Hydrological Summary for the United Kingdom

General

February was initially mild but northerly and easterly airflows brought Arctic conditions with significant snowfall to many areas over the final fortnight. Nonetheless, monthly precipitation totals were modest over much of southern Britain where many catchments registered a $4^{4 \text { th }}$ successive relatively dry month. For England and Wales, the provisional Nov-Feb rainfall total is the $4^{\text {th }}$ lowest since 1934 and rainfall deficiencies in parts of the English Lowlands are now exceptional. The winter drought has impacted on reservoir replenishment but substantial pumped storage contributions helped ensure that overall stocks for E\&W are only marginally below the early March average (and similar to corresponding stocks in 2003 and 2004). However, stocks are well below the seasonal average in many southern impoundments (Ardingly reported its lowest early March level in a 18 -yr series). River flows are also seasonally depressed over wide areas and baseflows show little evidence of a normal winter recovery. Correspondingly, groundwater levels in most aquifers units are low for the late winter - but mostly a little above recent drought minima (e.g. of those of 1991 and 1997). Well above average spring rainfall is needed to avoid significant stress on water resources and the aquatic environment during the summer; the outlook is particularly fragile in parts of the South.

Rainfall

High pressure dominated synoptic patterns in February with Atlantic frontal systems making only rare incursions to the south of the Highland region. A few substantial storm totals were reported (e.g. Capel Curig in N. Wales registered 55 mm on the $12^{\text {th }}$) and blizzard conditions were associated with significant snowfall, particularly near the eastern seaboard. In many areas however, February rainfall totals were meagre - less than 30% of average in a band from Cornwall to Sussex. Of greater hydrological and water resources significance are the cumulative deficiencies since mid-October 2004. Whilst Nov-Feb rainfall totals are well above average in the Highland region (adding to a cluster in this timeframe over the last 15 years), most regions of E\&W have been exceptionally dry. Southern region reported only a little above half the 61-90 average rainfall with much of English Lowlands registering less than 60%; the South-West has been very dry also. Provisional data suggest that for much of the English Lowlands, rainfall totals for the last four months rank $3^{\text {rd }}$ or $4^{\text {th }}$ lowest in the last 60 years. Reservoir and aquifer replenishment depends heavily on Oct-March rainfall but winter droughts seldom have a high public profile; the generally damp complexion to the weather (dry days have been close to average through the winter) has not been helpful in raising awareness of the drought's severity, in southern England especially.

River flows

A few high spates were reported in February (e.g. around the $12^{\text {th }}$ on the Welsh Dee and the Ribble) but although catchments remained close to saturation and responsive to rainfall, flows remained mostly in recession. In springfed southern rivers there is as yet little sign of a belated winter recovery. February runoff totals exceeded the average in a few Highland rivers and in some small catchments draining to the North Sea. Elsewhere, runoff totals were well below average - mostly still within the normal range across much of northern Britain, but depressed in much of southern England, particularly so in impermeable catchments. The Thames reported its $3^{\text {rd }}$ lowest February runoff since 1944 and many rivers registered their lowest mean flow since 1992. The most intense expression of the drought is found in a number of
rivers draining to the English Channel. The Sussex Ouse reported a new Feb runoff minimum and the Otter (Devon) and Wallington (Hants) registered their lowest since 1965. In some rivers (e.g. the Gt Stour) above average daily flows have been recorded for less than 10 days since October. Correspondingly, accumulated runoff deficiencies are large: $65-70 \%$ below average for some index rivers in Sussex and Hants over the Nov-Feb period; in Northern Ireland, runoff for Annacloy ranks $2^{\text {nd }}$ lowest in a $25-\mathrm{yr}$ record. Many spring-fed streams (e.g. the Lambourn) are flowing at rates typical of the late summer, heralding very depressed autumn flows in the absence of a very wet spring.

Groundwater

Very uneven precipitation patterns in February made for large variations in infiltration rates. Snow contributed significantly to above average groundwater replenishment in some eastern areas - triggering groundwater level increases in some minor aquifers (e.g. the Norfolk Drift). Generally however infiltration was very moderate, below 40% of average across much of the Chalk and very meagre in the most southerly outcrops. The recharge season began very early in the autumn of 2004 but subsequent aquifer replenishment has been modest, less than 50% in most of the Chalk. Fortunately, some residual benefit from pre-2004 recharge can still be identified in all but the fastest responding aquifer units. Thus groundwater levels in the Chalk, though mostly low, remain in the normal range apart from the most southerly outcrops. This is also generally true of the Limestone aquifers though most feature steep recent recessions. Most Permo-Triassic sandstones outcrops are outside the areas of highest winter rainfall deficiencies and also benefit from recharge over several winters - thus, again, levels remain largely in the normal range but declining. Modest but increasing soil moisture deficits in eastern and southern England may signal a very early termination to the recharge season in the absence of sustained spring rainfall. Such a circumstance would imply depressed groundwater levels in the summer and be of particular concern in the South (where a combination of fast responding aquifers and streams makes for enhanced drought vulnerability).

Rainfall accumulations and return period estimates

Area	Rainfall	Feb 2005	$\text { Dec } 0$	$\underset{R P}{-\mathrm{Feb} 05}$	Nov	$\begin{gathered} \text { 4-Feb } 05 \\ R P \end{gathered}$	$\text { Sep } 04$	$\begin{gathered} \text { Feb } 05 \\ R P \end{gathered}$	Mar	$\begin{array}{r} \text { Feb } 05 \\ R P \end{array}$
England \& Wales	mm	$\begin{aligned} & 44 \\ & 68 \end{aligned}$	$\begin{array}{r} 179 \\ 71 \end{array}$	5-10	$\begin{array}{r} 229 \\ 67 \end{array}$	10-20	$\begin{array}{r} 434 \\ 85 \end{array}$	2-5	$\begin{aligned} & 913 \\ & 100 \end{aligned}$	<2
NorthWest	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 66 \\ & 83 \end{aligned}$	$\begin{array}{r} 318 \\ 98 \end{array}$	2-5	$\begin{array}{r} 394 \\ 88 \end{array}$	2-5	$\begin{aligned} & 696 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 1284 \\ 105 \end{array}$	2-5
Northumbrian	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 58 \\ & 98 \end{aligned}$	$\begin{array}{r} 208 \\ 92 \end{array}$	2-5	$\begin{array}{r} 240 \\ 77 \end{array}$	5-10	$\begin{array}{r} 437 \\ 94 \end{array}$	2-5	$\begin{aligned} & 957 \\ & 110 \end{aligned}$	2-5
Severn Trent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 46 \\ & 84 \end{aligned}$	$\begin{array}{r} 121 \\ 59 \end{array}$	10-20	$\begin{array}{r} 166 \\ 60 \end{array}$	20-30	$\begin{array}{r} 345 \\ 85 \end{array}$	2-5	$\begin{aligned} & 783 \\ & 102 \end{aligned}$	2-5
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 58 \\ 100 \end{array}$	$\begin{array}{r} 157 \\ 71 \end{array}$	$5-10$	$\begin{array}{r} 194 \\ 64 \end{array}$	10-20	$\begin{array}{r} 360 \\ 81 \end{array}$	$5-10$	$\begin{aligned} & 859 \\ & 103 \end{aligned}$	2-5
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 40 \\ 106 \end{array}$	$\begin{aligned} & 93 \\ & 64 \end{aligned}$	5-15	$\begin{array}{r} 136 \\ 67 \end{array}$	10-20	$\begin{array}{r} 261 \\ 86 \end{array}$	2-5	$\begin{aligned} & 643 \\ & 107 \end{aligned}$	2-5
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 24 \\ & 52 \end{aligned}$	$\begin{array}{r} 101 \\ 55 \end{array}$	10-20	$\begin{array}{r} 143 \\ 57 \end{array}$	20-30	$\begin{array}{r} 293 \\ 78 \end{array}$	$5-10$	$\begin{array}{r} 656 \\ 94 \end{array}$	2-5
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 25 \\ & 45 \end{aligned}$	$\begin{array}{r} 128 \\ 59 \end{array}$	10-20	$\begin{array}{r} 163 \\ 54 \end{array}$	30-40	$\begin{array}{r} 325 \\ 72 \end{array}$	5-15	$\begin{array}{r} 687 \\ 88 \end{array}$	2-5
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 25 \\ & 38 \end{aligned}$	$\begin{array}{r} 145 \\ 58 \end{array}$	10-20	$\begin{array}{r} 184 \\ 55 \end{array}$	25-40	$\begin{array}{r} 389 \\ 79 \end{array}$	5-10	$\begin{array}{r} 762 \\ 89 \end{array}$	2-5
SouthWest	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 46 \\ & 45 \end{aligned}$	$\begin{array}{r} 247 \\ 64 \end{array}$	5-15	$\begin{array}{r} 306 \\ 60 \end{array}$	20-30	$\begin{array}{r} 575 \\ 80 \end{array}$	$5-10$	$\begin{array}{r} 1073 \\ 90 \end{array}$	2-5
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 78 \\ & 77 \end{aligned}$	$\begin{array}{r} 328 \\ 82 \end{array}$	2-5	$\begin{array}{r} 422 \\ 77 \end{array}$	$5-10$	$\begin{aligned} & 809 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 1341 \\ 100 \end{array}$	<2
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 109 \\ & 103 \end{aligned}$	$\begin{aligned} & 551 \\ & 132 \end{aligned}$	10-20	$\begin{aligned} & 670 \\ & 117 \end{aligned}$	5-10	$\begin{array}{r} 1049 \\ 120 \end{array}$	5-15	$\begin{array}{r} 1726 \\ 117 \end{array}$	10-20
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 147 \\ & 116 \end{aligned}$	$\begin{aligned} & 803 \\ & 160 \end{aligned}$	10-20	$\begin{aligned} & 984 \\ & 141 \end{aligned}$	10-20	$\begin{array}{r} 1439 \\ 136 \end{array}$	30-40	$\begin{array}{r} 2171 \\ 125 \end{array}$	30-40
North East	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 90 \\ 130 \end{array}$	$\begin{aligned} & 306 \\ & 113 \end{aligned}$	2-5	$\begin{aligned} & 379 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 628 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 1195 \\ 116 \end{array}$	$5-15$
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 98 \\ & 99 \end{aligned}$	$\begin{array}{r} 434 \\ 115 \end{array}$	2-5	$\begin{array}{r} 502 \\ 99 \end{array}$	2-5	$\begin{aligned} & 851 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 1535 \\ 119 \end{array}$	10-20
Forth	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 83 \\ 101 \end{array}$	$\begin{aligned} & 378 \\ & 120 \end{aligned}$	$5-10$	$\begin{aligned} & 435 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 742 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 1344 \\ 117 \end{array}$	5-15
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 66 \\ & 94 \end{aligned}$	$\begin{array}{r} 259 \\ 97 \end{array}$	2-5	$\begin{array}{r} 299 \\ 82 \end{array}$	2-5	$\begin{aligned} & 563 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 1136 \\ 113 \end{array}$	5-10
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 82 \\ & 81 \end{aligned}$	$\begin{aligned} & 438 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 523 \\ 95 \end{array}$	2-5	$\begin{aligned} & 889 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1567 \\ 109 \end{array}$	2-5
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 105 \\ 85 \end{array}$	$\begin{aligned} & 619 \\ & 124 \end{aligned}$	$5-10$	$\begin{aligned} & 750 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 1208 \\ 114 \end{array}$	2-5	$\begin{array}{r} 2003 \\ 114 \end{array}$	5-15
Northern Ireland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 57 \\ & 70 \end{aligned}$	$\begin{array}{r} 273 \\ 89 \end{array}$	2-5	$\begin{array}{r} 333 \\ 80 \end{array}$	2-5	$\begin{array}{r} 571 \\ 91 \end{array}$	2-5	$\begin{array}{r} 1071 \\ 98 \end{array}$	2-5

[^0]
Rainfall . . . Rainfall . .

Key

Sery wet

February 2005
November 2004 - February 2005

Rainfall accumulation maps

The provisional UK rainfall total for February - the second lowest since 1993 - was unexceptional but the dryness of the preceding three months meant that deficiencies over the Nov-Feb period are very substantial. For the Severn-Trent region the 4-month rainfall was the lowest since 1963 and, to the south, comparable recent deficiencies are restricted to 1991/92 1988/89 and 1975/76; the latter two heralding severe summer drought conditions.

River flows - February 2005

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to March 2004 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas. The 'national' hydrographs are based on representative networks of gauging stations commanding relatively large catchments.

River flow . . . River flow

Notable runoff accumulations
(a) November 2004 - February 2005,

River	\%lta	Rank
Dart	66	$5 / 47$
Tone	63	$5 / 44$
Severn	65	$8 / 84$
Teme	61	$5 / 35$
Cynon	62	$4 / 47$
Lagan	73	$4 / 32$
Annacloy	65	$2 / 25$

River	\%lta	Rank
Whiteadder	64	$7 / 36$
Torne	57	$5 / 33$
Soar	47	$5 / 34$
Mole	42	$2 / 30$
Gt Stour	53	$4 / 40$
Ouse (Gold Bridge)	34	$2 / 42$
Wallington	39	$4 / 52$
Avon (Amesbury)	52	$5 / 40$

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater Ievels February / March 2005

Borehole

 Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Little Bucket Farm 63.86 28/02 70.65 West WoodyatesLevel Date Feb. av.
$16.66 \quad 10 / 02 \quad 18.72$ $45.61 \quad 04 / 03 \quad 44.40$ 68.87 28/02 75.96
$25.46 \quad 15 / 02 \quad 25.51$
$135.21 \quad 28 / 02 \quad 138.32$ 70.65 93.30

Borehole
Chilgrove House Killyglen New Red Lion Ampney Crucis Newbridge
Skirwith
Yew Tree Farm

Level	Date	Feb. av.	Borehole	Level	Date	Feb. av.	
46.67	$28 / 02$	57.65		Llanfair DC	80.27	$15 / 01$	80.06
114.70	$28 / 02$	115.75		Morris Dancers	31.84	$25 / 02$	32.37
14.87	$02 / 03$	16.41		Heathlanes	61.71	$09 / 02$	62.05
101.12	$28 / 02$	102.24		Nuttalls Farm	129.28	$09 / 02$	129.48
10.71	$01 / 03$	10.99		Bussels No.7a	23.76	$22 / 02$	24.32
131.02	$18 / 02$	130.60		Alstonfield	197.55	$15 / 02$	199.08
14.27	$06 / 10$	13.75		Levels in metres above Ordnance Datum			

Groundwater. . . Groundwater

Groundwater levels - February 2005

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are now received quarterly

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{gathered} 2004 \\ \text { Nov } \end{gathered}$	Dec	$\begin{gathered} 2005 \\ \text { Jan } \end{gathered}$	Feb	Mar	Avg. Mar	Min. Mar	Year* of min.
NorthWest	N Command Zone	- 124929	91	85	91	100	91	93	78	1996
	Vyrnwy	55146	94	85	100	99	97	94	59	1996
Northumbrian	Teesdale	- 87936	98	94	90	93	89	90	72	1996
	Kielder	(199175)	(96)	(86)	(98)	(91)	(90)	(93)	(81)	1993
Severn Trent	Clywedog	44922	82	78	83	79	89	90	77	1996
	DerwentValley	- 39525	95	100	100	99	95	94	46	1996
Yorkshire	Washburn	- 22035	89	89	90	86	83	92	53	1996
	Bradford supply	- 41407	100	98	99	99	94	94	53	1996
Anglian	Grafham	(55490)	(78)	(86)	(92)	(92)	(94)	(87)	(72)	1997
	Rutland	(116580)	(78)	(86)	(93)	(95)	(94)	(88)	(7)	1992
Thames	London	- 202340	81	83	87	91	95	91	83	1988
	Farmoor	- 13830	96	92	98	99	98	93	64	1991
Southern	Bewl	28170	68	63	60	70	75	87	50	1989
	Ardingly	4685	60	60	69	79	83	99	83	2005
Wessex	Clatworthy	5364	65	89	100	100	100	97	82	1992
	BristolWW	- (38666)	(56)	(58)	(64)	(77)	(83)	(92)	(65)	1992
South West	Colliford	28540	60	62	66	70	71	86	57	1997
	Roadford	34500	57	58	69	71	73	84	35	1996
	Wimbleball	21320	73	76	79	86	90	94	72	1996
	Stithians	5205	60	61	60	68	75	93	45	1992
Welsh	Celyn and Brenig	-131155	97	95	97	97	98	97	69	1996
	Brianne	62140	99	93	98	94	96	98	92	2004
	Big Five	- 69762	87	92	97	98	96	95	85	1988
	Elan Valley	- 99106	100	99	100	99	98	98	88	1993
Scotland(E)	Edinburgh/Mid Lothian	- 97639	87	88	87	98	99	94	73	1999
	East Lothian	- 10206	100	100	100	100	100	99	91	1990
Scotland(W)	Loch Katrine	- 111363	97	94	100	89	86	96	86	2005
	Daer	22412	100	100	100	100	97	99	94	2004
	Loch Thom	- 11840	100	100	100	100	100	99	90	2004
Northern	Total ${ }^{+}$	- 67270	85	88	88	86	83	89	81	2004
Ireland	Silent Valley	- 20634	73	72	69	78	73	82	57	2002

() figures in parentheses relate to gross storage - denotes reservoir groups +excludes Lough Neagh *last occurrence - see footnote

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national ans regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded
as a guide only.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX13PB
Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries

National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB

Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk
Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright.
Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

NATURAL
ENVIRONMENT

[^0]: \% = percentage of 1961-90 average

