1	Elizabeth K. Mackley ^{1,2*} , Richard A. Phillips ¹ , Janet R.D. Silk ¹ , Ewan D.
2	Wakefield ¹ , Vsevolod Afanasyev ¹ , Robert W. Furness ²
3	
4	At-sea activity patterns of breeding and nonbreeding white-chinned petrels
5	Procellaria aequinoctialis from South Georgia
6	
7	¹ British Antarctic Survey, Natural Environment Research Council, High Cross,
8	Madingley Road, Cambridge CB3 0ET, UK
9	² Faculty of Biomedical and Life Sciences, Graham Kerr Building, University of Glasgow,
10	Glasgow, G12 8QQ, UK
11	*Corresponding author, E-mail: Liz_Mackley@glasgowalumni.net
12	Word count: Abstract (222)Main text (with references: 5733, without: 4511)
13	
14	

15 Abstract Despite the recent burgeoning in predator tracking studies, few report on 16 seabird activity patterns, despite the potential to provide important insights into 17 foraging ecology and distribution. In the first year-round study for any small petrel, we 18 examined the activity patterns of the white-chinned petrel Procellaria aequinoctialis 19 based on data from combination geolocator-immersion loggers deployed on adults at 20 South Georgia. The petrels were highly nocturnal, flying for greater proportions of 21 darkness than any large procellarid studied so far, except the light-mantled albatross 22 Phoebetria palpebrata. Flight bout durations were short compared with other species, 23 suggesting a dominant foraging mode of small-scale searching within large prey 24 patches. When migrating, birds reduced the proportion of time on the water and 25 increased flight bout duration. Activity patterns changed seasonally: birds flew least 26 during the nonbreeding period, and most frequently during chick-rearing in order to 27 meet higher energy demands associated with provisioning offspring. The degree of 28 their response to moonlight was also stage dependent (greatest in nonbreeding, and weakest in incubating birds), a trait potentially shared by other nocturnal petrels which 29 30 will have repercussions for feeding success and prey selection. For the white-chinned 31 petrel, which is commonly caught in longline fisheries, these results can be used to 32 identify periods when birds are most susceptible to by catch, and therefore when use of 33 mitigation and checking for compliance is critical.

34

35 Introduction

36 Although seabirds are major consumers of marine resources, and often breed in 37 large accessible colonies, until the last few years, detailed information on behaviour of 38 known individuals at sea remained elusive. Recent data-logging studies have greatly 39 increased knowledge of relationships between at-sea activity patterns and species, sex, 40 breeding status, prey type, foraging strategy, and the timing and use of marine habitats 41 (Phillips et al. 2008; Wakefield et al. 2009). Despite technological advances that have 42 reduced the size, mass and cost of loggers, there have been relatively few studies of the 43 at-sea activity of smaller procellariiform species (Catry et al. 2009; Guilford et al. 2009; 44 Landers et al in press; Rayner et al. 2008; Shaffer et al. 2009). 45 White-chinned petrels *Procellaria aequinoctialis* are medium-sized (1.3 kg) 46 burrow-nesting procellariiforms that breed during the austral summer on sub-Antarctic 47 islands throughout the Southern Ocean (Marchant and Higgins 1990). This wideranging and opportunistic species is capable of exploiting all marine environments if 48 49 prey abundance is high (Catard et al. 2000; Phillips et al. 2006; Weimerskirch et al. 50 1999). White-chinned petrels travel by both gliding and flap-gliding flight, in contrast to 51 albatrosses, which rely to a greater extent on the wind to sustain gliding flight; this may 52 allow these petrels to travel more directly (Pennycuick 1987; Weimerskirch et al. 1999). 53 In addition, their smaller size and manoeuvrability results in relatively lower energetic 54 costs of take-off, potentially enabling them to adopt a foraging mode involving frequent 55 landings on the water (Weimerskirch et al. 2000a). White-chinned petrels can reach depths up to 12m (Huin 1994), and feed on 56 57 euphausiids, fish and squid (Berrow et al. 2000a, Catard et al. 2000). Their diet and 58 distribution overlap considerably with several of the smaller Southern Ocean albatrosses

59 (Phillips et al. 2005). However, unlike albatrosses that actively seek and capture most

60 prey during the day throughout the year (Mackley et al. 2010; Phalan et al. 2007),

61	white-chinned petrels appear to show high nocturnal activity, e.g. 49% of feeding events
62	observed at sea by Harper (1987) were during darkness. Ship-based observations of
63	white-chinned petrels suggest that their nocturnal behaviour is not influenced in a
64	consistent way by moon phase (Delord et al. 2005; Gandini and Frere 2006; Gómez
65	Laich and Favero 2007; Moreno et al. 1996; Petersen et al. 2008a; Weimerskirch et al.
66	2000b). It might therefore be inferred that white-chinned petrels are well-adapted to
67	nocturnal foraging and able to detect their prey, including Antarctic krill Euphausia
68	superba, by sight or olfaction (Nevitt et al. 2004), independent of light levels. In
69	contrast, Barnes et al. (1997) noted a diel cycle in their behaviour consisting of a
70	midnight lull followed by increased activity peaking 2.5 hours before dawn, which
71	suggests a direct or prey-mediated response to ambient light levels.
72	During the nonbreeding period (austral winter), white-chinned petrels
73	congregate in large numbers over productive continental shelves (Phillips et al. 2006;
74	Weimerskirch et al. 1999). The South Georgia population utilises the Patagonian shelf
75	during the nonbreeding, pre-laying exodus and incubation periods, but rarely during
76	chick-rearing when they mainly forage over the South Georgia shelf and shelf-slope,
77	and around the South Orkney Islands (Berrow et al. 2000a; Phillips et al. 2006). Over
78	the Patagonian Shelf, white-chinned petrels are known to follow fishing vessels and to
79	feed on discards in large numbers (Gandini and Frere 2006; Gómez Laich and Favero
80	2007; González-Zevallos and Yorio 2006; Moreno et al. 1996). Long-line fishing for
81	Patagonian toothfish Dissostichus eleginoides is banned in the vicinity of South Georgia
82	and the South Orkneys during the austral summer (Phillips et al. 2006), and discards
83	will be rare in the diet of white-chinned petrels during chick-rearing.
84	Targeting of different types of prey, from fisheries or varying marine habitats,
85	potentially requires different foraging techniques, which should be detectable by

86 analysis of activity patterns. In addition, the few studies of activity in nonbreeding

87 seabirds, which are without a central place constraint and therefore have lower energetic 88 and nutritional demands, show that they generally rest on the water for longer during 89 daylight than birds that are breeding (Mackley et al. 2010; Phillips et al. 2007). Whether 90 activity patterns of white-chinned petrels vary in the same way is unknown. The aims of 91 this study were therefore to: (1) test for stage-related differences in white-chinned petrel 92 at-sea activity; (2) examine whether activity patterns vary with habitat; (3) compare the 93 activity patterns of white-chinned petrels with those of other procellariiforms studied so 94 far; and (4) test whether activity varies with moonlight. The white-chinned petrel 95 population at South Georgia has shown a sustained long-term decline, attributable 96 largely to fisheries bycatch (Berrow et al. 2000b; Martin et al. 2009; Phillips et al. 97 2006). We therefore discuss how our results can inform by catch mitigation efforts for 98 this threatened species.

99

100 Materials and methods

101 Combined geolocator-immersion data loggers attached to a plastic leg ring (total 102 mass 10.5g; <1% of adult body mass), were deployed on the tarsi of adult white-103 chinned petrels extracted from burrows on Bird Island, South Georgia (54°00'S, 104 38°03'W) (for details see Phillips et al. 2006). Thirty-five loggers were deployed from 105 5–7 February 2003, of which twelve were recovered over the three subsequent breeding 106 seasons. Data were successfully downloaded from eleven loggers. Data from the 2003 107 nonbreeding period (February - October) and the following 2003/04 breeding season 108 (October - February) were used in the analysis. Birds were of unknown sex. 109 The data loggers measured visible light intensity every minute and tested for 110 saltwater immersion every three seconds. The maximum (truncated) light level, and

111 number of positive tests from 0 (continuously dry) to 200 (continuously wet) were

stored at the end of each ten minute block. The light data were processed using

113 MultiTrace (Jensen Software Systems) (see Phillips et al. 2004). Briefly, thresholds in 114 the light curves, omitting those with obvious interruptions around dawn or dusk, were 115 used to determine sunrise and sunset. Those with obvious interruptions around down or 116 dusk were omitted when calculating distribution, whilst, for activity data, sunrise and 117 sunset were inferred from adjacent days. Latitude was derived from day length and 118 longitude from the timing of local midday with respect to Universal Time and Julian 119 day. Latitudes were not available close to the equinoxes when day length is similar 120 across the globe. Following the approach adopted by Mackley et al. (2010), a speed 121 filter was used to highlight rapid easterly (20 kph) or westerly (12 kph) changes in 122 location (min. 1 day duration) during the nonbreeding period, which were visually 123 inspected for accuracy before designation as migrating (nonbreeding commuting) 124 periods; otherwise, birds were considered to be resident.

125 The activity data were processed automatically using scripts written in R (R 126 Development Core Team 2008) to give eight measures of activity: the proportion of 127 time spent on the water, the length of flight bouts in minutes, and the number of flight 128 bouts per hour, for both darkness and daylight, and; the proportion of the total time 129 spent on the water, and time spent in flight in each day (consecutive light and dark 130 period) that occurred during darkness. Each 10 min block was categorised as daylight or 131 darkness, from the timing of nautical twilight (derived from the light curves in Multi-132 trace). Flight bouts were defined as a continuous sequence of dry (0) values (see Phalan 133 et al. 2007).

The nonbreeding period started in February for all but one bird that departed in April, presumably following a successful breeding attempt. All birds began their prelaying exodus between late October and early November, returning to the colony midto late November (Phillips et al. 2006). During the breeding period, activity data were visually inspected for extended dry periods (≥1 day) that indicated birds were in

burrows. For each foraging period, only data from the first to the last complete day of
at-sea activity were used in the analysis. Birds spent longer periods in the burrow during
incubation than chick-rearing (3 - 16 days and 1 - 3 days, respectively)(Marchant and
Higgins 1990). Chicks hatched in late December to late January, which was apparent in
an immediate switch to a pattern of short visits. The first chick-rearing foraging trip
followed the first short stay (1-3 days) in the burrow.

145 In order to improve statistical normality flight bout durations were double log 146 transformed and number of bouts per hour were square root transformed. Proportion 147 data were either arcsin transformed or treated using a GLM with binomial error 148 structure with a logit link function. The effects of stage were modelled using mixed-149 effects Generalised Linear Models fitted by Penalised Quasi Likelihood (Venables and 150 Ripley 2002) with individual identity treated as a random effect (Pinheiro and Bates 151 2000). In addition, a first order autoregressive term (corAR1) was used to account for 152 non-independence of errors due to temporal autocorrelation (however, due to 153 insufficient computing power - R was limited to 2Gb of memory with the windows 154 operating system - this term was not used to model flight bout duration. Comparative p-155 values were extracted by refitting these models with different intercepts. A mixed-156 effects linear model was used to test the relationship between the visible proportion of 157 the moon, and activity parameter during resident, pre-laying exodus and incubation 158 stages. The illuminated proportions of the moon's visible disk at noon (universal time) 159 were obtained from the Astronomical Applications Department of the United States 160 Naval Observatory (http://aa.usno.navy.mil/data/docs/MoonFraction.html) following 161 Phalan et al. (2007). For all other analyses using conventional tests, the activity 162 measures were averaged for each individual bird to prevent pseudo-replication. The 163 arithmetic observed mean \pm SD are reported in the tables to facilitate comparisons with 164 previous studies and the estimated mean $\pm 95\%$ confidence interval are shown in Fig 1.

165 Given the large number of comparisons, the threshold for statistical significance was set 166 to P < 0.01.

167

168 **Results**

169 Immersion data were available from eleven birds during the nonbreeding phase, ten 170 during the pre-laying exodus, six during incubation (20 trips) and three during chick-171 rearing (8 trips). The distributions for 10 of the 11 birds in this study (the other logger 172 was not retrieved until December 2005) are presented in Phillips et al. (2006). All 173 eleven white-chinned petrels initially went to the Patagonian Shelf from South Georgia 174 for the nonbreeding period. In mid-winter (May - June), three birds moved to the 175 Humboldt Current west of South America, of which one returned directly to South 176 Georgia and the other two via the Patagonian Shelf. These movements typically 177 occurred as rapid and sustained periods of flight (mean: 1 day, range: 1-2 days), 178 hereafter termed 'migration'. During their pre-laying exodus, all ten birds travelled to 179 the Patagonian Shelf to forage (mean: 18 days, range 7-28 days). Similarly, most 180 foraging trips during incubation (mean: 8 days, range: 2-16 days) were to the 181 Patagonian Shelf, whereas chick-rearing birds feed in Antarctic waters south of the 182 Polar Front, and in the southern Scotia Sea in particular (mean 4.5 days, range: 2-8 183 days).

184

185 Individual variability

186 During the resident phase of the nonbreeding period, variation was consistently higher

187 between than within individuals (One-way ANOVA for each activity measure: $F_{(10,2513)}$

188 $_{9595)} = 3.95 - 17.75$, P<0.001) whereas behaviour was more fixed during migration

189 (One-way ANOVA for each activity measure: $F_{(9-10,14-156)} = 0.97-2.32$, P = 0.509-

190 0.073). Behaviour during the breeding period was generally invariant between

191 individuals for all three stages (One-way ANOVA for each activity measure, pre-laying 192 exodus: $F_{(9,168-629)} = 0.60-2.13$, P = 0.797-0.025; incubation: $F_{(5,156-159)} = 0.76-2.37$; incubation: $F_{(5,1$ 193 0.437-0.042; chick-rearing $F_{(2,31-313)} = 0.15-1.82$, P = 0.858-0.178). However, there 194 were exceptions: during the pre-laying exodus both the number and length of flight 195 bouts during daylight differed significantly between individuals ($F_{(9,172)} = 2.69, P =$ 196 0.006 and $F_{(9,1271)} = 4.50$, P<0.001, respectively); during incubation flight bout length 197 during darkness and daylight differed between individuals ($F_{(5.529)} = 3.86$, P = 0.002 and 198 $F_{(5,1226)} = 8.96$, P<0.001 respectively) as did the number of flight bouts per hour during daylight ($F_{(5,159)} = 16.98$, P<0.001). Additionally, during chick-rearing, the proportion 199 200 of flight that was at night showed a near significant difference between individuals 201 $(F_{(2,34)} = 5.12, P = 0.011).$

202

203 Comparison of breeding stages and nonbreeding phases

204 During the resident phase of the nonbreeding period, birds spent significantly more time 205 on the water than during any stage during daylight and, with the exception of migration, 206 also darkness (Fig. 1a). The proportion of total time in flight that occurred during 207 darkness was greatest for resident nonbreeders, and a similar trend was apparent in the 208 proportion of total time on the water that occurred during darkness, for both 209 nonbreeding phases, i.e. resident and migrating (Fig. 1b). This probably reflected the 210 longer nights during winter, as the smallest values occurred during the incubation 211 period, coinciding with the shortest mid-summer nights. Flight bouts were longest when 212 migrating, and shortest when resident, during both daylight and darkness (Fig. 1c). 213 Resident birds showed the least frequent flight bouts during daylight, and there was a 214 similar overall trend apparent during darkness (Fig. 1d). The proportions of time spent 215 on the water decreased as the breeding season progressed; hence, chick-rearing birds

216 rested for the shortest periods (Fig.1a). The lack of statistical significance despite this

217 clear trend is presumably related to the low sample size.

218

219 Ocean sector

For three birds that moved from the Patagonian Shelf to the Humboldt Current during
the nonbreeding period, there were no significant differences in their resident activity
patterns (Table 1).

223

224 Illuminated moon

225 There were no significant differences between stages in the range of values of the 226 illuminated proportion of the moon's disc experienced (Fig. 2). However, as the 227 migration and chick-rearing activity data did not include a complete lunar cycle, these 228 were not included in the illuminated moon analysis. The influence of moon phase was 229 greatest during the resident nonbreeding period. In contrast fewer activity measures 230 varied with illuminated moon during the pre-laying exodus and fewer still during 231 incubation (Table 2). All nocturnal measures of activity were affected during the 232 resident period: birds spent a lower proportion of time on the water, and showed more 233 frequent and longer bouts of flight as the illuminated moon increased. Furthermore, the 234 duration of flight bouts during daylight increased. Flight bout durations and the 235 proportion of time spent on the water during daylight increased with illuminated moon 236 during the pre-laying exodus. During the pre-laying exodus the proportion of time on 237 the water that occurred in darkness decreased, whereas the proportion of time spent in 238 flight increased, with an increase in the illuminated moon. During incubation, only one 239 measure of activity varied with illuminated moon: birds reduced the proportion of time 240 spent on the water during darkness as the proportion of illuminated moon increased.

241

242 **Discussion**

243 Our study is unusual in that it is the first to provide comprehensive coverage of at-sea 244 activity patterns throughout the annual cycle of any procellariid other than the large 245 albatrosses. The relatively low logger recovery rate was attributed to the initial 246 deployment on a high proportion of prospecting birds, consequent low burrow fidelity, 247 and breeding deferral in subsequent seasons (Phillips et al. 2006). The logger load (<1% 248 of body mass) was considerably less than that (c. 3%) at which effects on bird 249 behaviour generally become apparent (Phillips et al. 2003). It is unlikely therefore that 250 the behaviour of these individuals was compromised by the loggers and presumably, the 251 activity patterns are typical of the species.

252

253 Changes in white-chinned petrel activity patterns

254 Breeding stage and nonbreeding phase

255 Like Southern Ocean albatrosses, the at-sea activity of white-chinned petrels 256 was highly influenced by the degree of central place constraint (Mackley et al. 2010; 257 Phalan et al. 2007). During the resident phase of the nonbreeding period, when birds are 258 unconstrained and energetic demand is lowest, the petrels spent the highest proportion 259 of time on the water, and exhibited the fewest and shortest flight bouts during daylight, 260 with a similar trend apparent during darkness. Constraints increase across the breeding 261 stages and are highest when provisioning chicks (Shaffer et al. 2003). That the 262 proportion of time spent on the water decreased and flight bout duration tended to 263 increase as the breeding season progressed presumably reflects a significant ecological 264 effect.

White-chinned petrels replace their primary feathers sequentially during the nonbreeding period (Marchant and Higgins 1990). This may alter their flight ability and thereby activity patterns, particularly if several primaries are shed simultaneously

(Bridge 2006). However, because this species is highly dependent upon its aerial agility in order to capture prey it appears that, as in albatrosses (Mackley et al. 2010), their moult sequence may be adapted to have minimal impact on flight, certainly there was no evidence for a prolonged period of flightlessness. Furthermore, effects on activity may be minimal because at this time of year energetic expenditure is in any case relatively low.

274 During the resident nonbreeding phase, white-chinned petrels exhibited similar 275 levels of activity during darkness and daylight: the mean proportion of time spent on the 276 water was 62% and 61%, flight bout durations were 63 and 67 mins, and the number of 277 flight bouts per hour were 0.32 and 0.30, respectively. This demonstrates the aptitude of 278 this petrel for diurnal and nocturnal foraging. However, birds increased effort 279 (expressed as flight) further during daylight in response to the increased energetic 280 demands of migration or breeding. Similarly, Weimerskirch et al. (2000b) observed that 281 attendance of petrels at fishing vessels increased with daylight during the breeding 282 period. This tendency to increase diurnal activity mirrors that of Southern Ocean 283 albatrosses, for which aerial detection and capture of prey is limited during darkness by 284 low light-levels (Mackley et al. 2010; Phalan et al. 2007). It seems therefore that there 285 are periods of darkness during which even this nocturnal species is limited by ambient 286 light levels (also see Barnes et al. 1997). Under such circumstances, white-chinned 287 petrels may nevertheless continue to forage whilst resting on the water by surface-288 seizing crustaceans and squid (Harper 1987) utilising the sit-and-wait method described 289 for albatrosses (Catry et al. 2004; Weimerskirch et al. 1997). 290 Mean flight bout lengths (excluding migration) were relatively short compared

to other procellariiforms (Table 4), during both daylight (67-85 mins) and darkness (6277 mins), which suggests white-chinned petrels consistently use confined searches in
areas of high prey abundance (Weimerskirch et al. 1997). The longer mean flight bout

295	prey patches, as well as the long commutes between the breeding colony and foraging
296	areas (Berrow et al. 2000a; Phillips et al. 2006). In addition, high individual variability
297	in measures of flight during breeding stages may reflect individual differences in
298	distribution (Phillips et al. 2006).
299	During migration, the petrels reduced proportions of time spent on the water by
300	51-76%, and increased flight bout durations by 1.6-1.8 times relative to resident phases.
301	This increased effort is in accordance with previous satellite tracks of their rapid long-
302	distance movements (Catard et al. 2000; Weimerskirch et al. 1999). The gliding and
303	flap-gliding flight of white-chinned petrels increases their metabolic rate (Pennycuick
304	1987). Therefore, the limited between-individual variation in behaviour during this
305	phase would suggest that the petrels were working at or close to their energetic maxima.
306	
307	Foraging location and environmental heterogeneity
308	White-chinned petrels forage widely across the Southern Ocean,
309	opportunistically exploiting patches of high prey abundance (Catard et al. 2000). The
310	apparent consistency in activity patterns of nonbreeding individuals utilising both the
311	Patagonian Shelf (open shelf) and Humboldt Current (shelf-slope) suggest that either
312	their prey were similar, or, perhaps more likely, that different prey types could be
313	exploited with equal success in these two habitats using typical foraging behaviour.
314	
315	Comparison with other procellariiforms
316	Nocturnal activity
317	Our results indicate that white-chinned petrels are more nocturnally active than
318	Southern Ocean albatross species for which activity patterns are available (Tables 3, 4),
319	with the exception of nonbreeding light-mantled albatross (Mackley et al. 2010). This

durations recorded during breeding may result from increasing the search radius around

difference was greatest during the chick-rearing period, when white-chinned petrels
spent only 28% of darkness on the water, and least during the resident nonbreeding
phase (see Table 3).

323 Comparable studies of smaller procellariiform species are limited to a tropical 324 shearwater and a gadfly petrel; both spent similar proportions of daylight on the water, 325 but their nocturnal activity was notably different from white-chinned petrels (Table 3). 326 Nonbreeding wedge-tailed shearwaters Puffinus pacificus spent a higher proportion of 327 darkness on the water, probably preferring to maximise efficiency by foraging in 328 association with tunas that pursue prey during daylight (Catry et al. 2009). Cook's 329 petrels from two distant colonies in New Zealand generally forage far from their 330 colonies in either subtropical (Little Barrier Island), or highly productive subtropical 331 convergence waters (Codfish Island) (Rayner et al. 2008). Birds feeding chicks from 332 these colonies spent a greater (40%), or lower proportion (20%) of time on the water at 333 night, respectively, than white-chinned petrels (28%). These species are therefore 334 similarly nocturnal, with the differences in activity most probably related to differences 335 in the type and abundance of prey they exploit (Rayner et al. 2008).

336 For all stages (except migration) the proportions of time spent on the water by 337 white-chinned petrels during daylight and darkness differed by only 1.3-7.4%. This lack 338 of variability is in contrast to albatrosses, where the differences varied from 16.8% 339 (resident phase light-mantled albatrosses) to 76.2% (post-brood grey-headed albatrosses 340 Thalassarche chrysostoma), representing the nocturnal and diurnal extremes of the 341 Southern Ocean species and stages (Table 3). Their greater flexibility in the timing of 342 activity means that resident nonbreeding white-chinned petrels rest on the water, or at 343 least do not actively pursue prey, for a greater proportion of daylight (61%) than any 344 albatross (33-59%, (Mackley et al. 2010; this study). The closest value (59%) for the

345 wandering albatross *Diomedea exulans* may not reflect rest *per se* but the longer time

required for handling and digestion of larger prey (Mackley et al. 2010).

347

348 <u>Flight</u>

349 White-chinned petrels migrate for shorter distances between South Georgia and 350 their wintering areas (the Patagonian Shelf and Humboldt Current) than sympatric 351 albatrosses (Phillips et al. 2008). These transits are also more rapid, completed within 1-352 2 days (Phillips et al. 2006; this study) probably due to a combination of their direct 353 flap-gliding flight and bouts that are longer, during both day and night (108 and 114 354 mins), than all but wandering albatrosses (114 and 121 mins (Mackley et al. 2010). This 355 suggests that they are able to sustain long periods of fast, direct flight in order to 356 minimise the time spent in areas of lower prey availability.

357 Mixed feeding flocks in the Southern Ocean are dominated by white-chinned 358 petrels and black-browed albatrosses (Nevitt et al. 2004), which have comparably short 359 durations of flight during daylight, indicative of prey searching over small spatial scales 360 (Mackley et al. 2010; Phalan et al. 2007; Weimerskirch and Guionnet 2002). 361 Differences between these species at night (Table 4) probably result from their 362 nocturnal visual acuity, with black-browed albatrosses switching to prev searching 363 predominantly by olfaction, with consequently longer flight bouts (Mackley et al. 364 2010). White-chinned petrels also have highly developed olfaction, important in the 365 initial detection of prey patches (Nevitt et al. 2004) but are presumably not restricted to 366 locating individual prey items by olfaction alone, given the consistency in flight bout 367 durations between day and night. 368

369 Effect of illuminated moon on activity

370 In our study we used the proportion of illuminated moon as a proxy for 371 nocturnal light levels, although we were of course unable to account for the effects of 372 variation in cloud cover. Nevertheless, changes in some measures of activity with this 373 proxy were highly significant, suggesting that the confounding effect of cloud cover 374 was slight. The effects on activity were stage dependent; all nocturnal activity measures 375 were affected during the resident nonbreeding period, whereas effects were fewer, and 376 more variable as the breeding period progressed. On moonlit nights, increased aerial 377 activity indicated higher foraging effort, probably as prey became harder to detect or 378 capture because they remained at depth. White-chinned petrels are constrained by their 379 maximum dive depth (12m; Huin 1994) and therefore lunar periodicity in the diel 380 vertical migrations of their prey may alter foraging success, as recorded for immature 381 Galápagos fur seals Arctocephalus galapagoensis (Horning and Trillmich 1999). 382 Possibly as a consequence of poorer nocturnal foraging success, the petrels increased 383 aerial searches during daylight, particularly during the pre-laying exodus. This may 384 reflect opportunistic exploitation of a seasonally available prey source, for example, 385 juvenile squid Martialia hyadesi (Rodhouse et al. 1992), which may coincide with both 386 the timing and dispersal pattern of the pre-laying exodus (Phillips et al. 2006). During 387 incubation, nocturnal illumination had limited influence on activity and it was not found 388 to affect distance travelled by white-chinned petrels at night in a previous study 389 (Weimerskirch et al. 1999). It is probable that increased energy demands as the breeding 390 period progresses require consistent increases in effort regardless of moonlight. 391 This stage-dependent plasticity in activity may have caused the disparities in 392 past studies that have examined behavioural responses of white-chinned petrels to 393 various measures of moonlight: those that were of nonbreeding or immature white-394 chinned petrels recorded significant effects (Moreno et al. 1996; Petersen et al. 2008a),

395 whereas those that occurred during the breeding period (Delord et al. 2005;

396 Weimerskirch et al. 2000b), or were based on long-term averages (Gandini and Frere 397 2006; Gómez Laich and Favero 2007) found no significant or consistent correlates. It is 398 possible that artificial lighting is sufficient, regardless of moon phase, for breeding 399 petrels to increase foraging effort around fishing vessels (Barnes et al. 1997), thereby 400 masking any response to natural conditions. Stage-dependent responses to moonlight 401 could be clarified by data on the activity patterns of grey petrels *Procellaria cinerea*, 402 which share common attributes but breed during the austral winter, potentially 403 explaining why in the austral summer, grey but not white-chinned petrels respond to 404 illuminated moon (Delord et al. 2005).

405

406 Fisheries and conservation

407 Given the propensity of white-chinned petrels to forage in association with fisheries on 408 the Patagonian Shelf (Gómez Laich and Favero 2007; Phillips et al. 2006), it cannot be 409 assumed that the activity patterns observed during the nonbreeding, pre-laying exodus 410 and incubation periods are entirely natural foraging (note that this is not the case during 411 chick-rearing, when there is little overlap with fishing vessels). Nevertheless, tracking 412 of individual black-browed albatrosses, which are similarly attracted to fisheries, found 413 they spent surprisingly little time in association with fishing vessels (Petersen et al. 414 2008b), and the same may be true of many white-chinned petrels.

Incidental mortality of white-chinned petrels is disproportionately high, to a large extent related to their high levels of nocturnal activity (Delord et al. 2005). The success of night setting may be improved by avoiding moonlit nights during the nonbreeding period, and by use of additional mitigation measures during the breeding period. These are also the times when monitoring of compliance by fisheries observers is particularly important. During the chick-rearing period, when nocturnal activity is high, nights are short, and birds are actively foraging for their chicks as well as for self-

422 maintenance, seasonal closures in petrel foraging areas will continue to be the most423 effective solution.

425	Acknowledgements This research represents a contribution to the British Antarctic
426	Survey Ecosystems Programme. We are very grateful to the many field workers for
427	their help with deploying and retrieving data loggers, and to J. P. Croxall for supporting
428	the procellariiform research at Bird Island.
429	
430	References
431	Barnes KN, Ryan PG, Boix-Hinzen C (1997) The impact of the hake Merluccius
432	spp. longline fishery off South Africa on Procellariiform seabirds. Biol Conserv 82:
433	227-234
434	Berrow SD, Croxall JP (1999) The diet of white-chinned petrels Procellaria
435	aequinoctialis, Linnaeus 1758, in years of contrasting prey availability at South
436	Georgia. Antarct Sci 11: 283-292
437	Berrow SD, Croxall JP, Grant SD (2000b) Status of white-chinned petrels
438	Procellaria aequinoctialis Linnaeus 1758, at Bird Island, South Georgia. Antarct Sci
439	12: 399-405
440	Berrow SD, Wood AG, Prince PA (2000a) Foraging location and range of
441	White-chinned Petrels Procellaria aequinoctialis breeding in the South Atlantic. J
442	Avian Biol 31: 303-311
443	Bridge ES (2006) Influences of morphology and behavior on wing-molt
444	strategies in seabirds. Mar Ornithol 34: 7-19
445	Catard A, Weimerskirch H, Cherel Y (2000) Exploitation of distant Antarctic
446	waters and close shelf-break waters by white-chinned petrels rearing chicks. Mar Ecol
447	Prog Ser 194: 249-261

448	Catry P, Phillips RA, Phalan B, Silk JRD, Croxall JP (2004) Foraging strategies
449	of grey-headed albatrosses Thalassarche chrysostoma: integration of movements,
450	activity and feeding events. Mar Ecol Prog Ser 280: 261-273
451	Catry T, Ramos JA, Le Corre M, Phillips RA (2009) Movements, at-sea
452	distribution and behaviour of a tropical pelagic seabird: the wedge-tailed shearwater in
453	the western Indian Ocean. Mar Ecol Prog Ser 391: 231-242
454	Delord K, Gasco N, Weimerskirch H, Barbraud C, Micol T (2005) Seabird
455	mortality in the Patagonian toothfish longline fishery around Crozet and Kerguelen
456	Islands, 2001-2003. CCAMLR Sci 12: 53-80
457	Gandini P, Frere E (2006) Spatial and temporal patterns in the bycatch of
458	seabirds in the Argentinian longline fishery. Fish Bull104: 482-485
459	Gómez Laich A, Favero M (2007) Spatio-temporal variation in mortality rates of
460	White-chinned Petrels Procellaria aequinoctialis interacting with longliners in the
461	south-west Atlantic. Bird Conservation International 17: 359-366
462	González-Solís J, Croxall JP, Briggs DR (2002) Activity patterns of giant
463	petrels, Macronectes spp., using different foraging strategies. Mar Biol 140:197-204
464	González-Zevallos D, Yorio P (2006) Seabird use of discards and incidental
465	captures at the Argentine hake trawl fishery in the Golfo San Jorge, Argentina. Mar
466	Ecol Prog Ser 316: 175-183
467	Guilford T, Meade J, Willis J, Phillips RA, Boyle D, Roberts S, Collett M,
468	Freeman R, Perrins CM (2009) Migration and stopover in a small pelagic seabird, the
469	Manx shearwater Puffinus puffinus: insights from machine learning. Proc R Soc Lond B
470	276: 1215-1223
471	Harper PC (1987) Feeding behaviour and other notes on 20 species of
472	Procellariiformes at sea. Notornis 34: 169-192

473	Horning M, Trillmich F (1999) Lunar cycles in diel prey migrations exert a
474	stronger effect on the diving of juveniles than adult Galápagos fur seals. Proc R Soc
475	Lond B 266: 1127-1132
476	Huin N (1994) Diving depths of white-chinned petrels. The Condor 96: 1111-
477	1113
478	Landers TJ, Rayner MJ, Phillips RA, Hauber ME (in press) Dynamics of
479	seasonal movements by a trans-pacific migrant, the Westland petrel. The Condor
480	Mackley EK, Phillips RA, Silk JRD, Wakefield ED, Afanasyev V, Fox JW,
481	Furness RW (2010) Free as a bird? Activity patterns of albatrosses during the
482	nonbreeding period. Mar Ecol Prog Ser 406: 291-303
483	Marchant S, Higgins PJ (1990) Handbook of Australian, New Zealand and
484	Antarctic birds Volume 1 Ratites to Ducks. Oxford University Press, Melbourne
485	Martin AR, Poncet S, Barbraud C, Foster E, Fretwell P, Rothery P (2009) The
486	white-chinned petrel (Procellaria aequinoctialis) on South Georgia: population size,
487	distribution and global significance. Polar Biol 32: 655-661
488	Moreno CA, Rubilar PS, Marschoff E, Benzaquen L (1996) Factors affecting the
489	incidental mortality of seabirds in the Dissostichus eleginoides fishery in the southwest
490	Atlantic (subarea 48.3, 1995 season). CCAMLR Sci 3: 79-91
491	Nevitt G, Reid K, Trathan P (2004) Testing olfactory foraging strategies in an
492	Antarctic seabird assemblage. J Exp Biol 207: 3537-3544
493	Pennycuick CJ (1987) Flight of seabirds. In: Croxall JP (ed) Seabirds: Feeding
494	Ecology and Role in Marine Ecosystems, Cambridge University Press, Cambridge,
495	pp43-62
496	Petersen SL, Nel DC, Ryan PG, Underhill LG (2008a) Understanding and
497	Mitigating Vulnerable Bycatch in southern African Trawl and Longline Fisheries.
498	WWF South Africa Report Series - 2008/Marine/002.

499	Petersen SL, Phillips RA, Ryan PG, Underhill LG (2008b) Albatross overlap
500	with fisheries in the Benguela Upwelling System: implications for conservation and
501	management. Endang Species Res 5:117-127
502	Phalan B, Phillips RA, Silk JRD, Afanasyev V, Fukuda A, Fox J, Catry P,
503	Higuchi H, Croxall JP (2007) Foraging behaviour of four albatross species by night and
504	day. Mar Ecol Prog Ser 340: 271-286
505	Phillips RA, Catry P, Silk JRD, Bearhop S, McGill R, Afanasyev Y, Strange IJ
506	(2007) Movements, winter distribution and activity patterns of Falkland and brown
507	skuas: insights from loggers and isotopes. Mar Ecol Prog Ser 345: 281-291
508	Phillips RA, Croxall JP, Silk JRD, Briggs DR (2008) Foraging ecology of
509	albatrosses and petrels from South Georgia: two decades of insights from tracking
510	technologies. Aquat Conserv: Mar Freshwat Ecosyst 17: S6-S21
511	Phillips RA, Croxall JP, Xavier JC (2003) Effects of satellite transmitters on
512	albatrosses and petrels. Auk 120:1082-1090
513	Phillips RA, Silk JRD, Croxall JP (2005) Foraging and provisioning strategies of
514	the light-mantled sooty albatross at South Georgia: competition and co-existence with
515	sympatric pelagic predators. Mar Ecol Prog Ser 285:259-270
516	Phillips RA, Silk JRD, Croxall JP, Afanasyev V (2004) Accuracy of geolocation
517	estimates for flying seabirds. Mar Ecol Prog Ser 266: 265-272
518	Phillips RA, Silk JRD, Croxall JP, Afanasyev V (2006) Year-round distribution
519	of white-chinned petrels from South Georgia: Relationships with oceanography and
520	fisheries. Biol Conserv 129:336-347
521	Pinheiro JC, Bates DM (2000) Mixed effects models in S and S-PLUS.
522	Springer-Verlag, New York
523	Prince PA, Huin N, Weimerskirch H (1994) Diving depths of albatrosses.
524	Antarct Sci 6: 353-354

525	Rayner MJ, Hauber ME, Clout MN, Seldon DS, Van Dijken S, Bury S, Phillips
526	RA (2008) Foraging ecology of Cook's petrel Pterodroma cookii during the austral
527	breeding season: a comparison of its two populations. Mar Ecol Prog Ser 370: 271-284
528	Rodhouse PG, Symon C, Hatfield EMC (1992) Early life cycle of cephalopods
529	in relation to the major oceanographic features of the southwest Atlantic Ocean. Mar
530	Ecol Prog Ser 89: 183-195
531	Shaffer SA, Costa DP, Weimerskirch H (2003) Foraging effort in relation to the
532	constraints of reproduction in free-ranging albatrosses. Funct Ecol 17: 66-74
533	Shaffer SA, Weimerskirch H, Scott D, Pinaud D, Thompson DR, Sagar PM,
534	Moller H, Taylor GA, Foley DG, Tremblay Y, Costa DP (2009) Spatio-temporal habitat
535	use by breeding sooty shearwaters Puffinus griseus. Mar Ecol Prog Ser 391: 209-220
536	Venables WN, Ripley BD (2002) Modern applied statistics with S. 4 th edn.
537	Springer, New York
538	Wakefield ED, Phillips RA, Matthiopoulos J (2009) Quantifying habitat use and
539	preferences of pelagic seabirds using individual movement data: a review. Mar Ecol
540	Prog Ser 391: 165-182.
541	Weimerskirch H, Capdeville D, Duhamel G (2000b) Factors affecting the
542	number and mortality of seabirds attending trawlers and long-liners in the Kerguelen
543	area. Polar Biol 23: 236-249
544	Weimerskirch H, Catard A, Prince PA, Cherel Y, Croxall JP (1999) Foraging
545	white-chinned petrels Procellaria aequinoctialis at risk: from the tropics to Antarctica.
546	Biol Conserv 87: 273-275
547	Weimerskirch H, Guionnet T (2002) Comparative activity pattern during

548 foraging of four albatross species. Ibis 144: 40-50

549	Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa DP (2000a) Fast and
550	fuel efficient? Optimal use of wind by flying albatrosses. Proc R Soc Lond B 267:
551	1869-1874
552	Weimerskirch H, Wilson RP, Lys P (1997) Activity pattern of foraging in the
553	wandering albatross: a marine predator with two modes of prey searching. Mar Ecol
554	Prog Ser 151: 245-254
555	

- 556 **Table 1**. Comparison of activity patterns (mean \pm SD) for the three white-chinned
- 557 petrels that divided their nonbreeding period (austral winter) between the Patagonian
- 558 Shelf and Humboldt Current. The remaining eight tracked birds stayed within the
- 559 Patagonian Shelf.

	Patagonian Shelf	Humboldt Current	Test statistic
% darkness wet	51.0 ± 11.2	50.7 ± 4.4	$t_2 = 0.04, P = 0.973$
% daylight wet	54.5 ± 13.4	58.1 ± 5.7	$t_2 = 0.54, P = 0.644$
% wet by darkness	43.0 ± 3.3	49.6 ± 3.8	$t_2 = 1.99, P = 0.185$
% dry by darkness	45.8 ± 4.9	58.4 ± 1.8	$t_2 = 4.27, P = 0.051$
Flight bout duration in darkness (mins.)	65.0 ± 3.4	66.1 ± 7.2	$t_2 = 0.63, P = 0.595$
Flight bout duration in daylight (mins.)	72.7 ± 4.7	80.0 ± 2.2	$t_2 = 3.66, P = 0.067$
Number flight bouts /h darkness	0.34 ± 0.05	0.39 ± 0.04	$t_2 = 1.04, P = 0.407$
Number flight bouts /h daylight	0.29 ± 0.07	0.27 ± 0.01	$t_2 = 0.50, P = 0.669$

- 561
 Table 2. Relationships between the illuminated fraction of the moon's visible disk and
- 562 white-chinned petrel activity patterns during the resident nonbreeding phase, pre-laying
- exodus and incubation stages. The significance of regressions are indicated by *** = 563
- *P*<0.001, *italics* = *P*>0.01. 564

	Resident (N=11, T=11)		Pre-laying exodus (N=10, T=10)		Incubation (N=6, T=20)	
	<i>t</i> -value	P-value	<i>t</i> -value	P-value	<i>t</i> -value	<i>P</i> -value
% darkness wet	-12.31	***	1.59	0.114	-0.09	0.927
% daylight wet	-0.60	0.550	6.74	***	2.38	0.019
% wet by darkness	-9.45	***	-4.22	***	-4.04	***
% dry by darkness	9.72	***	4.24	***	1.39	0.165
Flight bout duration in darkness (mins)	8.74	***	-0.31	0.758	-0.23	0.818
Flight bout duration in daylight (mins)	2.52	***	-6.08	***	-1.12	0.263
Number flight bouts /h darkness	9.64	***	1.99	0.048	0.71	0.480
Number flight bouts /h daylight	0.08	0.937	0.29	0.776	0.05	0.961

565 566 N = number of birds tracked T = number of trips

568	Table 3. Comparison of activity patterns of Procellariiformes by species and breeding
569	stage, as measured by: the percentage of time spent on the water during darkness or
570	daylight, and the percentage of total time on the water, or in flight per day (consecutive
571	light and dark period) that occurred in darkness. Values taken, or adapted from (1)
572	Mackley et al. 2010, (2) Catry et al. 2009, (3) Rayner et al. 2008 (LBI = Little Barrier
573	Island, CDF = Codfish Island), (4) Phalan et al. 2007, (5) Weimerskirch and Guionnet
574	2002, (6) Hedd et al. 2001, (7) González-Solís et al. 2002. All values are observed mean
575	\pm SD, with the exception of (7), which is the observed <i>median</i> . Values for white-
576	chinned petrels are in bold .

Species and stage	Number of birds tracked	% darkness on water	% daylight on water	% water by darkness	% flight by darkness
Migration (nonbreeding commuting)				
white-chinned petrel	, 11	30.5 ± 24.1	14.6 ± 10.4	48.4 ± 24.2	33.4 ± 12.4
wandering albatross ¹	15	58.6 ± 13.3	34.2 ± 12.6	54.5 ± 12.7	
light-mantled albatross ¹	2	44.1 ± 26.2	24.6 ± 2.6	64.3 ± 21.3	
black-browed albatross ¹	25	60.1 ± 7.8	17.9 ± 5.1	76.8 ± 6.1	
grey-headed albatross ¹	7	72.9 ± 10.3	11.3 ± 5.0	82.8 ± 10.6	
Nonbreeding: resident					
white-chinned petrel	11	61.8 ± 7.1	60.5 ± 4.2	50.5 ± 2.3	48.4 ± 5.6
wandering albatross ¹	18	77.5 ± 6.0	58.5 ± 9.4	54.1 ± 5.1	
light-mantled albatross ¹	11	59.1 ± 9.0	42.3 ± 8.6	59.4 ± 11.0	
black-browed albatross ¹	25	83.6 ± 5.6	50.8 ± 6.9	65.2 ± 3.5	
grey-headed albatross ¹	8	74.2 ± 5.7	32.7 ± 5.5	70.5 ± 4.0	
wedge-tailed shearwater ²	9	85.5 ± 3.9	56.5 ± 6.0		
Pre-laying exodus					
white-chinned petrel	10	42.6 ± 5.2	36.3 ± 9.4	40.7 ± 7.7	32.9 ± 5.3
wedge-tailed shearwater ²	1	31.2 ± 18.2	56.6 ± 1.4		
Incubation					
white-chinned petrel	6	36.2 ± 7.0	$\textbf{32.3} \pm \textbf{5.8}$	33.5 ± 6.6	26.7 ± 3.9
wandering albatross ⁴	14	80.2 ± 11.4	39.8 ± 11.1	57.2 ± 6.3	
shy albatross ⁶	4	79.8 ± 12.2	30.8 ± 11.1		
grey-headed albatross ⁴	19	78.0 ± 17.2	27.0 ± 12.0	50.3 ± 19.0	
giant petrel: pelagic trip ⁷	11	47	39		
giant petrel: coastal trip 7	4	3	18		
Chick-rearing					
white-chinned petrel	3	28.2 ± 5.7	$\textbf{20.8} \pm \textbf{5.2}$	36.7 ± 10.0	27.0 ± 5.9
wandering albatross ⁴	17	71.1 ± 18.6	32.5 ± 12.7	73.3 ± 7.8	
light-mantled albatross ⁴	3	57.5 ± 9.3	21.6 ± 6.5	55.9 ± 8.6	
black-browed albatross ⁴	12	70.0 ± 6.2	21.1 ± 7.5	68.4 ± 6.3	
black-browed albatross	6	67.7	23.9	70.0	22.3
grey-headed albatross ⁴	4	90.5 ± 4.0	14.3 ± 6.2	81.4 ± 7.0	
grey-headed albatross ⁵	4	61.9	15.1	74.8	21.9
Indian yellow-nosed albatross ³	4	83.3	30.0	58.6	9.8

Cook's petrel (LBI) ³	7	40.0 ± 14.4	23.7 ± 10.7
Cook's petrel (CDF) ³	10	20.0 ± 11.3	18.4 ± 8.7

- **Table 4.** Comparison of flight bout durations (means \pm SD) between white-chinned
- 580 petrels and Southern Ocean albatrosses during the nonbreeding period. Values for
- 581 white-chinned petrels are in **bold**; the albatross data are taken from Mackley et al. 2010.

Species and stage	Number of birds tracked	Flight bout duration darkness (mins)	Flight bout duration daylight (mins)	
Migration (nonbreeding comm	uting)			
white-chinned petrel	11	113.6 ± 66.5	107.4 ± 37.6	
wandering albatross	15	120.6 ± 18.5	114.4 ± 18.4	
light-mantled albatross	2	89.6 ± 4.5	73.6 ± 4.5	
black-browed albatross	25	109.8 ± 20.6	100.9 ± 12.3	
grey-headed albatross	7	86.2 ± 13.9	97.7 ± 10.2	
Nonbreeding: resident				
white-chinned petrel	11	62.5 ± 7.0	66.8 ± 9.2	
wandering albatross	18	87.6 ± 10.7	84.3 ± 11.0	
light-mantled albatross	11	74.6 ± 5.2	76.1 ± 6.4	
black-browed albatross	25	78.6 ± 8.7	63.7 ± 6.5	
grey-headed albatross	8	72.4 ± 13.2	70.2 ± 7.6	

- 598 Fig. 2 The illuminated proportions of the moon experienced by individual white-
- 599 chinned petrels during migration, resident, pre-laying exodus (PLE), incubation and
- 600 chick-rearing (Chr) stages. Each datapoint represents a different day.

