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Abstract 20 
 21 

The geostrophic adjustment of a homogeneous fluid in a circular basin with idealized 22 

topography is addressed using a numerical ocean circulation model and analytical process 23 

models. When the basin is rotating uniformly, the adjustment takes place via excitation of 24 

boundary propagating waves and when topography is present, via topographic Rossby waves. 25 

In the numerically derived solution, the waves are damped because of bottom friction, and a 26 

quasi-steady geostrophically balanced state emerges that subsequently spins-down on a long 27 

time scale. On the f-plane, numerical quasi-steady state solutions are attained well before the 28 

system's mechanical energy is entirely dissipated by friction. It is demonstrated that the 29 

adjusted states emerging in a circular basin with a step escarpment or a top hat ridge, centred 30 

on a line of symmetry, are equivalent to that in a uniform depth semicircular basin, for a 31 

given initial condition. These quasi-steady solutions agree well with linear analytical 32 

solutions for the latter case in the inviscid limit.  33 

  On the polar plane, the high latitude equivalent to the β-plane, no quasi-steady 34 

adjusted state emerges from the adjustment process. At intermediate time scales, after the fast 35 

Poincaré andKelvin waves are damped by friction, the solutions take the form of steady-state 36 

adjusted solutions on the f-plane. At longer time scales, planetary waves control the flow 37 

evolution. An interesting property of planetary waves on a polar plane is a nearly zero 38 

eastward group velocity for the waves with a radial mode higher than two and the resulting 39 

formation of eddy-like small-scale barotropic structures that remain trapped near the western 40 

side of topographic features.   41 

 42 
Keywords  geostrophic adjustment, polar circulation, Kelvin waves, vorticity waves.  43 
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1 Introduction 44 

In this paper, we consider how a homogeneous fluid, initially not in geostrophic balance, 45 

adjusts to that balance in a circular basin in the presence of an idealized topography. We first 46 

consider the case of a uniformly rotating basin, followed by examples in which the latitudinal 47 

dependence of the vertical component of the earth’s angular rotation is retained. The Nucleus 48 

for European Modelling of the Ocean( NEMO )ocean modelling framework  (Madec et al., 49 

1998; Madec, 2008) is used to determine the adjustment solutions numerically. Linear, 50 

inviscid analytical solutions are also derived to validate the numerical solutions and to add 51 

further insight into the adjustment process. 52 

 53 

The “classical” geostrophic adjustment problem considers a horizontally unbalanced, 54 

uniformly rotating barotropic fluid which is initially at rest relative to the rotating frame of 55 

reference in a horizontally unbounded domain. In the initial state, a step in the fluid surface 56 

exists which is maintained by a vertical barrier. Upon removal of the barrier, the fluid adjusts 57 

to a steady geostrophic state, in which the pressure gradient is balanced by the Coriolis force, 58 

by Poincaré waves propagating to infinity (Gill, 1976; Gill., 1982). There are numerous 59 

extensions of this classical adjustment problem that address the effects of stratification 60 

(Grimshaw et al., 1998), non-linearity (Ou, 1984, 1986; Hermann et al., 1989), the presence 61 

of topography (Johnson, 1985; Gill et al., 1986 Willmott and Johnson, 1995), a variety of 62 

configurations for the initial unbalanced states (Killworth, 1992) and adjustment in a closed 63 

basin (Stocker and Imberger, 2003 ). 64 

 65 

In a closed, uniformly rotating basin of uniform depth, the homogeneous fluid will 66 

evolve towards a balanced state through the propagation of  Poincaré and Kelvin-type 67 

boundary waves (Antenucci and Imberger, 2001). With topography present, topographic 68 

Rossby waves will also play a role in the adjustment process. Therefore, in the inviscid limit, 69 
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no steady geostrophically balanced state will emerge because there is no mechanism to damp 70 

or evacuate the waves. In numerical simulations or laboratory experiments, bottom and lateral 71 

friction are present, which damp the waves excited during the adjustment process. Further, 72 

the adjusted states are nearly in geostrophic balance and quasi-steady, and they all spin down 73 

on a long time scale, set primarily by the magnitude of the bottom and lateral friction. 74 

 75 

Geostrophic adjustment problems in a closed domain, such as the circular basin 76 

considered in this study, have received attention in the refereed literature. For example, the 77 

hydrodynamics and energetics of the geostrophic adjustment of a two-layer fluid, initiated by 78 

a discontinuity in the interface of two layers, was examined by Wake et al. (2004, 2005) in 79 

laboratory experiments in a circular, uniformly rotating tank with either constant depth or 80 

ridge topography. They observed the composition of baroclinic Kelvin and Poincaré waves 81 

with an emergent geostrophic, double-gyre, quasi-steady state solution, which slowly 82 

decayed. The steady-state, analytical solution and frequencies of the dominant waves were 83 

found in the linear approximation for the case of a circular basin with a flat bottom.  84 

 85 

In this paper, we consider the adjustment problem in a circular basin centred at the 86 

pole which either (i) rotates uniformly or (ii) retains the latitudinal variation of the earth's 87 

angular rotation in the polar-plane, the so-called γ-approximation (the high latitude equivalent 88 

of the mid-latitude β-plane approximation). In case (ii), the analogue of mid-latitude 89 

planetary Rossby waves will be excited during the adjustment process. It will be shown in 90 

case (ii) that no quasi-steady state, adjusted state is possible except when the contours of the 91 

initial surface height anomaly do not cross the planetary potential vorticity contours (i.e., axi-92 

symmetric adjustment). 93 

  94 
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 Free waves in a circular basin on the polar plane, where the Coriolis parameter f 95 

decreases quadratically with distance from the pole, were first considered by Le Blond 96 

(1964). LeBlond (1964) derived the gravest , or fundamental, eigenfunction of a circular 97 

basin and found the approximate analytical expression for the dispersion relation of waves. 98 

Later, Haurwitz (1975) and Bringer and Stevens (1980) used cylindrical coordinates to 99 

examine freely propagating waves in a high-latitude atmosphere. Harlander (2005) took the 100 

further step of deriving the equation for free waves on a δ-plane, which combines both polar 101 

(γ) and β-effects. Harlander (2005) studied ray propagation on the polar and δ-planes and 102 

showed how to obtain solutions analytically. In the simplest case of free waves in a circular 103 

basin on the polar plane, all these solutions give the same result. 104 

  105 

   We focus on the following questions in this paper: 106 

 How do sharp topographic features and the form of the initial surface elevations affect 107 

the geostrophic adjustment?  108 

 How is mechanical energy partitioned between the wave and quasi-steady 109 

components of the flow? 110 

 111 

The paper is structured as follows: Section 2 formulates the problems to be addressed and 112 

describes the numerical model used in the experiments. Results are presented in Section 3. 113 

Sections 3a and 3b discuss numerical and analytical solutions, respectively, for a uniformly 114 

rotating circular basin with simple topography. Section 3c then considers how the adjustment 115 

is altered when the basin is located on a polar plane. Finally, Section 4 considers a polar basin 116 

more closely resembling the Arctic basin, followed by a summary of the results obtained 117 

throughout the entire paper.   118 

  119 
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2 Formulation of the problem and the choice of numerical model 120 

a Set Up of the Problem. 121 

Consider the problem of the geostrophic adjustment of a barotropic ocean in a circular basin 122 

with idealized bathymetry.  The pole is located at the centre of the circular basin. We 123 

introduce a spherical polar coordinate system ),,( a , where   is the co-latitude,   is 124 

thelongitude and a is the radius of the earth. Here we adopt the well-known thin-shell 125 

approximation of replacing the radial distance with a, reflecting the fact that the oceans are a 126 

shallow layer on the surface of the earth. For analytical convenience, we will also work with 127 

a local Cartesian coordinate frame Oxy where the origin lies on the polar axis and 128 

 sin,cos ryrx   , where sinar  . In the case of the Arctic, the characteristic lateral 129 

extent of the basin corresponds to 12/0   . Figure 1 shows the spherical and local 130 

Cartesian frames introduced above. 131 

 132 
In this study, we will address the role that idealized topography plays in the 133 

geostrophic adjustment of a prescribed initial, unbalanced, potential vorticity anomaly. Let 134 

),(0 H  denote the depth of the fluid measured from the undisturbed surface. Guided by the 135 

physical characteristics of the Arctic basin, the depth of the deepest region of the basin is 136 

taken to be 3000 m.  137 

Four idealized topographies and basins are considered: 138 

(a) a top-hat ridge of height 2 km and width 100 km centred on a diagonal; 139 

(b) a step escarpment of height 1 km coincident with a diameters; 140 

(c) a semicircular basin of uniform depth; and 141 

(d) a linear sloping bottom occupying one-half of the circular basin, with a uniform 142 

depth shallow region in the other half of the basin. 143 

 144 
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In all cases, the bathymetry contours form a family of straight parallel lines. We first 145 

consider the geostrophic adjustment of a homogeneous fluid in the presence of topography on 146 

a uniformly rotating (f-plane) circular basin. In this case, the adjustment takes place through 147 

the excitation of gravity waves, boundary trapped Kelvin-type waves, super-inertial Poincaré 148 

waves and sub-inertial topographic Rossby waves. The study then addresses the equivalent 149 

problem on a polar-plane. In addition to the waves that are supported on the f-plane, the 150 

polar-plane also supports planetary Rossby waves, the analogue of planetary waves in a 151 

uniform depth ocean on a mid-latitude  -plane. 152 

 153 
Throughout this study we will assume that the ocean is initially at rest, and we 154 

prescribe an initial surface elevation 0 , taking one of two forms. The first form is 155 

)sgn()2/1(),(0   ,                                                               (1a)    156 

where   is a constant defining the initial amplitude of the step elevation. The second form of 157 

0  corresponds to a flat-top circular cylinder centred on the pole. This distribution is most 158 

simply expressed using the Cartesian coordinate frame shown in Fig. 1b: 159 

)(),(0 rRHr   
,                                                                       (1b) 160 

where H denotes the Heaviside function, 10   is a constant , 12/aR   is the radius of 161 

the basin, and r is the polar distance from the origin. Clearly Eq. (1b) describes a cylinder of 162 

radius  R  and height  . 163 

 164 
The initial linearized potential vorticity anomaly associated with 0 is given by  165 

 
2

0

0

H

f
Q


   ,                                                                                          (2)  166 

where f is the Coriolis parameter. 167 

  168 
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b Numerical Model 169 

 170 
The majority of geostrophic adjustment solutions are calculated using a barotropic numerical 171 

ocean model, augmented by linear analytical solutions in certain cases to facilitate 172 

understanding of the numerical solutions. The analytical solutions also provide a consistency 173 

check on the validity and overall performance of the numerical model. In this study, we use 174 

the numerical ocean circulation model NEMO (Madec et al.,1998), which is a non-linear 175 

primitive equation, three-dimensional model. NEMO is used operationally by several 176 

meteorological agencies (e.g., the UK Met Office and Météo France). In the experiments 177 

reported in this paper, we use the NEMO model with two options for the calculation of 178 

barotropic pressure. To reproduce the earlier stage of adjustment we employ a free surface 179 

non-linear explicit algorithm to resolve fast waves associated with the propagation of the 180 

initial hydraulic jump. As this algorithm needs a very small time step (typically 2 s), in most 181 

of the numerical experiments we used a filtered non-linear free surface algorithm, which is 182 

stable with a relatively large time step (see Table 1) but damps fast waves. We performed 183 

selected numerical experiments with both schemes, which established that the long-time 184 

behaviour of the solutions is essentially identical. The vertical viscosity was set to be constant 185 

throughout the study. A quadratic law is adopted for the dependence of the bottom shear 186 

stresses on velocity. In this study we use a biharmonic operator to prescribe a lateral 187 

viscosity. In most experiments, the model domain is a circular basin, initially defined on a 188 

sphere with the centre lying on the equator, which is then rotated so that the domain centre 189 

lies on the pole. Table 1 provides the values for the grid size, model time step and other 190 

model parameters adopted in this study. In this study, the numerical model is set up to 191 

simulate inviscid dynamics as closely as possible. Thus, the vertical and lateral mixing 192 

coefficients were taken as small as computationally possible while still suppressing numerical 193 

instabilities. 194 
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 195 

3 Results 196 

a Geostrophic Adjustment f-Plane Solutions. 197 

In this sub-section, the NEMO model is used to determine all the solutions. We first consider 198 

the adjustment in a circular basin from an initial step in the surface elevation given by Eq. 199 

(1a) in the presence of a topographic step escarpment, which is oriented to be orthogonal to 200 

the initial surface elevation escarpment. This simulation was performed with a time-explicit 201 

free surface algorithm for the barotropic pressure to resolve all the waves responsible for the 202 

subsequent flow evolution. Figure 2 shows contour plots of the surface elevation at various 203 

times and contour plots of the time-averaged elevations. Figure 3 shows surface elevations 204 

and the velocity at various times in a  the cross-sections A-B and C-D, marked on Fig. 2a, 205 

which are located at the deep and shallower parts of the basin,respectively.  206 

 207 

The adjustment is characterized as follows. 208 

(i) Propagation of the initial step in the surface elevation as a hydraulic jump in a 209 

direction perpendicular to the initial line of surface discontinuity (see Figs 2a and 3a). 210 

During this early phase of adjustment the effects of the earth’s rotation are 211 

unimportant. When the hydraulic jumps reach the edge of the basin, wave reflection 212 

and scattering takes place. Wave scattering occurs because of the curvature of the 213 

boundary wall of the basin. The reflection and scattering process takes place multiple 214 

times (see Figs 3b and 3d). 215 

(ii) On reaching the boundary of the basin, a fraction of wave energy is scattered into 216 

boundary trapped Kelvin-type waves with near-inertial periods and these waves 217 

propagate cyclonically around the basin (see Fig. 2b). After multiple reflections and 218 
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scattering of gravity waves at the basin walls, most of the energy resides in the near-219 

inertial Kelvin-type waves. 220 

(iii) Figure 2e shows that after 12 hours the presence of the topography escarpment in 221 

time-averaged solutions becomes apparent in the time-averaged contour plot of the 222 

surface elevation. Sub-inertial topographic Rossby waves dictate the longer time 223 

scale adjustment. After three days, a quasi-steady geostrophically balanced four-gyre 224 

structure emerges in the time-averaged solutions. 225 

 226 

We now examine the earliest stages of the adjustment in more detail. Figures 3a to 3d 227 

show plots of the surface elevation at various times along the vertical sections A-B (deep 228 

basin) and C-D (shallow basin). Along section C-D the phase speed of the wave is 139.6 m s-229 

1, and is in excellent agreement with the speed of long non-dispersive gravity waves (gH0)
1/2 230 

( H0=2000 m), namely 140 m s-1. A similar conclusion is valid for the wave propagating 231 

along section A-B (H0=3000 m), with the numerically derived and analytical wave speeds 232 

corresponding to 170.6 m s-1and 171 m s-1, respectively. 233 

 234 

The effects of non-linearity associated with the surface elevation are evident in the 235 

steep wavefronts shown in Figs 3a and 3c. The nature of the waves excited during the early 236 

stage of the adjustment can also be deduced from the Hovmőller plots along section C-D 237 

shown in Fig. 4. In the early stage of the adjustment, the surface elevation anomaly changes 238 

sign each time the gravity waves are reflected from the boundary of the basin (see Fig. 4b). 239 

This is caused by water convergence at the landing edge of the front, as shown in Fig. 3e. 240 

Figure 4a shows that after four days no radially propagating gravity waves are present and 241 

Kelvin-type waves with a period of approximately 13 hours dominate the solution. Figure 4c 242 

shows the calculations using the time-filtered version of the model that removes high-243 

frequency waves.  244 
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 245 

In this paper we retain the terminology of “Kelvin-type wave” for the waves that have 246 

mixed properties of Kelvin waves and the lowest mode of cyclonically propagating Poincaré 247 

waves (following Stoker and Imberger, 2003). Traditionally, waves with sub-inertial 248 

frequencies f  have been called Kelvin waves and with super-inertial frequencies, f  249 

, Poincaré waves. The existence of Kelvin waves in the circular flat bottom basin (Lamb, 250 

1932) is determined by the value of the Burger number RLS /  for each azimuthal 251 

wavenumber N such that NNS )1(2 
, where  fgHL /)( 2/1

0  is the external Rossby 252 

radius of deformation and R is the radius of the basin. For 2/16/1  S  one single 253 

Kelvin wave exists, while for 2/1S there is none. Stoker and Imberger (2003) have 254 

shown that energetic properties associated with the lowest mode waves change smoothly 255 

across the boundary f  , and the direction of rotation remains cyclonic; they also retained 256 

the notation of Kelvin-type waves for the lowest mode cyclonically propagating wave for the 257 

case 2/1S . In a circular basin with step escarpment topography and depths H0=3000 m 258 

and H0=2000 m, the Burger number takes the value of  2/1708.0 S  and 259 

2/157.0 S  in the deep and shallow parts of the basin, respectively. To quantify the 260 

amplitude of wave we show a contour plot of A in Figs 4d and 4e 261 
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262 

The time period for the averaging is T=5 days, and the time interval spans nearly 10 263 

periods of the Kelvin-type waves. Also, we plot in Figs 4d and 4e snapshots of the wave 264 

component of currents at two times that are in anti-phase for waves with a period of 13 hours. 265 

From Figs 4d and 4e we observe that this wave has properties of both Kelvin and Poincaré 266 

waves: wave sea surface elevations are higher near the solid boundary, currents have both an 267 



12 
 

along-shore boundary trapped component, relevant for the Kelvin wave, and a cross-centre 268 

component, specific to the lowest mode of the Poincaré wave.  269 

 270 

During a subsequent adjustment the solution comprises Kelvin-type waves, 271 

topographic Rossby waves and a geostrophically balanced quasi-steady four-gyre system. 272 

Because friction is present in the numerical solutions, all constituents decay with time. To 273 

quantify how the wave component of the flow changes with time, we plot a time series of 274 

max(A) in Fig. 5a.  275 

 276 

We observe that the waves in this particular experiment decay at day 160, and the 277 

initial amplitude of the waves exceeds the initial surface elevation. To quantify how the 278 

quasi-steady flow spins down to a state of rest, the time series of 2/minmax    at 279 

both sides of the basin, averaged over 10 Kelvin wave periods are plotted in Fig. 5b. Here  280 
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 281 

 In practice, the locations of max and min occur at the centre of the cyclonic and anticyclonic 282 

gyres, respectively. The rate of decay of the quasi-steady four-gyre system is about 5% per 283 

year in this experiment (see Fig. 5b), which is much smaller than the rate of decay of the 284 

wave component, and increases with an increasing bottom drag coefficient (not shown). 285 

   286 

As mentioned above, the calculation of steep non-linear gravity waves associated with 287 

an initial hydraulic jump using NEMO requires a very small time step, one that is 10 times 288 

smaller than that demanded by the Courant constraint. In the numerical solution with a 289 

filtered free-surface mechanism, fast gravity waves are damped numerically and first  stage of 290 
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the adjustment described earlier in this section (stage i) ,is absent. Instead, the initial stage of 291 

the adjustment takes the form of a diffusive front, which can be seen in the profiles of the 292 

surface elevations plotted at various time in Fig. 3f. When the surface height anomaly reaches 293 

the wall, Kelvin-type waves emerge (see Fig. 4c). However, the Kelvin-type waves are much 294 

weaker than in Fig. 4a and mostly decay by day 4. The strength of the quasi-steady four-gyre 295 

system and its rate of decay are almost identical in the time-filtered and unfiltered models 296 

(Fig. 5b). Thus, as the key focus of this paper is the longer time scale adjustment, hereafter 297 

we use the free-surface filtered algorithm version of the NEMO model.  298 

  299 

 With dissipation present, the four-gyre system corresponds to the adjusted quasi-300 

steady state limit. In the quasi-steady state limit, no fluid can cross the escarpment. Notice 301 

that the gyres are nearly symmetric about the escarpment with higher amplitudes at the 302 

shallow part of the basin and are antisymmetric about the line of initial discontinuity in the 303 

surface elevation. 304 

 305 

In a geostrophically adjusted state, the impact of a steep escarpment on the flow is 306 

identical to that of a vertical wall because no fluid can cross isobaths. Therefore, we would 307 

expect the geostrophically adjusted solutions in Fig. 2f to be qualitatively the same if the step 308 

escarpment is replaced with a ridge. Further, we would expect the adjusted solution shown in 309 

Fig. 2f to be qualitatively the same if the circular basin is replaced with a semicircular basin 310 

of uniform depth and the initial surface elevation coincides with the symmetry line of the 311 

basin. Figure 6 confirms these conjectures. 312 

 313 
Figure 7 shows the adjusted solutions that emerge when a cylindrical surface 314 

elevation Eq. (1b) is initially prescribed. The solutions shown in Fig. 7 again confirm the 315 

equivalence of the adjusted solutions in the three basins. With the escarpment topography, 316 
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Figs 3f, 5b and 7b show that the strength of the circulation is inversely proportional to the 317 

water depth.  318 

 319 
Up to now, we have considered the geostrophic adjustment problem in a circular basin 320 

with either a top-hat ridge or a step escarpment. Are there any new features in the adjustment 321 

problem if topography without a depth discontinuity is introduced? This question is addressed 322 

in the following experiments. We consider a circular basin with linear sloping topography in 323 

one half of the basin and uniform depth in the other half of basin (case (d) in Section 2) 324 

which is plotted in Fig. 8. Initially, a surface elevation with a step discontinuity along the 325 

diameter perpendicular to the bathymetry contours is imposed (identical to the initial 326 

condition associated with the adjustment shown in Fig. 2). Figure 8 shows the contours of the 327 

surface deviation. We observe, that after a “rapid Kelvin wave adjustment” two gyres 328 

emerge, similar to those discussed by Wake et al. (2004). However, during this adjustment 329 

phase, the flow is essentially decoupled from the topography. On the longer topographic 330 

Rossby wave adjustment time scale, the flow evolves to create a four-gyre system, similar to 331 

that shown in Fig. 6.  332 

 333 

Figure 9 shows a time series of the surface elevations at two locations marked A and 334 

B in Fig. 8d. Point B lies in the uniform depth region of the basin. At B, the time series in 335 

Fig. 9 reveal that topographic Rossby waves with periods of 40–50 days are superimposed on 336 

the quasi-steady “adjusted gyre amplitude” of 0.04 m. Contrast this behaviour with the time 337 

series at point A lying over the slope. Here, the Rossby waves continue to propagate and the 338 

shorter wave periods (40–50 days) are modulated by longer period (200 days) waves. The 339 

latter waves propagate energy in the opposite direction to the shorter period waves. Thus, 340 

over the slope, an observer sees a two-gyre system that alternates in sign with time. No quasi-341 
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steady double gyre system emerges over the slope and, indeed, Fig. 9 shows that the surface 342 

elevation oscillating about the zero amplitude is level.  343 

 344 

b Analytical Solutions of a Linear Problem in a Semicircular Domain on an f-Plane.  345 

Figures 3 and 6 demonstrate the equivalence of the adjusted solutions in a circular basin (with 346 

either a ridge or step escarpment topography) and a semicircular basin with uniform depth. 347 

Using the linearized shallow water equations, an analytical solution can be derived for the 348 

geostrophically balanced state that emerges in numerically determined solutions. This 349 

analytical solution provides a useful independent assessment of NEMO model performance. 350 

A plan view of the semicircular basin with the right-handed Cartesian coordinate reference 351 

frame used in the subsequent analysis is shown in Fig. 1b.  352 

Let us estimate the dimensionless parameters that characterize the ageostrophic terms 353 

in the full non-linear problem with friction. The main constituents of the numerical solutions 354 

are Kelvin waves and the geostrophically balanced quasi-steady component, which have a 355 

length scale equivalent to the Rossby radius L and different velocity scales. The geostrophic 356 

component of the solution is determined by the initial potential vorticity, given by Eq. (2). 357 

The upper limit of the geostrophic velocity scale can be estimated from the assumption that 358 

all of the initial potential vorticity anomaly is transferred to relative vorticity: 359 

                     
0H

Q
u

        .        . 360 

Thus, the initial potential vorticity anomaly scale is )/( 0 LHUQ g . Using (1) we obtain 361 

1
00 s m 03.0/  HLfQHLU g  for typical parameter values used in this study. 362 

The dominant component of currents generated by Kelvin waves is alongshore and is 363 

in geostrophical balance (Gill, 1982). For the semi-infinite basin,  364 

 

 365 
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L

g
fU KW

̂
 , 366 

where  UKW  and ̂ߟ are typical scales for the alongshore Kelvin wave velocity component and 367 

the surface elevation respectively. The appropriate scale for L is the Rossby radius of 368 

deformation and therefore  369 

1
2/1

0

2/1

07.0
ˆ  ms

H

g
U KW


, 370 

using typical parameter values, used in this study. 371 

 In the closed basin the effects of solid boundaries must be taken into account. However, 372 

these estimates are in agreement with the results of the numerical solution. The Rossby 373 

number 41
O 102)(R   LfU  to 4104  for this problem is relatively small, justifying the 374 

neglect of the non-linear advection terms in the governing equations. The input of the 375 

dissipation terms is estimated by the dimensionless numbers 51
0 10)(  fHUCd  to 410 for 376 

vertical and  1241 103  LfAB  for lateral viscosity, respectively, where dC is the bottom 377 

drag coefficient and BA is the lateral viscosity for the biharmonic operator (see Table 1) 378 

employed in the numerical experiments. Thus, all the diffusive and advective terms can be 379 

neglected in the subsequent analysis.  380 

 381 

Three forms for 0 will be considered. First, we consider 382 

)sgn(ˆ)2/1(),(0 yyx   ,                                                                     (3) 383 

corresponding to a step lying along the x-axis of amplitude  . When 0 , shallow (deep) 384 

fluid initially occupies the region )0(0  yy . To assess the sensitivity of the steady-state 385 

solution to 0 , we also consider a linear sloping initial surface elevation 386 

R

y
yx  ˆ

8

3
),(0    .                                                                               (4) 387 
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Equation (4) is chosen to ensure that the domain-averaged value of the linearized potential 388 

vorticity anomaly is identical to that associated with Eq. (3). We will also calculate the 389 

steady-state geostrophically balanced solution that emerges from an initial top-hat, 390 

semicircular cylinder surface elevation, with centre at O, located symmetrically about the x-391 

axis (see Fig. 1b). 392 

 393 
Following Gill et al. (1986) and Willmott and Johnson (1995), the steady-state 394 

geostrophically balanced solution attained after releasing the fluid from rest with an initial 395 

surface elevation ),(0 yx  can be determined without solving the full initial value problem. 396 

Instead, neglecting the viscous and non-linear terms in the equations, we invoke the 397 

conservation of potential vorticity, which is of course determined from the initial conditions, 398 

to calculate the final adjusted solutions directly. The adjustment of an ocean at rest to an 399 

initial perturbation in the sea surface elevation η0 is governed by the following equation 400 

(Gill,1976): 401 

                                    ,0
222

0  ffgHtt       .                                  (5a) 402 

Let s  denote the steady-state component of the solution of Eq. (5a). Then s  satisfies 403 

                          0
222    LL ss  .                                                   (5b),  404 

For analytical convenience, Eq. (5b) is non-dimensionalized. Using primes to denote 405 

dimensionless quantities we define 406 
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sL

r
r . 407 

On dropping the primes, the dimensionless form of Eq. (5b) becomes 408 

0
2   ss       .                                                                           (6) 409 

On the boundary of the basin, the normal component of velocity vanishes which requires that  410 

 0s   on  2/,1   Sr  ,                                                    (7a) 411 
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   0sr   on  
10,2/  Sr ,                                                   (7b) 412 

where RLS /  is the Burger number.  413 

The method of solution for Eq. (6), subject to Eqs (7a) and (7b), uses standard 414 

techniques (see, for example, Boyce and DiPrima (1992)). The dimensionless steady-state 415 

solutions associated with initial conditions Eq. (3) and Eq. (4) are, respectively:  416 
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             (10) 421 

In Eq. (10) nI  and nK  denote the modified Bessel functions of the first and second 422 

kind, respectively, and 423 

  






(9) Eq.in ,

(8) Eq.in ,1
)(  . 424 

When the initial surface elevation takes the form of a right semicircular cylinder, the solution 425 

in a semicircular basin can be found from the solution in the circular basin and initial 426 

conditions that are antisymmetric relative to the y-axis. Let                 427 

                                              asym
2

0    ,                                                             (11) 428 

where  429 

                )2/sgn()( 21
asym  SrH                                       (12a)         430 

              .0,))(()( 121   SrSrHr                                         (12b)   431 
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Here, the semicircular mean value 2  was subtracted from the initial condition.   432 

Because of its antisymmetric form, such a solution satisfies the condition  433 

                     0on    ,0asym  y                                                                   (13) 434 

and the associated steady-state, dimensionless solution is given by 435 

])12sin[()(
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  nrf
n

n

n ns    .                                    (14) 436 

Figures 10a and 10e show contour plots of η given by Eqs (8) and (9), calculated by 437 

summing over the first three non-zero modes, respectively. Figures 10b to 10d and 10f to 10h 438 

show the contribution of each mode, respectively, to solutions of Eqs (8) and (9). The value 439 

S=0.708 is used in each case. Although the solutions in Figs 10a and 10e are qualitatively 440 

identical, the latter has weaker amplitude. Clearly, the gravest mode is dominant, and the 441 

higher modes shift the location of the gyre’s centres towards the symmetry axis ߶ ൌ 0 (see 442 

Fig. 10).  443 

 444 
Contours of η given by a steady-state solution Eq. (14) are shown in Fig. 11 for 445 

5.0 , where the solution is computed by the summation of the first three modes and the 446 

corresponding components of the solution.  447 

 448 
Equations (8), (9) and (14) are somewhat complicated to compute, requiring the 449 

numerical evaluation of the integrals in Eq. (10) to calculate each term in the summations. 450 

Interestingly, these solutions are found to simplify dramatically in the asymptotic case 1S451 

, where RLS / . This “large S limit” corresponds to the “small (or deep since ܮ → ∞ as 452 

ܪ → ∞) basin limit” or weak rotation limit. Clearly, this limit is more relevant to regional 453 

seas and lakes (see estimate of S for the Great Lakes in Csanady (1967)), than to the Arctic 454 

Ocean, when )1(~ OS . However, we found that the asymptotic solutions in this limit also 455 

provide a reasonably accurate estimate for the case when )1(~ OS . In other words, 456 
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simplified small-basin limit solutions can be used to approximate the adjusted solution in a 457 

basin of lateral extent comparable to the Arctic Ocean. 458 

 459 
In dimensionless coordinates, the circular basin spans 10  Sr and therefore in the 460 

limit 1S  we can employ the asymptotic representations  461 
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 for a fixed n, valid for small arguments (Abramowitz and Stegun, 1964), where Γ denotes the 464 

gamma function. We find that Eqs (8), (9) and (14) can, respectively, be approximated in this 465 

“small-basin” limit by  466 

                        467 
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where Sr , varies from 0 to 1. The convergence of the series in Eqs (15) to (17) is 472 

relatively fast, with the nth term of the series ~n-3, for large n. The series can be truncated at 473 

the fourth term if s  is to be calculated with a precision O(10-2). 474 

 475 
In the analytical solutions shown in Figs 10 and 11, S=0.708, which certainly does not 476 

satisfy the “large S limit”. However, the asymptotic Eqs (15) to (17) are found to provide a 477 

reasonable approximation to the solution even when S~O(1). For example, Fig. 12a shows the 478 

“amplitudes” of steady-state solutions, which we define as 479 

               2minmax2 )(5.05.0)( SSA sssss  ,                                            (18) 480 

plotted as a function of S for the exact Eqs (8), (9) and (3.14). In all cases amplitude As 481 

asymptotes to a constant, albeit different, value of *  , as S increases. Also plotted in Fig. 482 

12a is the amplitude As for the “small basin” approximation Eq. (15). The maximum 483 
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deviation between Eqs (15) and (8) is 20% for 0.6<S<1.4 and very close to the “small basin” 484 

limit at S>1.2 (lakes, regional seas). Thus, the computationally efficient solution Eq. (15) 485 

provides a reasonable approximation to the exact solution, even when S=0.708, the 486 

representative value of this parameter for the Arctic Ocean. The amplitude, Eq. (16), is also 487 

shown on Fig. 12a, associated with the quasi-steady solutions plotted in Fig. 4b (the black 488 

diamond), and Fig. 11 (α=0.5) (grey circle). The numerical solution has a smaller amplitude 489 

than the analytical solution for the initial step escarpment in the surface elevation, whereas it 490 

is larger than the analytical solution derived from the linear initial surface elevation.  491 

 492 

Figure 13a shows a contour plot of the solution for Eq. (8) and Fig. 13b shows the 493 

equivalent plot for Eq. (15). Although the two plots are qualitatively the same, we observe 494 

that the amplitudes are not identical, as revealed by the contours near the centres of the gyres 495 

. However, when Eq. (15) is multiplied by the factor */)708.0( sA , where ∗ൌ limௌ→ஶ  ௦ , 496ܣ

(As is plotted as a function of S for Eq. (8) in Fig. 12a) and the resulting field is contoured, we 497 

obtain Fig. 13c. The two solutions contoured in Figs 13a and 13c are indistinguishable, as 498 

expected. 499 

 500 

The reasonable agreement between the numerical and analytical solutions allows us to 501 

use the latter to estimate the partitioning of energy between the geostrophic and fluctuating 502 

(wave) components of the flow in a manner similar to Stoker and Imberger (2003) and Wake 503 

et al. (2004). The energetics of the geostrophic component, as a function of S, calculated from 504 

Eqs (8) to (13) are plotted in Figs 12b and 12c. It is easy to demonstrate that, in a 505 

semicircular basin (or in a circular basin with a ridge or escarpment in topography), the 506 

energetics of the geostrophic component of the flow coincide with that in a circular basin 507 

with a flat bottom. Thus, the patterns of the former are similar to those presented in Wake et 508 
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al. (2004) for an initial step height discontinuity at the interface between fluid layers and for 509 

an initial linear gradient of the density interface (Stoker and Imberger, 2003). For the case of 510 

a semicircular cylinder initial surface elevation, the expressions for the initial potential 511 

energy (IPE), and potential (PE) and kinetic (KE) components of the steady-state solutions 512 

are given by  513 
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According to the asymptotic solutions, in the large S limit, the fraction of energy converted to 517 

kinetic geostrophic energy decays with the parameter S as S-2 at large S (small/deep basin 518 

limit) and as S-4 for potential geostrophic energy (PE). In the small S limit, the ratio of 519 

geostrophic kinetic energy (KE) to available potential energy asymptotically approaches the 520 

infinite domain limit of 1/3, as expected from the classical result (Gill, 1982). At small 521 

Burger numbers, potential energy exceeds the kinetic energy, while for large S most of the 522 

energy of the quasi-steady state solution is concentrated in the kinetic energy (Fig. 12c).  523 

 524 

c Geostrophic Adjustment on the Sphere 525 

In this section we consider a circular basin in which the Coriolis parameter is allowed to vary 526 

with latitude according to  527 

)cos(2 f .                                                                                 (20) 528 

Near the pole the Coriolis parameter can be approximated by  529 

)2/1(2 2f ,                                                                           (21) 530 
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which is the “polar-plane” approximation. Referring to the coordinate system shown in Fig. 531 

1a, we observe that   )sin(/ ar , near the pole. Thus, with respect to the polar coordinate 532 

frame shown in Fig. 1b 533 

])/(
2

1
1[2 2arf  .                                                                       (22) 534 

   535 

Figure 14 shows contours of the surface elevations at t=3 days, 18 days and 720 days 536 

that emerge from the initial step escarpment elevation Eq. (1a), calculated using NEMO on a 537 

sphere. After three days, a double-gyre system emerges, equivalent to that discussed by Wake 538 

et al. (2004), which is established by the propagation of coastal trapped waves, circling the 539 

basin about 10 times during this period.  On the f-plane, this double-gyre system would 540 

correspond to the final adjusted steady-state solution in the absence of dissipation. However, 541 

on the sphere, contours of planetary potential vorticity correspond to concentric circles, and 542 

their radial gradient supports the analogue of mid-latitude planetary Rossby waves. The fluid 543 

in the double gyres that are established after five days crosses the isolines of planetary 544 

potential vorticity, thereby generating planetary waves. Thus, the double gyres rotate 545 

clockwise (equivalent to westward propagation of planetary waves at mid-latitudes) 546 

essentially without change of form, which can be seen by comparing Figs 14a and 14c. 547 

 548 
 The time series of the surface elevation at four locations, marked A to D in Fig. 14a, 549 

are shown in Fig. 15. The time series are dominated by the gravest Rossby wave mode, with a 550 

period in the range of 120–125 days, although the asymmetry of the oscillations reveals the 551 

presence of higher modes. Figure 15b shows a running time average of the time series over 552 

125 days which reveals that the higher modes have periods of 400–600 days.  553 

 554 
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We now consider the above solution from a quantitative viewpoint. The approximate 555 

solution for the dispersion relation for planetary waves on the polar-plane has been derived 556 

by LeBlond (1964) and is given by  557 

            )/( 2
,

1
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In (23a) ߱௞,௡is the dimensionless frequency (scaled by 2Ωሻ, k<0 is the azimuthal 561 

wavenumber and nk , , is the nth root of the Bessel function of the first kind kJ . Clearly, the 562 

group speed cannot be determined analytically. However, we observe from Fig. 16a, the 563 

dependence of nk ,  on wavenumber which, for a given range of k, is very close to linear 564 

(with a regression coefficient Թ satisfying ԹଶR~0.9999, the coefficients for the linear 565 

regressions based on 51  k  and 91  k  for lower and higher ranges of k, are shown in 566 

Table 2). Therefore, an approximate form for nk , is given by  567 

            kab nnkn ,     ,                                                                               (24a)  568 

where bn and an are constants. Thus, the dispersion relation Eq. (23a) becomes  569 

                                             570 

         ))(/( 21
, kabMk nnnk                                                                 (24b)  571 

          572 

Using Eq. (24b) it is clear, that the phase speed of the waves, cp, is always negative 573 

and propagates clockwise, which is equivalent to westward propagation in the mid-latitudes, 574 

and  575 

 576 
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 578 

The group velocity of the waves is given by  579 
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Notice that cg changes sign, from negative to positive with increasing
 

k . Equation (26) 581 

reveals that long waves transport energy westward and short waves transmit energy eastward, 582 

analogous to their mid-latitude counterparts.  583 

                                                        584 

For specific values of the parameters 067.0  and M = 29.33, corresponding to the 585 

NEMO numerical simulations, the dimensional periods and dimensionless frequencies, phase 586 

and group speeds are plotted in Fig. 16. The gravest-mode long-wave period (n=1, k=-1) is 587 

125 days (see Fig. 16c), which is in excellent agreement with the numerical results (see Fig. 588 

15a).  589 

 590 
We now anticipate that if the initial surface elevation is axi-symmetric, such as the 591 

top-hat cylinder Eq. (1b), and the flow remains axi-symmetric throughout the adjustment, no 592 

planetary waves will be generated; because after the rapid adjustment associated with fast 593 

gravity radial wave propagation, shown in Fig. 17a, isolines of the surface elevation continue 594 

to be axi-symmetric. Thus, fluid flows along, rather than across, the gradient of planetary 595 

potential vorticity and no planetary waves are therefore generated. Figures 17b to 17c show 596 

contours of surface elevation at t=3 days and 720 days that emerge from the initial top-hat 597 

circular cylinder elevation Eq. (1b), and clearly no planetary waves are present. 598 

 599 
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Now consider the geostrophic adjustment in a circular basin on a sphere in the 600 

presence of an escarpment in the bottom topography. Figure 18 shows contours of the surface 601 

elevation and, for comparison, adjustment in a semicircular basin of uniform depth when the 602 

initial surface elevation takes the form of an escarpment. Recall that we found that, on the f-603 

plane, the geostrophic adjusted solutions in the presence of either a ridge or escarpment 604 

topography are equivalent to those in a uniform depth semicircular domain. This result also 605 

carries over to the polar-plane adjustment problem. 606 

 607 

Hereafter, we will analyze in detail the adjustment in a uniform depth semicircular 608 

domain since it replicates the behaviour of the solutions in a circular basin with either a ridge 609 

or escarpment bottom topography. Figure 19 shows contours of  and kinetic energy (KE) in 610 

a uniform depth, semicircular basin when the initial surface elevation takes the form of a step 611 

escarpment. During the first three days, the adjustment mirrors the f-plane solution, with two 612 

emerging gyres. Later, westward propagating, long Rossby waves (i.e., phase and group 613 

velocities both directed anticyclonically) are generated. The waves then reach the western 614 

boundary, marked on Fig. 18, where they reflect as “short waves”. The cycle then repeats, 615 

although the wave amplitude is continuously reduced because of bottom and lateral friction. 616 

 617 

 The long waves in Fig. 19 are characterized by a radial mode n=1 and azimuthal 618 

wavenumber k=-2. From the dispersion relation Eq. (24b), we find that the wave period is 619 

125 days (see Fig. 16c). The corresponding group velocity in the azimuthal direction for these 620 

waves Eq. (26) shows that the travel time for energy to propagate from the eastern to the 621 

western boundary ))(2/( ,, nkgnk cT   is 139 days, which is in good agreement with the 622 

numerical results in Fig. 18. On reflection at the western boundary, the short waves are 623 

characterized by n=1, with │k│ varying between 4 and 6. We see from Fig. 16 that the wave 624 
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periods and the time taken for energy to return to the eastern boundary are 105–120 days and 625 

732 days, respectively, which is consistent with the plots in Fig. 18 and time series of sea 626 

surface elevation and kinetic energy plotted in Figs 20a and 20b. 627 

 628 

 The geostrophic adjustment for the case when the initial surface elevation takes the 629 

form of a semicircular cylinder is shown in Fig. 21. Early in the adjustment, the surface 630 

elevation mimics the f-plane solution (see Fig. 6a). Later, the cyclonic and anticyclonic gyres 631 

propagate westward (anticyclonically), creating a dipole structure adjacent to the western 632 

boundary (see Fig. 21 (c) at t=150 days). Reflection from the western boundary takes place 633 

over a long time scale. Short waves or vortices, with radial wavenumber │k│ = 4–8 are 634 

visible for t=450 days. Although the surface elevation amplitude at this time is small (a few 635 

millimetres), the barotropic velocity field attains speeds of the order of 1 cm s-1. Contours of 636 

eddy kinetic energy reveal that, even after three years of integration, eastward propagating 637 

(counter-clockwise) eddies are still present.  638 

 639 

A quantitative interpretation of this adjustment in terms of planetary wave dynamics 640 

follows. The long waves are characterized by │k│=1, n=2, and, from Fig. 16c, we see that the 641 

wave period is about 350 days. The associated group speed is shown in Fig. 16e. From this 642 

group speed, we calculated the time taken for energy to reach the “western” boundary, which 643 

is 155 days, in agreement with the numerical solution (Fig. 21c). The relative short waves, 644 

that propagate energy eastward, are characterized by n=2 and radial wavenumbers │k│> 6 645 

(Figs 21d and 21e). Figure 16 shows that these waves are characterized by periods of 300 646 

days and an extremely long energy propagation time (about 30 years), which makes them 647 

appear almost stationary, taking the form of eddies with slowly decaying amplitudes.  648 

 649 
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4 Discussion and summary 650 

Numerical and analytical solutions have been derived for the geostrophic adjustment of a 651 

homogeneous fluid in a circular basin with idealized topography, namely a step escarpment 652 

and a top-hat ridge. In all these cases it is demonstrated that the adjusted solutions are 653 

equivalent to that in a flat-bottom semicircular basin, which is also studied in this paper. The 654 

adjustment problems considered in this study fall into two categories: (i) a uniformly rotating 655 

basin and (ii) a polar-plane basin. 656 

 657 

In all the adjustment problems, the fluid is initially at rest with respect to the rotating 658 

coordinate frame, and the surface elevation of the fluid is displaced from its equilibrium 659 

position. The surface displacement takes one of two forms: (i) a step escarpment or (ii) a right 660 

circular cylinder centred on the rotation axis of the earth. 661 

 662 

When the basin is rotating uniformly, the adjustment takes place through the 663 

excitation of fast gravity waves, boundary trapped Kelvin-type waves and when topography 664 

is present, topographic Rossby waves. In the numerical simulations, dissipation damps the 665 

waves, and a quasi-steady geostrophically balanced state emerges, which, in turn, spins down 666 

on a long time scale to a final state of rest. The steady-state solutions for the semicircular 667 

basin problem are found by analytical methods. Computationally efficient asymptotic 668 

solutions are derived from these analytical solutions in the small basin or equivalently deep 669 

basin limit. It is demonstrated that these asymptotic solutions give reasonable results in cases 670 

when the small basin limit is not strictly satisfied, such as, for example,  the Arctic Ocean 671 

basin. In all the examples considered in this paper, the quasi-steady state consists of an even 672 

number of gyres, the structure of which is determined by the form of the initial surface 673 

elevation and topography. We also calculate the partitioning of energy between the wave and 674 

quasi-steady components.   675 
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 676 

  On the polar-plane, the initial adjustment mimics that of the uniformly rotating case; 677 

at intermediate time scales of 3 to 20 days, circulation patterns develop that are very similar 678 

to those simulated on the f-plane. The fluid, however, undergoes further wave adjustment 679 

because of excitation of the planetary (Rossby) waves generated when fluid crosses planetary 680 

potential vorticity contours. Because Kelvin waves and polar-plane Rossby waves are 681 

separated by a spectral gap, and because the initially adjusted solution on a polarplane 682 

mimics the f-plane steady-state solutions, the fraction of initial potential energy that is 683 

transferred to Rossby polar waves can be estimated using analytical solutions on the f-plane 684 

plotted in Figs 12b to 12c. 685 

 686 

As in the f-plane case, the adjustment in a basin with step escarpment or ridge 687 

topography is similar to the adjustment in a semicircular basin. Short wavelength planetary 688 

waves are generated when the long waves are reflected at the mid-latitude equivalent of the 689 

western boundary. The short waves with a radial mode greater than two have an extremely 690 

small group speed, leading to a time scale in excess of 30 years for energy to travel from the 691 

western to the eastern boundary. The short waves manifest themselves as long-lived 692 

barotropic vortices. 693 

 694 

One question that naturally arises is whether any of the features identified in the 695 

geostrophic adjustment problems described above carry across to a more realistic 696 

representation of the Arctic  Ocean. This question is addressed in the numerical solutions 697 

shown in Figs 22 and 23. The geometry of the basin is identical in both cases, namely, an 698 

irregularly shaped domain of uniform depth, 3000 m, the perimeter of which coincides with 699 

the 500 m isobath in the Arctic Ocean. A top-hat ridge of width 100 km and height 2000 m 700 

spans the deep basin and is representative of the Lomonosov Ridge in the Arctic Ocean. The 701 
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solutions in Fig. 22 are calculated for the uniformly rotating basin, while those in Fig. 23 are 702 

calculated on the polar-plane. Initially, the surface elevation takes the form of a flat-top 703 

circular cylinder of radius 800 km and height 0.4 m, centred on a pole and could, for 704 

example, have been produced by Ekman pumping associated with an atmospheric cyclonic 705 

circulation.  706 

 707 

Contours of surface elevation on day 5 and day 365 are plotted in Figs 22a and 22b, 708 

respectively, and agree qualitatively with those in Fig. 5. The steady-state solution adjusts to 709 

the convoluted shape of the coastline; therefore, higher mode structures emerge near the 710 

coast. 711 

 712 

On the polar-plane (Fig. 23), the early stages of the adjustment mimic those shown in 713 

Fig. 22. However, westward propagating planetary waves are eventually generated which, at 714 

later times, reflect at the western boundary and transfer energy into slowly propagating short 715 

waves which are subsequently damped by bottom friction. Qualitatively, the adjustment 716 

process shown in Fig. 23 mirrors that in the idealized basin shown in Fig. 20. 717 

 718 

 The problems discussed in this study facilitate an understanding of the rich interplay 719 

of rotating flows and topography at high latitudes. A worthwhile extension of this study is to 720 

consider the role played by stratification using, for example, a two-layer model. 721 
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Table 1. Parameter values used in the NEMO modelling system. E/F denotes explicit and 799 
filtered surface pressure algorithm experiments. 800 
  801 
 802 
 803 
 804 
 
Horizontal 
Resolution 

 
 Vertical 
Resolution 

 
Time Step 
E/F 
 

 
   Biharmonic 
   Horizontal 
    Viscosity 
 

  
Bottom 
Drag  
Coefficient 

 
0.1ox0.1o 

 

 
10  levels 

 
2 s / 15min 

 
-3x108 m4 s-1 

 
10-4 

 805 
 806 
 807 

 808 

Table 2. Coefficients for liner regression (24a).  809 
 810 
 a(n=1:5) c(n=1:5) a(n=1:9) c(n=1:9) 
k=-1 1.235 2.630 1.177 2.798 
k=-2 1.329 5.255 1.264 5.920 
k=-3 1.379 8.840 1.315 9.020 
k=-4 1.412 11.96 1.350 12.12 

 811 

 812 
 813 

  814 
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Figure captions 815 

 816 

Fig. 1 (a) Schematic of the polar basin; (b) a polar projection of the basin showing the local 817 

Cartesian coordinate frame, where OA= r= a sin θ. 818 

 819 

Fig. 2  Contour plots of surface elevation η associated with the geostrophic adjustment of 820 

a homogeneous fluid in a circular basin with a topographic escarpment on an f-821 

plane. (a)–(c): η are contoured at times shown, (d)–(f) are time means for time 822 

interval shown. Contour interval is 5 cm and 1 cm on panels (a)–(d) and (e)–(f), 823 

respectively. Solid contours correspond to positive elevations and the shaded area 824 

with dashed contours corresponds to negative elevations. The upper left panel 825 

shows the cross-section of bottom topography. 826 

 827 

Fig. 3  (a)–(d) Surface elevation for the wave-resolving numerical simulation at various 828 

times at cross-sections A-B and C-D, at deep and shallow parts of the basin, shown 829 

in Fig. 2a; (e) the same but for velocity in the y-direction at cross-section C-D; (f) 830 

as in (c) but for the numerical simulation, filtering fast waves. 831 

 832 

Fig. 4  Hovmőller diagrams for η : (a) for wave-resolving simulations; (b) as i (a) 833 

zoomed; (c) for wave-filtering simulations. (d) and (e) Wave amplitude 834 
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, where the period of averaging was T=13 hours, at 5 days 22 hours and 6 days 4 837 

hours, roughly in antiphase with the Kelvin-type wave (arrows). 838 

 839 

Fig. 5  (a) Decay in intensity of the wave amplitude max(A) of the surface elevation 840 

(defined as shown in the plot) for the wave-resolving simulation (black line) and 841 

the wave-filtering simulation (grey line); (b) │Δη│, averaged over 5 days plotted 842 

against time for the first 600 days of the integration at locations D and E shown in 843 

Fig. 2f (1) denotes the wave-resolving simulation and (2) the  wave-filtering 844 

simulation. 845 

 846 

Fig. 6  Quasi-steady solutions of η on the f-plane: (a) a circular basin with a ridge; (b) 847 

uniform depth semicircular basin with the initial step being the sea surface height 848 

elevation. Contour interval is 1 cm. The upper panel shows vertical cross-sections 849 

of the bottom topography, 850 

 851 

Fig. 7  Quasi-steady solutions on the f-plane: (a) a circular basin with top-hat ridge; (b) a 852 

circular basin with step escarpment; (c) a semicircular basin with uniform depth. 853 

Initially the surface deviation takes the form of a right circular cylinder, shown in 854 

the left panel. Contour interval is 5 mm.  855 

 856 

Fig. 8  Contour plots of η in a circular basin with topography shown in the upper icon 857 

(topography case (d) in Section 2) on the f-plane. The initial unbalanced surface 858 

elevation is given by Eq. (1a). Contour interval is 1 cm. 859 

 860 

Fig. 9  Time series of η at locations A and B shown on Fig. 7d. 861 
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 862 

Fig. 10  Contour plots of η given by: (a), (e) Eqs (8) and (9), respectively, summing over 863 

the first three non-zero modes only; (b–d) and (f–h) are the contributions from 864 

modes n=1, 2 and 3 respectively. The contour interval is 1 cm for (a), (b), (e), (f) 865 

and 2 mm for (c), (d), (g) and (h).  866 

 867 

Fig. 11  Contour plot of η given by Eq. (14) for α=0.5, contour interval is 2 mm. 868 

 869 

Fig. 12  (a) Dependence of the amplitude function associated with Eqs (8), (9) and (14) on 870 

S. Also plotted, the amplitude associated with the asymptotic solution Eq. (15) and 871 

dimensionless amplitudes of numerical solutions shown in Fig. 11 (α=0.5) and Fig. 872 

6b; (b) the ratio of total geostrophic energy (KE+PE) at the adjusted steady state to 873 

initial potential energy and the ratio of kinetic energy to available potential energy 874 

(IPE-PE) for different initial conditions as a function of S; (c) the ratio of kinetic 875 

energy to potential energy in the adjusted steady states as a function of S.    876 

 877 

  878 

Fig. 13  (a) A plot of η given by Eq. (8) for S=0.708; (b) by the asymptotic solution Eq. 879 

(15); (c) the asymptotic solution Eq. (15) multiplied by */)72.0( A , where A refers 880 

to the Eq. (8) and ߟ ∗ൌ limௌ→ஶ  ௦ . 881ܣ

 882 

Fig. 14  Contour plots of η at the times associated with the adjustment on a sphere of a 883 

fluid in a flat bottom circular basin. The initial surface elevation is given by Eq. 884 

(1a). The contour interval is 1 cm. 885 

 886 
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Fig. 15  (a) Time series of sea surface elevation at the locations shown in Fig. 16a; (b) 125 887 

days of running averages of the time series shown in (a). 888 

 889 

Fig. 16 (a) Dependence of the roots of the Bessel function on the wavenumber and linear 890 

fits. Plots of the dispersion relations derived from the LeBlond (1964) solution for 891 

free Rossby waves on a polar plane. (b) Dimensionless frequency, normalized by 892 

the Coriolis frequency; (c) dimensional periods; (d) phase velocity; (e) group 893 

velocity. On the plots, k and n denote the azimuthal wavelength and radial mode 894 

numbers, respectively. 895 

      896 

Fig. 17  As in Fig. 14 but for a right circular cylinder initial sea surface elevation: (a) plots 897 

of surface elevation at various times along a diameter revealing the “rapid” gravity 898 

wave adjustment; (b) and (c) contour plots of η. The simulation was made with a 899 

time-split algorithm for a barotropic pressure gradient, resolving fast waves.  900 

 901 

Fig. 18 As in Fig. 14 but for a circular basin with step topography and a semicircular basin. 902 

The contour interval is 5 mm.   903 

 904 

Fig. 19  Adjustment to initial step sea surface elevation in a semicircular basin on a sphere. 905 

Sea surface elevations (upper panels) and kinetic energy (lower panels) at the times 906 

shown. Contour interval for sea surface elevation is 1 cm.     907 

 908 

Fig. 20  Time series of (a) sea surface elevation and (b) kinetic energy at the locations 909 

shown in Fig. 19a.     910 

 911 
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Fig. 21  Adjustment to initial semicircular cylinder sea surface elevation in a semicircular 912 

basin of uniform depth on a sphere. Sea surface elevations (a–e) and kinetic energy 913 

(f–j) on the dates shown.   914 

 915 

Fig. 22  Quasi-steady sea surface elevations that result from the initial cylinder surface 916 

heights in the deep Arctic basin on an f-plane. 917 

 918 

Fig. 23 (a–c) Sea surface elevations that resultsfrom the initial cylinder surface heights in 919 

the deep Arctic  Ocean  on a sphere at dates shown. (d) kinetic energy at dates 920 

shown.  921 
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