite follows the bentonite trendline, whilst 
 

269 the micaceous and mixed mineralogy follows the illite trendline. Noticeably the oxide dominated 
 

270 soil  follows  the  bentonite  trendline  indicating  this  soil  can  adsorb  a  lot  of  water;  highly 
 

271 weathered tropical soils with amorphous oxides can have large surface areas on which water can 
 

272 adsorb (Sanchez, 1976; Goldberg et al., 2001; Robinson et al., 2009b). In addition, some of the 
 

273 kaolinitic soils (clay content 50-70 %) have higher water content than might be expected. This 
 

274 

 
275 

may occur due to the presence of oxides in these soils, biasing values upwards and requires 

further research. The r
2  

values for the regression equations of hygroscopic water content as a 
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276 function of clay content were 0.78 and 0.68 for Arizona soils and all Trinidad soils, respectively. 
 

277 This indicates a positive linear relationship between hygroscopic water content and clay content 
 

278 for soils of varying mineralogies, from temperate and tropical regions. The relationship was only 
 

279 

 
280 

superior in the Arizona soils compared to the Trinidad soils due to less mineralogical variation. 
 

The r
2  

for the Trinidad soils increased to 0.84 after removing the oxide and montmorillonite 
 

281 soils. 
 

282 

 
283 

A compilation of available data sets that contain both clay percentage information and 
 

hygroscopic water content (RH
50

) for samples taken from landscapes mapped with the EMI 
 

284 

 
285 

 
286 

 
287 

 
288 

 
289 

sensor in the USA and Trinidad, are presented in Fig. 6.  The results fall broadly in the same 

location  as  in  Fig.  5.  The  r
2   

values  with  intercept  set  to  zero,  RMSE  and  corresponding 

mineralogy are presented in Table 2. The r
2 

values improve as the range of the clay percentage 

broadens. All RMSE values for clay percentage as a function of RH
50 

fall below 10 % with the 

median value being 5 %. This indicates that for these soils, RH
50 

was a reasonable predictor of 

clay percentage. Placing a regression line through all data (clay % = 1037.5* RH
50

) gave an r
2 

of 

 

290 0.70 and resulted in a RMSE of 6.5 % which may be acceptable for reconnaissance survey. 
 

291 

 
292 

However, we do not advocate the use of a single relationship as it is mineralogy dependent. In 
 

this regard a site specific calibration should be established between RH
50  

and clay percentage 
 

293 

 
294 

that could then be used to estimate clay percentage from subsequent samples measured only for 
 

RH
50

. RH
50  

values would be useful for providing secondary data, in for example co-kriging 
 

295 

 
296 

geostatistical  methods  (Lesch  et  al.,  1995a).  The  results  indicate  reasonable  correlations, 
 

demonstrating that hygroscopic water content at RH
50 

has good potential to act as a pedotransfer 
 

297 function to estimate clay percentage at least for reconnaissance surveys and as a secondary 
 

298 variable for geostatistical interpolation. 
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299 DISCUSSION 
 

300 Developing a standard approach to estimating clay percentage from the hygroscopic 
 

301 water content relies on agreeing on an accepted relative humidity value at which to measure the 
 

302 hygroscopic water content. Different authors have used different values, Banin and Amiel (1970) 
 

303 used air dry samples, whilst Petersen et al. (1996) used a pressure of 1.5 MPa. Logsdon et al. 
 

304 (2010) determined hygroscopic water content of air dry soils in a vapor-tight container over 
 

305 distilled water at ~99 % relative humidity. In an effort to standardize a method, Lebron et al. 
 

306 (2009), used a hygroscopic water content of 41 % to determine gypsum content in soils. They 
 

307 used  41  %  because  this  is  the  relative  humidity  achieved  by  equilibrating  samples  over  a 
 

308 saturated solution of K2CO3 in a dessicator, which makes standardization easier, especially given 
 

309 the temperature stability of the RH of K2CO3. However, finding a salt that offers a temperature 
 

310 stable RH at ~50-60% is not straightforward. Any chosen value of RH is a trade-off between 
 

311 having a zone of minimal relative change of slope of the water release curve of the soil (Fig. 1), 
 

312 

 
313 

and having enough water to obtain a meaningful measurement of hygroscopic water content. 
 

RH
50   

was  chosen  as  a  compromise,  bearing  in  mind  this  trade-off,  which  seems  to  work 
 

314 reasonably well even in kaolinitic soils. The use of K2CO3  is appealing and good for 2:1 clay 
 

315 mineral soils, but is not so good for kaolinitic soils which have essentially desorbed all their 
 

316 water at RH 41%. 
 

317 The benefits of proximal sensing techniques in reconnaissance surveys have, to some 
 

318 extent, been undermined by the cost and tedious requirements for soil sampling and analysis of 
 

319 properties such as clay percentage required for their calibration.  The removal of organic matter 
 

320 from the samples in the current study resulted in only minimal reduction in adsorbed water (Fig. 
 

321 4).  This  signifies  that  in  soils  low  organic  matter,  clay  percentage  is  the  major  factor  in 
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322 determining the amount of water adsorbed. Clay percentage has been shown by previous workers 
 

323 to be strongly correlated with specific surface area and hygroscopic water content (e.g., Banin 
 

324 and Amiel, 1970; Petersen et al., 1996; Robinson et al., 2002). However, hygroscopic water 
 

325 content which is a quicker and cheaper soil property to measure is often not routinely collected 
 

326 by soil surveys (Robinson et al., 2002). Since the amount of water adsorbed by a sample varies 
 

327 depending on the ambient humidity, finding a suitable relative humidity for the equilibration of 
 

328 

 
329 

soils  is  important  for  the  determination  of  hygroscopic  water  content  to  speed  up  the 
 

interpretation of geophysical signals. In our study, RH
50 

was chosen as a compromise value from 
 

330 the  determination  of  hygroscopic  water  content  for  standard  clays  which  generally  yielded 
 

331 hygroscopic water content values that were strongly correlated with clay percentage for both 
 

332 

 
333 

 
334 

tropical and temperate soils of varying mineralogies. 

 

335 

 
336 

SUMMARY AND CONCLUSIONS 

 

337 The work presented describes a simple, cost and time efficient method of estimating clay 
 

338 content  using  hygroscopic  water  content  measurements.  To  successfully  determine  the 
 

339 relationship between hygroscopic water content and clay content it is important to identify a 
 

340 suitable value of relative humidity for equilibration of soils. Based on our results on water 
 

341 release curves of standard clay minerals, this value was identified to be ~50 %, a relatively stable 
 

342 point at which the change in hygroscopic water content with humidity is at a minimum. This 
 

343 value was then used to equilibrate soil samples from tropical (Trinidad) and temperate (Arizona) 
 

344 regions exhibiting a wide range of soil mineralogy. 
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345 

 
346 

 
347 

The  work  presented  indicates  positive  correlations  between  soil  hygroscopic  water 

content  measured  at  RH
50   

and  the  clay  percentage  in  the  soil.  Hygroscopic  water  content 

measured at RH
50 

has good potential to act as a pedotransfer function to estimate clay percentage 

 

348 for surveys. One of three approaches, with increasing accuracy, could be adopted: 
 

349 1)  estimate  clay  percentage  from  the  linear  hygroscopic  water  content  calibration 
 

350 presented for all soils. 
 

351 2) perform a site specific calibration on a soil subsample between clay and relative 
 

352 humidity. 
 

353 

 
354 

3) perform a full calibration using particle size analysis. 

 

355 With the growth of proximal sensing the first approach offers a cheap and rapid way to 
 

356 estimate  the  dependence  of  soil  geophysical  signal  response  surfaces  to  hygroscopic  water 
 

357 content as a surrogate for soil clay percentage for reconnaissance survey. This may guide a 
 

358 surveyor as to the major soil parameter contributing to the geophysical signal response. 
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456 
 

457 
 

458 
 

459 

Table 1. USDA textural class, clay percentage and mineralogy of 23 tropical soils from the 

soil collection of the University of the West Indies, Trinidad and 20 temperate soils from 

the soil collection of the University of Arizona, USA. 

 
 

University of the West Indies soil collection                      University of Arizona soil collection 
 

USDA textural 
 

Clay content 
 

Clay minerals USDA textural class Clay content 
 

Clay 
 

 class  (%)  (%)  minerals   
 

 Sandy Loam 15 Kaolinitic Coarse Sand 1 - 

Sandy Loam 17 Micaceous Fine Sand 2 - 

Sandy Loam 18 Kaolinitic Loamy Coarse Sand 6 Micaceous 

Sandy Loam 19 Micaceous Loamy Sand 10 Micaceous 

Sandy clay Loam 27 Micaceous Loamy Fine Sand 5 Micaceous 

Sandy clay Loam 27 Mixed Fine Sandy Loam 7 Illitic 

Sandy clay Loam 29 Kaolinitic Sandy Loam 15 Micaceous 

Sandy clay Loam 29 Kaolinitic Fine Sandy Loam 12 Micaceous 

Sandy clay Loam 29 Kaolinitic Loam 19 Illitic 

Sandy clay Loam 29 Kaolinitic Silt Loam 20 Micaceous 

Sandy clay Loam 33 Kaolinitic Silt Loam 20 Micaceous 

Sandy clay Loam 35 Mixed Loam 24 Micaceous 

Clay Loam 35 Mixed Sandy Clay Loam 25 Micaceous 

Sandy clay 43 Oxidic Sandy Clay Loam 31 Micaceous 

Clay 45 Mixed Clay Loam 36 Micaceous 

Clay 51 Mixed Silty Clay Loam 35 Micaceous 

Clay 55 Kaolinitic Silty Clay Loam 34 Micaceous 

Clay 57 Mixed Silty Clay 52 Illitic 

Clay 63 Kaolinitic Clay 54 Illitic 

Clay 66 Kaolinitic Sandy Clay 39 Micaceous 

Clay 67 Mixed    

Clay 71 Montmorillonitic    

Clay 82 Mixed    
 

460       
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461 Table 2. RMSE for the prediction of clay percentage from the RH
50 

values for a selection of 
 

462 soils and the dominant mineralogy. 
 

Soil sampling location r
2 

(No. of samples) Clay % RMSE Dominant mineralogy 

Moruga, Trinidad 0.40 (40) 6.6 Mixed 

Guayaguayare, Trinidad 0.62 (46) 4.0 Kaolinitic 

Woodland, Trinidad 0.40 (67) 9.0 Montmorillonitic 

Centeno, Trinidad 0.87 (123) 6.2 Mixed 

TW Daniels, Utah 0.63 (15) 3.5 Montmorillonitic 

Reynolds Creek, Idaho 0.48 (17) 4.2 Montmorillonitic 

463 

 
464 
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465 
 

466 

 
467 

 
468 

 
469 

Fig. 1. Water release curves for standard clays. 
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470 
 

471 

 

 
Fig. 2. Water uptake on treated temperate Arizona soils at 25

o
C indicating water is rapidly 

 

472 

 
473 

 
474 

adsorbed in 48hrs. 
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475 
 

476 
 

477 Fig. 3. Hygroscopic water content as a function of the clay percentage comparing untreated and 
 

478 

 
479 

treated temperate Arizona soils that have had organic matter (O.M.) removed. 
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480 

 

481 

 

 

482 Fig. 4. Trinidad and Arizona soils error as a function of the treated (organic matter removed) clay 
 

483 percentage; the error is represented as the standard deviation (stdev) as a percentage of the mean 
 

484 

 
485 

of 4 independent replicates. 
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486 

 

487 

 

 

488 

 
489 

 

 
 

Fig. 5. Hygroscopic water content (RH
50

) as a function of clay percentage for 23 tropical 
 

490 Trinidad soils divided by major mineralogy, 20 temperate Arizona soils, and 100 % clay 
 

491 samples. The dashed linear trend lines join the 100% clay samples to the origin as a guide for 
 

492 

 
493 

 
494 

 
495 

comparison with figure 6. 
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496 
 

497 
 

498 Fig. 6.  Five data sets showing field scale variability; one data set from a soil dominated by Ca 
 

499 

 
500 

montmorillonite from Utah and four from Trinidad. The dashed linear trend lines join the 100% 
 

clay samples to the origin as a guide for comparison with figure 5. For r
2 

and RMSE see Table 2. 


