408

INSTITUTE OF TERRESTRIAL ECOLOGY (NATURAL ENVIRONMENT RESEARCH COUNCIL) ITE PROJECT NO. 408 DOE/NERC CONTRACT NO. DGR 483/5

ARBORICULTURE: SELECTION

TREE SELECTION STUDIES FOR REVEGETATION OF EXPOSED SITES AND AREAS OF DERELICTION

F. T. LAST

BUSH ESTATE PENICUIK MIDLOTHIAN

MAY 1977

This report is an official document prepared under contract between the Department of Environment and the Natural Environment Research Council. It should not be quoted without permission from both the Institute of Terrestrial Ecology, sponsored by NERC, and the Department of Environment.

DEPARTMENT OF ENVIRONMENT CONTRACT

ARBORICULTURE: SELECTION

ITE PROJECT 408

Tree selection studies for revegetation of EXPOSED SITES and AREAS OF DERELICTION

CONTENTS

Α. CUTTINGS Page Phase IIA Vegetative propagation 1 Phase III Symbiotic associations 1 Phase IV Field trials 1 Β. SEEDS Phase II Germination tests 2

C. <u>SPOIL ANALYSES</u> 2

D. ANCILLARY EXERCISE

Factors influencing the silvering of birch 2

A. CUTTINGS

Phase IIA Vegetative propagation

Overwintering losses of cuttings were small; Betula pubescens had the best survival and Alnus incana the worst (Figure 1). However, when the different phases of propagation were examined, large clonal differences emerged (Figures 2, 3, 4 and 5). Where they occurred, major overwintering losses were confined to slow-rooting cuttings. Next winter, cuttings of these clones will be kept under lights in the hope of extending the periods of root formation.

Some glasshouse-grown plants of each clone, serving as stock plants, were kept under lights. These plants are being used to provide 'early' cuttings to accelerate the build up of clonal planting stock. A number of the stock plants unexpectedly died; to minimize the risk of further losses, the survivors were transplanted to fresh compost.

Phase III Symbiotic associations

When examined at transplanting there were no obvious mycorrhizas or nodules. A second examination will be made and inoculation procedures checked.

Phase IV Field trials

Spoil beds have been constructed (Figure 5); they are lined with heavy duty plastic, and have a basal layer of sand. Three substrates are being tested:

- (a) Alkaline washery waste from Bilston Glen Colliery (nr. Edinburgh)
- (b) Acidic spoil from Roslin old-bing (nr. Edinburgh)
- (c) Local soil at ITE Laboratory (nr. Edinburgh)

For the present only one bed is being constructed for each substrate and therefore experimental differences between beds will not be statistically valid. Nonetheless they should provide pointers for future developments and will enable the retention and build-up of tolerant stocks. The spoil beds, to minimize edge effects, are about to be protected by windbreaks.

B. SEEDS

Phase II Germination tests

In preliminary experiments treating birch seeds with the fungicide Captan did not increase germination and subsequent survival. On the contrary, the fungicide was associated with an appreciable decrease when germinating on spoil the decrease, however, was not statistically significant.

Curiously the germination of some birch seed was greater on lead spoil than on local spoil (Figure 7).

C. SPOIL ANALYSES

Conductivity, total nitrogen, potassium, calcium and magnesium were analysed from a 2:1 water: spoil extract. Pheophorus was analysed from a 50:1 0-IM KCI solution (Tables 2, 3 and 4). Results of Al, Fe, Cu, Mn, Pb and B analyses are awaited.

D. ANCILLARY EXERCISE

Factors influencing the silvering of birch. As trees are being selected for amenity characters in addition to survival on spoil, the chance was taken to investigate silvering in an even-aged stand of birch. Using a subjective scale:

Silvering	grade	1	Green/purple	bark
		2	Shiny purple	bark
		3	Brown/purple	bark
		4	Brown/silver	bark
		5	Silver bark	

it was found, within the same seed population, that the early development of silvering was associated with rapid stem expansion. Thus the selection of rapid growers may automatically select for early silvering; on the other hand more intensive selection will be needed to find silvering on slow growers.

SITES IN DURHAM

AN	VEGETATION	SITE	рН	Total N ppm	p ppm	К ррт	Ca ppm	Mg ppm	Cond µs
5	ز ۷	Alexandria	5.1	ND	4.7	-	19	8.5	_
6	NV J	••	5.0	ND	2.0	-	21	8.4	160
7	ſ	11	5.1	ND	2.7	-	47	22.0	-
8	NV J	11	4.0	ND	. 5	11.0	10	6.5	160
9	v	*1	5.9	. 3	18.0	96 .0	62	23.0	380
10	v	**	7.8	. 2	6.5	35.0	120	35.0	400
11	v	11	8.0	ND	9.3	45.0	120	25.0	340
12	٧٦	Wylam	4.0	ND	2.0	21.0	93	39.0	540
13	NV }	**	3.7	1.7	ND	1.4	24	8.4	380
14	٧٦	**	4.6	ND	2.1	13.0	25	9.1	180
15	_{NV} J	11	3.8	. 7	ND	5.0	20	9.1	160
16	Ŷζ	**	5.7	-	. 51	6.3	22	7.0	75
17	_{NV} /	11	4.5	1.0	2.0	6.4	17	6.5	90
18	٧٦	**	4.1	ND	. 51	10.0	7.1	2.0	120
19	NV Š	**	3.9	ND	ND	5.1	7.2	1.3	90
20	v	"	5.1	ND	7.4	-	38	11.0	-
21	v	W. Sleekburn	4.2	ND	1.6	62.0	570	200.0	1500
22	٧٦	. 11	6.2	ND	1.5	35.0	100	46.0	330
23	лу Ј	**	6.5	ND	5,1	-	690	380.	2400
24	v	11	6.5	. 3	1.0	50.0	610	18.	1700
25	v	11	6.4	. 2	13.0	46.0	130	560·	540
26	v	**	6.0	.3	ND	49.0	290	110.	540
27	٧٤	**	6.2	. 03	2.5	65.0	700	330	1400
28 .	NV J	•••••••••••••••••••••••••••••••••••••••	7.0	ND	ND	58.0	1000	55 0.	4100

v	=	Spoil from around trees
NV	=	Spoil at a distance from trees (non-vegetated)
ND	=	Non detectable

- = insufficient sample

•

Analyses of spoil sampled to a depth of 10 cm

(See table 1 of first report)

3

.

4

AN	VEGETATION	SITE	рН	Total N ppm	р ррт	К ррт	Ca ppm	Mg ppm	Cond 118
30	۲v	Alma	4.2	ND	0.51	-	76.0	22 - C	190
31	_{NV} }	**	2.6	0.4	ND	1. 2	190 · C	100.ί	2400
30	٧٦	t 1	3.7	3.5	ND	22.0	300 · C	13.0	270
32	NV }	11	3.8	0.4	ND	26.0	17.0	8.1	230
34	v	*1	3.7	0.2	ND	38.0	31.0	12.0	170
35	v	**	3.8	0.1	ND	28.0	16.0	6.4	170
36	v	**	4.0	0.1	ND	31.0	23,0	6.6	200
37	٧٦	**	4.3	ND	ND	20,0	8.0	2.9	130
38	NV }		3.8	1.1	ND	25.0	23.0	13.0	390
39	٧٦		3.9	0.2	ND	27.0	17.0	7.9	2 50
40	NV J	•• •	3.9	1.1	ND	27.0	18,0	6.9	130
41	v	Codnor	-	-	6.3	-	12.0	42.0	630
42	v	**	3.0	-	80.0	30.0	56.0	18.0	120
43	v	Brinsley	8.6	12.0	6.3	86.0	110.0	38.0	1100
44	v	**	8.3	90.4	ND	83.0	230.0	76.0	900
45	v	**	2.3	ND	ND	23.0	22.0	11.0	140
46	v	**	2.8	0.2	6.8	28.0	16.0	5.7	84
47	. v	11	2.4	0.1	0.52	24.0	31.0	18.0	300
48	NV }	••	2.4	0.3	ND	24.0	26,0	10.0	120
49	v	Round-	6.1	0.1	12.0	61.0	270.0	90.0	630
50	v	wood	7,2	0.1	9.6	72.0	96 · 0	37.0	450
51	v	11	9.8	24.6	34.0	98.0	84,C	20.0	550

. .

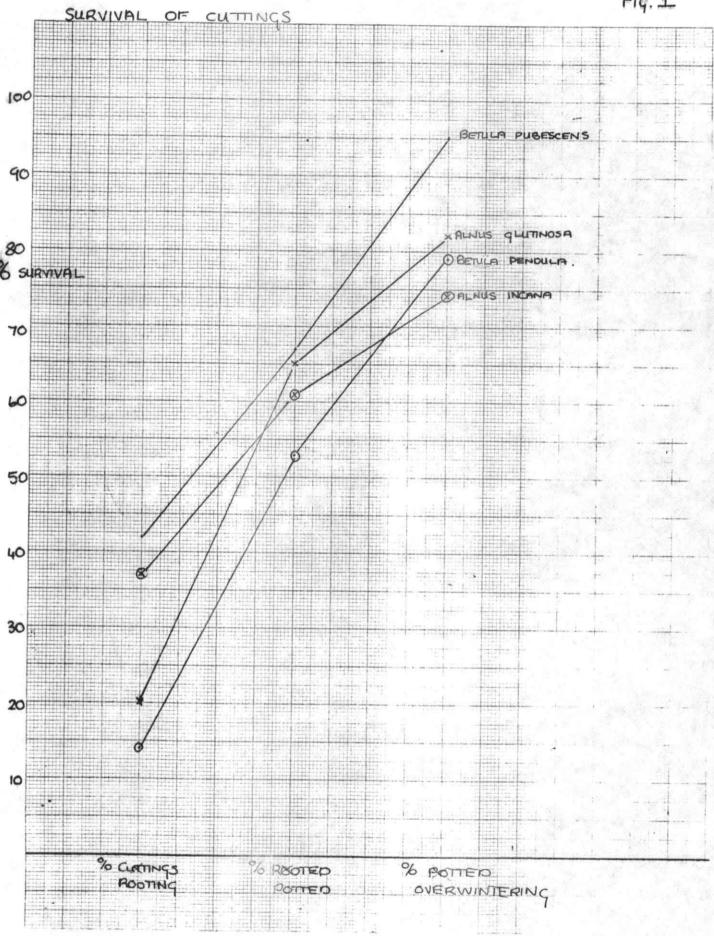
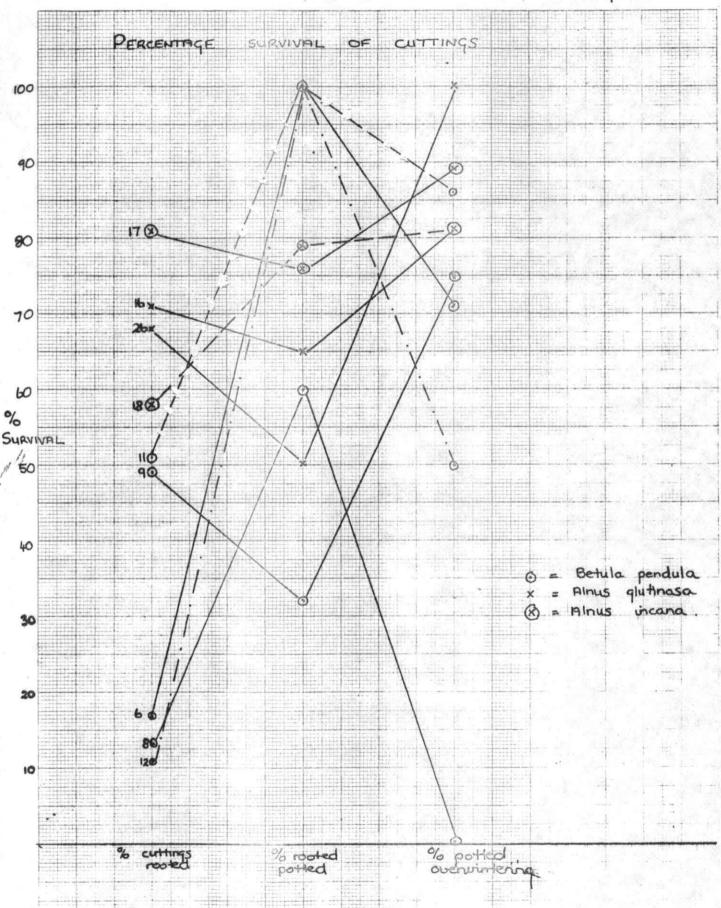
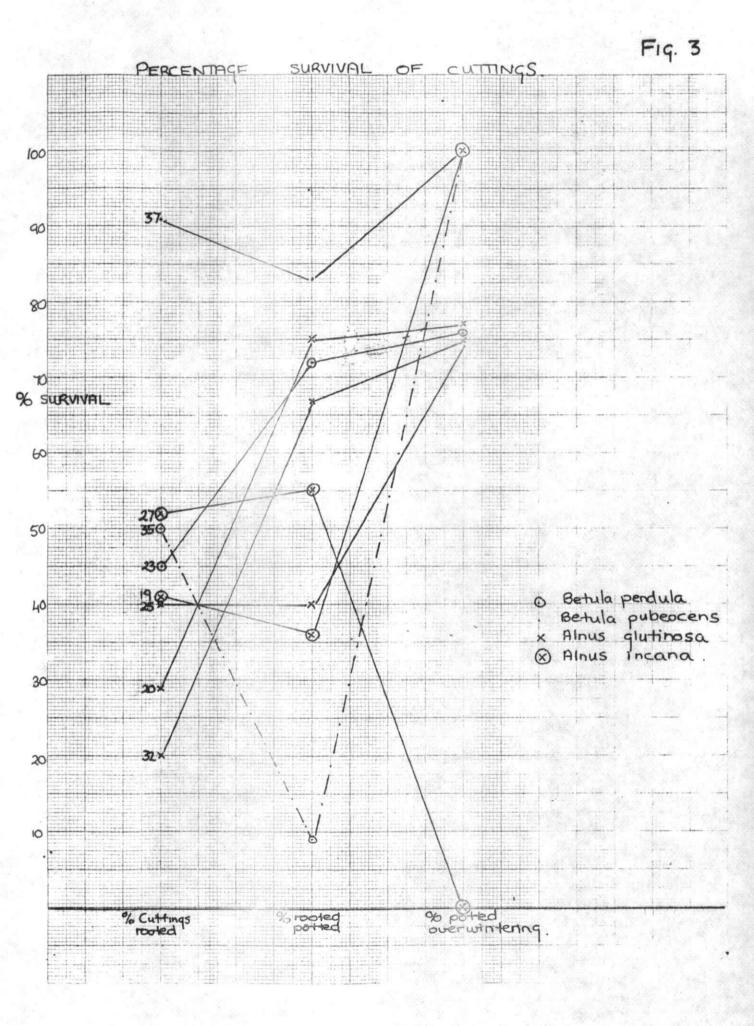
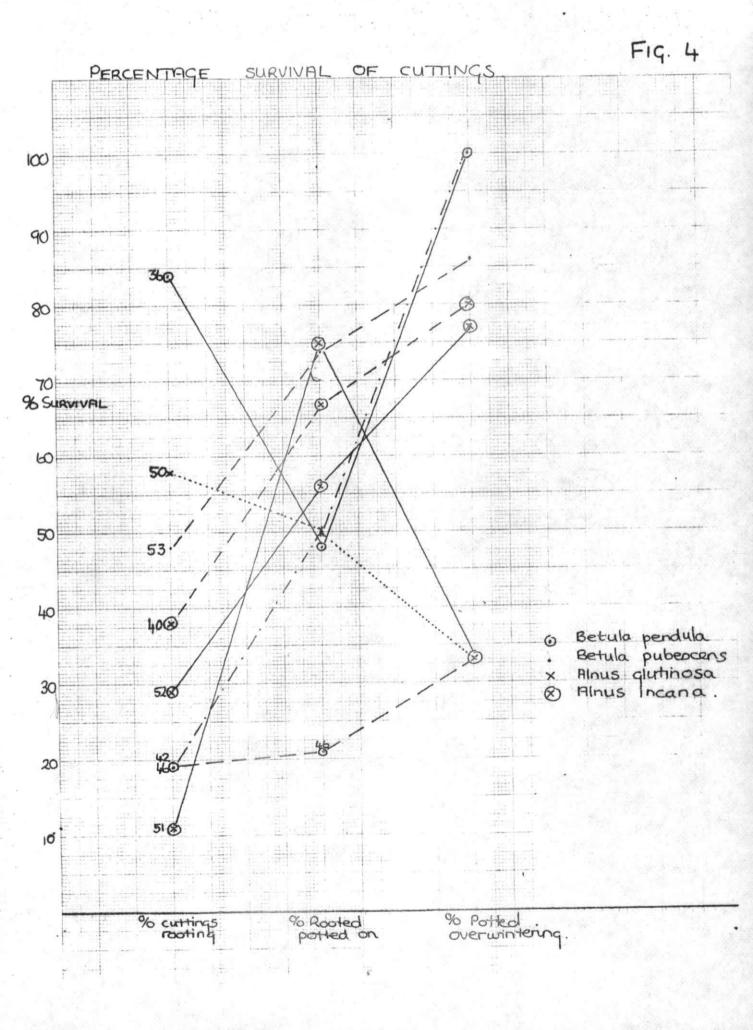
.

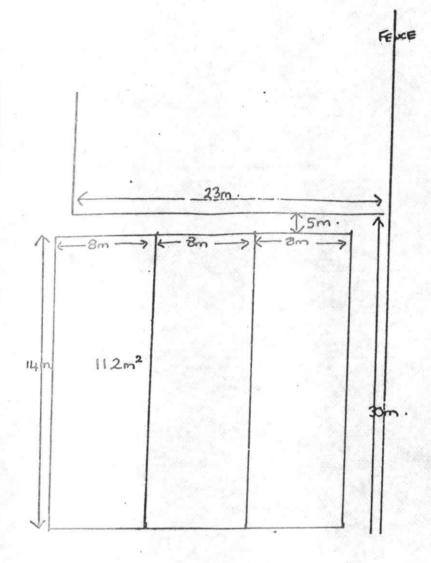
TABLE 3

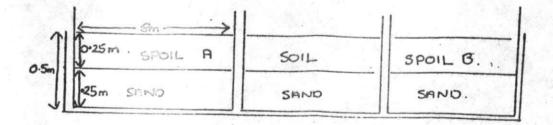
SITES IN SCOTLAND

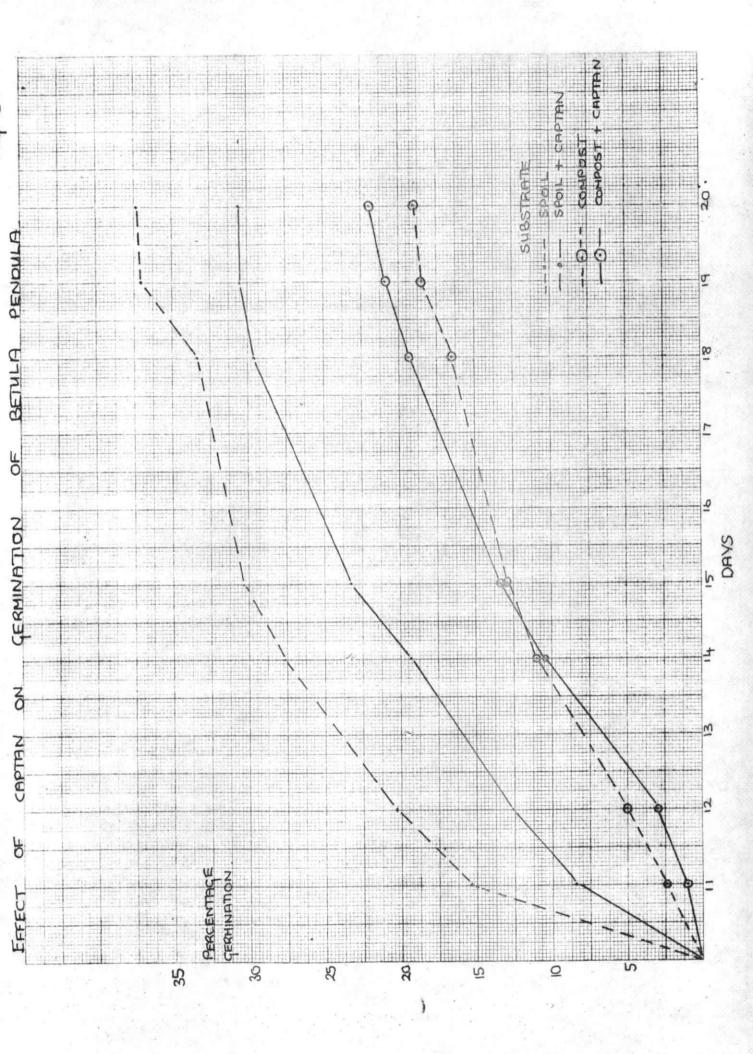
AN	VEGETATION	. SITE	рН	Total N ppm	р ррт	K ppm	Ca ppm	Mg ppm	Cond. B
55	V 2	Newton	4.2	0.8	ND	14	15.0	19.0	250
56	NV	Grange	3.5	1.9	ND	8.9	5.6	8.3	130
5 7	V)	**	4.2	ND	ND	5.1	6.6	3.3	110
58	NV	**	4.4	1.3	ND	3.9	16.0	19.0	450
59	V)	11	4.6	ND	ND	9.6	6.8	1.8	83
60	NV }	**	4.2	ND	ND	5.1	5.8	1.4	81
61	V)	**	4.8	ND	0.51	30.0	7.7	6.8	86
62	_{NV} }	11	4.6	0.6	ND	13.0	1.6	2.0	50
63	۷٦	"	36	1.4	ND	6.7	4.6	10.0	160
64 [.]	NV }		4.0	1.3	ND	6.8	4.6	6.6	130
70 ·	۷	L. Ore	3.3	0.1	ND	16.0	7.0	3.4	38
71	NV S	**	5.3	1.6	ND	15.0	4.6	3.2	54
72	V)	**	6.1	ND	1.0	12.0	7.6	7.4	51
73	_{NV} }	11	6.1	ND	1.0	7.9	6.7	5,3	70
74	· v .	*1	4.8	ND	0.51	14.0	3.5	2.3	47
75	۲v	*1	4.5	ND	6.2	-	31.0	8.3	63
76	NV J .	**	4.8	0.1	0.51	8.7	2.6	2.1	43
77.	V	Woodhall	4.6	0.03	ND	24.0	220.0	12.0	380
78	_{NV} }		5.0 ·	0.03	0.51	15.0	170.0	19.0	340
79	۲۷	**	6.3	ND	5.6	16.0	34.0	3.9	2000
80	NV }	**	3.8	ND	0.5	18.0	1200.0	24.0	130
81	. v j	"	6.0	ND	6.1	21.0	46.0	4.0	850
32	ז' _{עא} '		3,7	0.1	ND	22.0	300.0	52.0	430
83	٧٦	11	4.9	0.1	ND.	17.0	330.0	75.0	810
84	NV }	11	3.9	0.1	ND	9.4	9.1	2.3	56

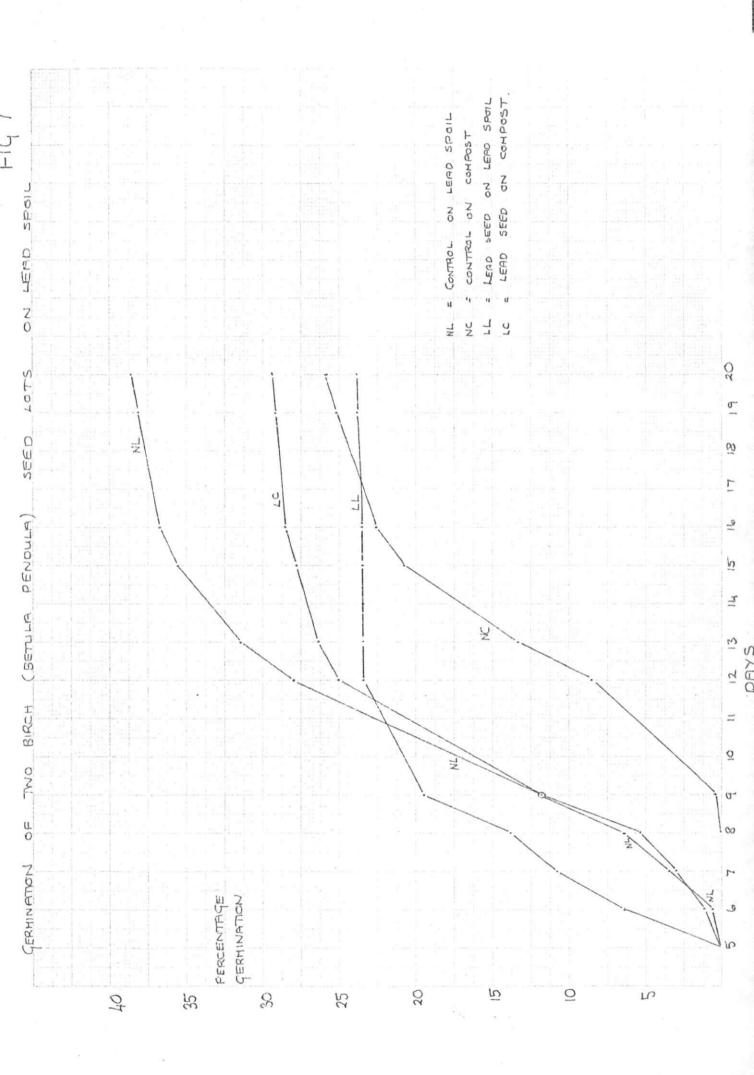
5


Fig. 1


FIG. 2





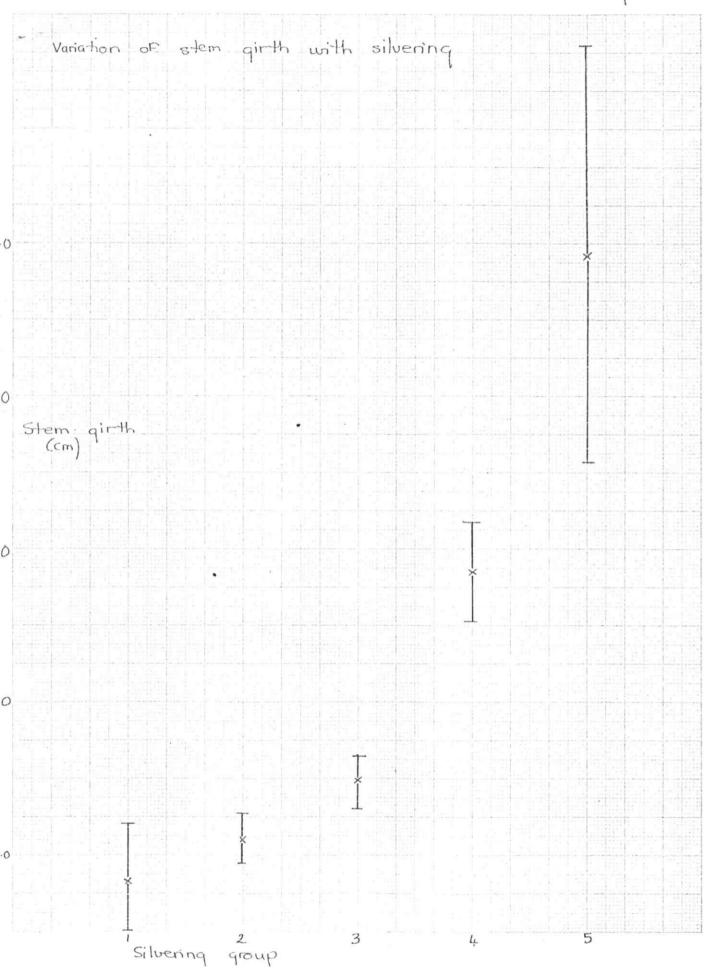


FIG.8

.....

2