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Abstract 11 

The Rosemarkie Inlier is a small fault-bounded lens of interleaved Moine psammites and 12 

possible Lewisianoid orthogneisses with distinctive leucogranite veins and pods that lies 13 

adjacent to the Great Glen Fault (GGF). The basement rocks and most of the 14 

leucogranites are strongly deformed and tightly folded with foliations generally steeply 15 

dipping and a locally well-developed NE-plunging rodding lineation. Mid-Devonian 16 

sandstone and conglomerate unconformably overlie the inlier on its western side. 17 

Monazite from a deformed leucogranite vein gave a mean ID-TIMS 207Pb/235U age of 18 

397.6 ± 2.2 Ma and acicular zircons gave a compatible concordant ID-TIMS U-Pb age of 19 

400.8 ± 2.6 Ma, dating emplacement as mid-Devonian. Xenocrystic zircons from the 20 

leucogranites and complex zoned zircons from two adjacent tonalitic gneisses gave LA-21 

MC-ICP-MS concordant ages between 2720 and 2930 Ma confirming their Archaean 22 

Lewisianoid origin. Leucogranite emplacement is interpreted to mark the onset of 23 

Acadian transpression and sinistral strike-slip movement on the GGF that resulted in 24 

multi-phase deformation and oblique exhumation of the Rosemarkie Inlier. The sequence 25 

and structure of the Early Devonian Meall Fuar-mhonaidh Outlier, 32 km farther SW 26 

along the GGF, are also linked to this tectonic event, which was apparently localised 27 

along the main terrane-bounding faults in Scotland.  28 

 29 

End of Abstract 30 

 31 



 The Great Glen Fault (GGF) is a major geological and topographical feature that 32 

transects the Highlands of Scotland, separating the Grampian Highlands to the southeast 33 

from the Northern Highlands to the northwest. The fault passes offshore into the Moray 34 

Firth (Fig. 1), where it forms a major sub-vertical structure (Andrews et al. 1990). The 35 

fault can be traced for a further 23 kilometres northeast into the West Moray Firth Basin 36 

into deformed Mesozoic strata (Bird et al. 1987; Underhill 1991). The full role of the 37 

GGF in the geological history and tectonic development of the Scottish Highlands 38 

remains unclear, but it appears to have acted as a Neoproterozoic basin-bounding fault 39 

(Banks & Winchester 2004) and has undoubtedly been the focus of significant sinistral 40 

movements during the Palaeozoic (Johnstone & Mykura, 1989; Stewart et al. 1999). 41 

Minor sinistral, dextral and vertical movements followed in Mesozoic and Cenozoic 42 

times (Rogers et al. 1989; Andrews et al. 1990; Underhill & Brodie, 1993; Roberts & 43 

Holdsworth, 1999).  Exposure along the Great Glen is generally poor, but farther SW, 44 

mylonites and blastomylonites attest to ductile shearing at mid-crustal levels (9-16 km) 45 

with later cataclasite, phyllonite and breccia development reflecting shallower level 46 

brittle movements (Stewart et al. 1999).  47 

 48 

 The Rosemarkie and Cromarty inliers crop out adjacent to the GGF surrounded by 49 

Devonian rocks (Fig. 1). The Rosemarkie Inlier, some 2 km wide and 9 km long, lies on 50 

the Black Isle adjacent to the GGF whose trace runs up to 500 m offshore (Fig. 2). It 51 

exposes deformed amphibolite-facies psammites, subsidiary semipelites, amphibolitic 52 

mafic bodies and laminated felsic and mafic gneisses, all cut by abundant, typically 53 

salmon pink, leucogranite veins and sheets (Rathbone & Harris 1980; Fletcher et al. 54 

1996). Exposure is effectively limited to coastal outcrops (Fig. 3a), with a few weathered 55 

inland outcrops. To the SW and NE the inlier is fault-bounded, but on its NW side mid-56 

Devonian sandstones and conglomerates unconformably onlap the inlier. Palynological 57 

data from this Orcadian sequence show that its basal beds were deposited in the late 58 

Eifelian at c. 393 Ma (Marshall et al. 2007). The main psammitic and gneissose 59 

lithologies are similar to those of the Neoproterozoic Moine succession and Archaean 60 

Lewisianoid inliers of the Northern Highlands respectively, but they differ considerably 61 



from the nearest Moine rocks, Loch Eil Group psammites that crop out some 20 km to 62 

the NW. 63 

 The rocks of the inlier are widely altered, fractured and crushed with breccia and 64 

gouge developed. The exception to this is a section below Learnie Farm between [NH 65 

760 712] and [NH 767 620] where brittle deformation was limited and earlier ductile 66 

deformation structures are seen clearly. Here, Rathbone & Harris (1980) recognised four 67 

discrete phases of ductile deformation with the leucogranites deformed by the latter three 68 

phases. The majority of the leucogranite veins show clear evidence of intrusion at an 69 

early stage of the main deformation (D2) (Rathbone & Harris 1980). The deformation 70 

phases in the inlier have been correlated with those of the Moine rocks and hence the 71 

leucogranites were thought to be of Ordovician age or older (Rathbone 1980).  72 

 The inlier was exhumed after emplacement of the leucogranite veins but prior to 73 

deposition of the adjacent late Eifelian to Givetian sequence. To provide a lower age 74 

constraint on deformation and exhumation, samples of leucogranites were collected for 75 

U-Pb isotopic dating. Samples of the adjacent gneisses were also taken to ascertain their 76 

relationship with the Lewisianoid gneisses that underlie the Moine Supergroup of the 77 

Northern Highlands. Stratigraphical units and related ages quoted in this paper are based 78 

on the current International Commission on Stratigraphy chart that largely follows 79 

Gradstein et al. (2004). 80 

 81 

Tectonic Setting 82 

 Studies of the later stages of the Caledonian Orogeny in the Northern Highlands have 83 

focused on the formation of the Moine Thrust Zone at its western margin, and on the 84 

uplift and intrusion history of its interior and its southeast side. The Moine Thrust Zone 85 

was active mainly during the Scandian event between c. 437 Ma and c. 430 Ma (Johnson 86 

et al. 1985; Dallmeyer et al. 2001; Goodenough et al. 2006) with later extensional 87 

movements continuing spasmodically to 408 Ma (Freeman et al. 1998). Dewey & 88 

Strachan (2003) argued that Scandian deformation is absent from the Grampian 89 

Highlands to the SE of the GGF, and hence postulated that at least 700 km of sinistral 90 

movement took place along the GGF between 425 Ma and 395 Ma. The waning phases 91 

of the Caledonian Orogeny in the Northern Highlands were marked by intrusion of 92 



granitoid plutons coeval with regional uplift and significant lateral movements on the 93 

main NE-trending faults (Watson 1984). Documented examples include the Clunes 94 

Tonalite (428 ± 2 Ma; Stewart et al. 2001) and the Strontian Pluton (425 ± 3 Ma; Rogers 95 

& Dunning, 1991), both linked to movements on the GGF (Hutton 1988), and the 96 

Ratagain Pluton (425 ± 3 Ma; Rogers & Dunning 1991), linked to movements on the 97 

Strathconon Fault (Hutton & McErlean 1991). 98 

 99 

 The main development of the Acadian Orogeny lies in eastern North America where 100 

Avalonia collided with Laurentia; the resultant deformation, metamorphism and related 101 

igneous intrusion events lasted from 420 – 395 Ma (Van Staal et al. 1998; Van Staal & 102 

Whalen 2006; Zagorevski et al. 2007). In the British Isles the Acadian event resulted 103 

from early collision of an Armorican microcontinent with the Avalonian part of 104 

Laurussia at the northwest margin of the Rheic Ocean. The collision caused the Midland 105 

platform (microcraton) to indent the Welsh Basin and Late Palaeozoic basins of central 106 

and northern England (Woodcock et al. 2007). Acadian deformation and related 107 

metamorphism occurred in the Lake District, Wales, and southern Britain between 400 108 

and 390 Ma (Soper & Woodcock 2003; Sherlock et al. 2003). Acadian volcanic rocks 109 

seem to be absent from the British Isles and ‘Acadian’ granites are restricted to the 110 

Southern Uplands and the Lake District. The nature of the Acadian event in Scotland is 111 

equivocal, although structures in the Midland Valley, e.g. the Strathmore Syncline, have 112 

been attributed to mid-Devonian (c. 400 Ma) sinistral transpression (Soper et al. 1992; 113 

Jones et al. 1997). 114 

 115 

 In Baltica the Acadian event is absent and there is only evidence of an extended 116 

history of Devonian uplift and exhumation of the Western Gneiss region of Norway 117 

(Krabbendam & Dewey, 1998; Johnston et al. 2007; Walsh et al. 2007) and formation of 118 

large sinistral transtensional basins (Osmundsen & Andersen, 2001; Eide et al. 2005). 119 

Uplift and extension here lasted from at least 410 Ma through to 370 Ma.  120 

 121 

The lithology and structure of the Rosemarkie Inlier 122 



 Hugh Miller (in 1885) and John Horne (in 1890) mapped the Rosemarkie Inlier 123 

during the primary geological survey and brief descriptions of the lithologies and 124 

petrography are given in the Geological Survey of Scotland Memoir for the area (Horne, 125 

1923). Horne noted the distinctive character of the rocks and the abundance of alkali-126 

felspar-rich granitic material. He commented on their similarities to the Moine 127 

psammites, but also speculated that the hornblendic felsic gneisses may equate to the 128 

‘Lewisian floor’ to the Moine succession (i.e. the Lewisianoid gneisses). He even 129 

suggested (p. 58) that the rocks may be a ‘distinct group of Moine rocks brought up by 130 

the Great Glen Fault’. Subsequently, P. A. Rathbone carried out detailed work on the 131 

inlier as part of his Ph.D. (Rathbone 1980; Rathbone & Harris 1980) and A. J. Highton 132 

remapped the southern part of the Rosemarkie Inlier and questioned the nature of the 133 

protolith of the felsic and mafic gneisses (Fletcher et al. 1996). Much of the structural 134 

data used here has been abstracted from Rathbone (1980). 135 

 136 

Lithology 137 

 The Rosemarkie Inlier consists of grey, flaggy, typically thinly banded siliceous to 138 

micaceous psammites with subsidiary semipelites and pelites. Thin quartzofeldspathic 139 

lenticles impart a weakly gneissose appearance to the rocks. The psammites are 140 

interleaved with laminated to thinly banded felsic and mafic gneisses on scales varying 141 

from a few centimetres to ten of metres. The felsic gneisses consist essentially of quartz-142 

plagioclase-biotite with variable hornblende content and are interlaminated with abundant 143 

amphibolitic mafic gneisses. Thicker amphibolitic mafic units and hornblendic ultramafic 144 

lenses, locally with agmatitic net-veins, also occur within these gneisses, features 145 

characteristic of the basement Lewisianoid inliers within the Moine succession. No 146 

obvious shear zones or dislocations can be identified at psammite-gneiss contacts and in 147 

places the distinction is quite cryptic. Discrete mafic amphibolite sheets and lenses are 148 

also common in the psammites, semipelites and the gneisses. These lithologies all contain 149 

a strong layer parallel fabric that is folded by F2, F3 and F4 folds. The rocks show 150 

evidence of pervasive recrystallisation with quartz, feldspar, hornblende, biotite and 151 

muscovite defining a composite S1-S2 fabric. The metamorphic assemblages are 152 

characteristic of lower amphibolite facies metamorphism although index minerals are 153 



largely absent and retrogression effects are widespread. Elongate garnet porphyroblasts 154 

are developed in the pelitic units and deformed by the D2 crenulation fabric, whereas the 155 

abundant small muscovite and shimmer aggregate porphyroblasts overprint the main S2 156 

foliation (Fletcher et al.1996). 157 

 158 

 Pink to red, foliated and lineated leucogranite sheets, lenses and veins are diagnostic 159 

of the Rosemarkie Inlier. The intrusions are typically 0.3 to 1 m wide but range from a 160 

millimetre up to 5 m in thickness. They are generally parallel sided and show sharp 161 

planar contacts with the country rocks (Fig. 3a), but some very thin veins do show 162 

diffuse margins. Although strongly deformed, the leucogranite veins are clearly 163 

discordant to the host banding in numerous instances (Rathbone & Harris, 1980). 164 

Typically, the angle of discordance is <5° but locally high angles are seen. The granite is 165 

variable from fine-grained to coarse-grained and partly pegmatitic; in parts it contains 166 

pink potash feldspars, typically augened. Its mineralogy is essentially quartz, potash 167 

feldspar and plagioclase, with minor muscovite and biotite and accessory zircon, 168 

magnetite or ilmenite, and rare apatite, monazite and titanite.  Secondary chlorite (after 169 

biotite), zoisite, carbonate and rarely sodic amphibole are developed (Fletcher et al. 170 

1996). In some areas white muscovite-bearing leucogranite sheets and veins intrude the 171 

Moine psammites and semipelites; they show similar features to the pink veins. Although 172 

many of the leucogranite veins show evidence of strong deformation, others show 173 

deformation features, lower strains and mineralogies indicative of lower temperature and 174 

brittle shearing, suggesting they were emplaced at higher crustal levels.  175 

 176 

Structure 177 

 Rathbone & Harris (1980) recognised four deformation phases in the Rosemarkie 178 

Inlier. The planar fabrics parallel to the compositional banding and fine-scale 179 

interleaving of Moine psammites and Lewisianoid gneisses were attributed to the D1 180 

event. Tight to isoclinal minor folds are moderately abundant and are attributed to D2. A 181 

related planar schistosity (S2) and associated lineation (L2) are pervasively developed. F3 182 

open to tight folds demonstrably refold the F2 folds and S2 fabrics and are abundant on a 183 

small- and medium-scale. Their axes normally plunge moderately to the NE and verge 184 



towards the SE. However, Rathbone & Harris (1980) noted that F3 fold hinges are 185 

commonly curvilinear through up to 120°. Their axial planes are typically upright with an 186 

S3 schistosity widely developed. D4 folds control much of the variation in strike and dip. 187 

They also plunge towards the northeast but their vergence is towards the northwest. Their 188 

axial planes are generally upright, and only rarely is an associated cleavage developed. 189 

F4-F3 and F3-F2 fold interference patterns are seen in the psammite-semipelite lithologies 190 

and in the felsic and mafic gneisses. At [NH 765 615] interleaved Moine and 191 

Lewisianoid rocks are folded by a very tight metre-scale fold (F2) that is in turn refolded 192 

by a D3 synform. The leucogranite veins contain a strong L-S fabric defined by strongly 193 

attenuated quartz and feldspar with minor thin stringers of biotite and sparse muscovite 194 

development. The lineation and foliation is contiguous with L2 and S2 in the adjacent 195 

Moine and Lewisianoid rocks where it is defined by quartz, feldspar and in the mafic 196 

rocks, hornblende alignment. L2 in the leucogranite is a millimetre-scale rodding of 197 

quartz and pink feldspar; it locally dominates to give an L-tectonite. In places there are 198 

spectacular F2-F3 interference folds involving the leucogranite veins (Fig. 3b).  Rathbone 199 

& Harris (1980, Figure 4) documented examples of fold interference patterns involving 200 

the leucogranite veins and also showed that the prominent quartz lineation (L2) was 201 

locally modified by later D3 structures. 202 

 Fenitization, carbonate veining, brecciation and minor faulting dominate the southern 203 

exposures in the Rosemarkie Inlier, but on the coastal section below Learnie Farm later 204 

brittle deformation effects are minimal. Here, the banding/foliation strikes mainly 205 

between northeast and north, dips range from vertical to moderately eastwards, and L2 206 

plunges northeast at moderate angles (37° to 050°) (Fig. 4). L2 is co-linear with the 207 

majority of the F2 and F3 axes, as indicated by the distribution of poles to 208 

foliation/bedding.  209 

 210 

Leucogranite Textures 211 

 In thin section the foliated and lineated leucogranites from Learnie Shore are 212 

dominated by quartz and feldspar ‘ribbons’, the latter being lenticular, typically 213 

measuring 8 to 12 mm long and 0.3 mm to 1 mm wide in the S-L plane.  The potash and 214 

plagioclase feldspars are disaggregated and fragmented with some sericitisation and new 215 



quartz growth. In the quartz ribbons grain-size reduction has occurred giving rise to 216 

recrystallized aggregates 0.03 mm to 0.6 mm across, that exhibit tessellate grain 217 

boundaries, strain shadows, fine inclusion trails and extensive sub-grain development. 218 

Small ragged’ biotites, in part altered to chlorite, in parts form discontinuous trails 219 

marginal to the feldspar laminae. Ilmenite or magnetite form irregular altered aggregates 220 

and may have released iron to give the prominent pink to red feldspar colouring. The 221 

‘ribbons’ have formed in response to the strong deformation with the elongate feldspars 222 

now effectively being porphyroclasts. Thin sections normal to the lineation show potash 223 

feldspar and plagioclase porphyroclasts commonly 3 to 4 mm across. They show strain 224 

twinning, embayed margins and locally marginal myrmekite development. The typical 225 

porphyroclast size and dimensions of the ribbons suggest that the leucogranite was 226 

originally a medium- or even coarse-grained granite. The petrographic features in the 227 

leucogranites are compatible with strong deformation under lower amphibolite-facies 228 

conditions. As the lineation clearly defines the stretching direction (Ls), Rathbone (1980) 229 

measured the shapes of the quartz aggregates in the deformed leucogranite using them to 230 

define the principal planes of the strain ellipsoid. Taking the quartz as initially equant, a 231 

common circumstance in granites, he obtained X:Y:Z values of 18:2.5:1. This strain is 232 

prolate with a k value of 2.88 (Flinn 1962). 233 

 234 

 In parts the leucogranite shows an augen texture with potash feldspars up to 1 cm 235 

across. Some appear to reflect relic feldspar crystals but other have grown during 236 

deformation and recrystallization. Although some augen show δ and σ tails that imply a 237 

shear sense, many have a neutral geometry. M Stewart (pers. com. 2004) noted that the 238 

shear sense was generally consistent within individual intrusions and in the pink 239 

leucogranite sheets was generally sinistral. In contrast the white muscovite-bearing sheets 240 

generally had internal and marginal fabrics implying a dextral shear sense. Stewart also 241 

recorded that there was evidence of later more brittle dextral shearing, generally focused 242 

at the margins of the leucogranite veins and in the more pelitic units. This deformation 243 

was accompanied by extensive chlorite growth. 244 

 245 

Cromarty Inlier 246 



 The Cromarty Inlier, measuring c. 9 km x 2.7 km, lies immediately northeast of the 247 

Rosemarkie Inlier, nestling against the GGF (Fig. 1), and is similarly onlapped by the 248 

late Eifelian sandstones and conglomerates. The inlier exposes variably siliceous to 249 

micaceous psammites with subsidiary semipelites, cut by garnet amphibolite bodies: the 250 

metasedimentary lithologies have been assigned to the Moine Supergroup (Rathbone & 251 

Harris 1980). The pelitic units are garnetiferous and contain quartzofeldspathic 252 

segregations and white-mica aggregates with sparse relict fibrolite and more rarely 253 

ragged, strained kyanite blades (Rathbone & Harris 1980). Thin quartzofeldspathic veins 254 

and porphyroblasts and segregations of pink feldspar are common and there is evidence 255 

of in situ mobilisation of the psammites and semipelites. Several dyke-like masses of red 256 

pegmatitic granite of unknown age, some over 6 metre thick, cross cut the mafic and 257 

metasedimentary rocks.  258 

 The structures in the Cromarty Inlier correlate in part with those in the Rosemarkie 259 

Inlier. Rathbone & Harris (1980) reported that a single early planar fabric (S1-S2?) is 260 

folded by the dominant F3 folds. In the southern part of the inlier F3 axial planes are sub-261 

vertical and first trend NE-SW but swing to E-W and then SE-NW at South Sutor stacks 262 

(Fig.2). F3 axes similarly plunge gently NE and also swing to plunge moderately NW. In 263 

the northern part of the inlier F3 axial traces trend SE-NW and axial planes dip NE at c. 264 

60°. F3 axes plunge gently to moderately both NW and SE. The folds have no consistent 265 

vergence and as in the Rosemarkie Inlier, the F3 axes are curvilinear. F4 folds are 266 

developed on several scales; their axes plunge consistently NE and they have steeply 267 

dipping axial planes. 268 

 269 

Devonian Rocks 270 

 At the southwest end of the Rosemarkie Inlier is a thin, wedge-shaped and fault-271 

bounded sliver of early Devonian Lower Old Red Sandstone (ORS) rocks that is 272 

overlapped to the west by mid-Devonian conglomerate (Fig. 2). The succession, termed 273 

the Den Siltstone Formation by Fletcher et al. (1996), consists of indurated breccio-274 

conglomerates and chocolate brown to green-grey siltstones and silty sandstones. 275 

Lithologically, they are similar to Struie Group that crops out farther northwest (Trewin 276 

& Thirlwall 2002). The rocks dip moderately to very steeply westwards, but are affected 277 



by small-scale faulting with gouge commonly developed and sub-horizontal slickensides 278 

locally present. The bounding faults to this Lower ORS sequence extend into the 279 

overlying mid-Devonian succession. 280 

 281 

The Meall Fuar-mhonaidh Outlier 282 

 The Meall Fuar-mhonaidh Outlier exposes a c. 2 kilometre-thick sequence of Lower 283 

ORS sandstones and conglomerates and minor siltstones and mudstones (Fig. 5) (Mykura 284 

& Owens 1983). The fault-bounded outlier measures 15 km long and c. 3 km wide and 285 

lies adjacent to the GGF and Loch Ness, some 32 kilometres SW of the Rosemarkie 286 

Inlier (Fig.1). Mykura & Owens (1983) collected a siltstone sample from the Drumbuie 287 

Burn by Drumnadrochit for palynological studies. This yielded fragmentary plant 288 

material and miospores indicating a late Emsian or early Eifelian age. The dominant 289 

lithology is a red-brown to purple, micaceous sandstone with thin mudstone partings and 290 

minor siltstone and conglomerate interbeds. Thick units of pink to red-brown, arkosic, 291 

gritty, coarse-gained sandstone occur in the southern part of the outlier and around 292 

Urquhart Castle (Fig. 5). Prominent lenticular units of poorly sorted and unbedded 293 

conglomerate and breccio-conglomerate, 50m to 400m thick, interdigitate with the 294 

sandstones. Moine psammites form most of the conglomerate clasts with subordinate 295 

semipelite, vein quartz, granite-gneiss, microgranite and some locally derived sandstone. 296 

Conglomerate-sandstone contacts are generally sharp and planar, but at [NN 4620 2215] 297 

a large ‘flame’ structure is developed; a 3-4m wide septum of steeply dipping silty 298 

sandstone penetrates the overlying conglomerate for some 50 metres.  299 

 300 

 At the northeast end of the outlier near the top of the succession lies the Creag Nay 301 

Conglomerate, a highly lensoid, clast-supported, breccio-conglomerate unit, bounded on 302 

its eastern side by a steep fault. It consists of large angular clasts of psammite and pink to 303 

orange leucogranite in a coarse-grained sandstone matrix. Mykura & Owens (1983) 304 

interpreted the unit as the product of a proximal debris flow derived from the east. 305 

 306 

 The Meall Fuar-mhonaidh sequence is folded into a broad syncline with minor folds 307 

and steeper dips developed in the southeast part of the outlier closer to the GGF (Fig. 4). 308 



Minor fold axes typically plunge gently to the E and NE or to the W and SW. Cross-309 

section restorations show that overall shortening across the outlier totals some 25%. At 310 

the southern end of the outlier Mykura & Owens (1983) recorded that the Devonian 311 

rocks have been thrust and faulted against brecciated and cataclastic Moine psammites. 312 

At NH 449 188 shattered pebbly sandstones are separated from the underlying Moine 313 

psammites by a mylonite zone that dips c. 25° SE. Mykura & Owens (1983) also 314 

postulate a thrust at the Devonian-Moine boundary immediately north of Loch 315 

a’Bhealaich to explain its sinuous nature and the steep dips in the overlying 316 

conglomerates and sandstones. The northwestern boundary of the outlier is unexposed 317 

but its overall orientation suggests that it is a steeply dipping NE-trending fault. Faults in 318 

the outlier generally trend north and NE and postdate the folding and thrusting. 319 

 320 

 The succession preserved in the Meall Fuar-mhonaidh Outlier represents a fluviatile 321 

and lacustrine sequence, rapidly deposited in late Emsian times in a restricted rift basin 322 

with marginal alluvial fans (Mykura & Owens 1983). Contractional deformation linked 323 

to movements along the GGF may have overlapped the later stages of sedimentation, and 324 

subsequently generated folding, localised thrusting, and faulting in the outlier. The 325 

structural pattern is compatible with a positive flower structure linked to sinistral 326 

transpression along the GGF.  327 

 328 

Geochronology 329 

Previous studies 330 

 Rathbone (1980) reported strongly discordant zircon U-Pb data defining a chord with 331 

a lower intercept at 384 Ma from a leucogranite vein below Learnie [NH 766 618]. The 332 

bulk zircon fractions were analysed by R.A. Cliff at Leeds University and consisted of 333 

old grains, neocrystalline grains, and composite grain cores and rims.  The data were 334 

obtained when zircons were not processed to reduce the effects of lead loss, and hence 335 

this age likely underestimated the true age of new zircon growth.  The leucogranites were 336 

interpreted as deformed by a D2 event that was correlated directly with the deformation 337 

sequence seen in the Moine succession. Hence, as the rocks were altered and lay adjacent 338 



to the GGF the lower intercept age was discounted as due to subsequent leaching and 339 

consequent lead loss. 340 

 341 

Sampling and analytical techniques 342 

 For this study four samples of leucogranite and two of adjacent thinly banded 343 

hornblendic felsic gneisses were collected from the shore section below Learnie Farm 344 

(Figure 3a). Zircon and monazite were recovered from the c. 3 kg samples using standard 345 

crushing, heavy liquid and isodynamic magnetic separation techniques.  Zircons from 346 

two leucogranite samples were not analysed as the grains proved insufficiently robust to 347 

survive either air or chemical abrasion due to abundant cracks and probable high U 348 

contents. Sample location grid references are given in Tables 1 and 2.  349 

 350 

 Mineral grains selected for TIMS analysis and zircons for LA-MC-ICP-MS analysis 351 

were hand-picked under ethanol and only the highest quality crack-free grains were 352 

chosen.  Cathodoluminescence images of the main types of zircon grains in the 353 

leucogranite and gneisses are shown in Fig. 6. Zircons selected for TIMS analysis were 354 

abraded following Krogh (1982) to reduce Pb loss.  All minerals selected for TIMS 355 

analysis were washed in distilled 2N HNO3 at c. 60º C and ultra-pure water, spiked with 356 

a 205Pb/235U tracer and dissolved in ultra-pure acids, and processed through chemistry 357 

following Krogh (1973) with modifications as described by Corfu & Noble (1992).  Data 358 

were mainly obtained on a VG 354 mass spectrometer fitted with an ion-counting Daly 359 

detector, with some data obtained on a Triton mass spectrometer using an ion-counting 360 

secondary electron multiplier.  Procedural blanks were <10 pg and <0.1 pg for Pb and U, 361 

respectively.  Raw data were reduced using PbDat (Ludwig 1993).  The common Pb 362 

isotope composition used in data reduction was estimated using the two-stage model of 363 

Stacey & Kramers (1975). 364 

 365 

 Zircons from the samples GX 1732 and 1737 were selected for analysis by LA-MC-366 

ICP-MS and subjected to chemical abrasion (CA) following Mattinson (2005), as this has 367 

been shown to improve concordance of the ablated minerals (M. Horstwood. pers. comm. 368 

2006).  The grains were annealed at 900 ºC for 60 hrs and then leached at 180 º C in 29M 369 



HF for 10 hrs to remove domains that could contribute to Pb loss.  Zircons from sample 370 

GX1732 were not significantly affected; whereas some GX1737 grains were reduced in 371 

volume by up to c. 30% (see Fig. 6 e).  The zircons were then mounted in 25 mm 372 

diameter epoxy resin discs and polished to remove c. 40% of the grain thicknesses to 373 

yield cross sections.  Grains were imaged in backscatter electron (BSE) and 374 

cathodoluminescence (CL) modes using a scanning electron microscope (SEM) to 375 

examine the zircon internal zonation, thus allowing selection of appropriate areas for 376 

laser ablation analysis.  Data were obtained on a Nu HR MC-ICP-MS using analytical 377 

protocols based on Horstwood et al. (2003).  Raw data were reduced using an in-house 378 

Excel spreadsheet.  TIMS and MC-ICP-MS reduced data were plotted using Isoplot 379 

(Ludwig 2003).  Sample information and U-Pb data are summarized in Tables 1 and 2, 380 

and plotted on Figure 7.  TIMS errors in the data tables and plotted on concordia 381 

diagrams are quoted at the 2σ level. 382 

 383 

Results 384 

 Two distinctive zircon morphologies were recognised in the leucogranites. Stubby, 385 

internally complex-zoned, faceted to rounded, partly resorbed zircons were the most 386 

abundant type, but well-faceted, acicular zircons were also present (see Fig. 6). Titanite 387 

was the principal secondary U-bearing accessory phase in the leucogranites, except in 388 

GX 1734 where monazite was present. 389 

 390 

 The acicular zircons typically have large aspect ratios, up to 10:1, and show strong 391 

oscillatory compositional zoning, visible both under the binocular microscope and by CL 392 

(Fig. 6a). Cores occur in all but the smallest acicular grains. U contents in the acicular 393 

zircons are relatively high (c. 700 ppm, Table 1) with the highest U-zones (grey low CL 394 

areas - Fig. 6a) occurring at the grain tips. Multi-grain fractions of acicular zircons from 395 

sample GX 1731 were selected for analysis by TIMS to constrain the emplacement age 396 

of the leucogranites. Each fraction comprised abraded small grains, <50 μm long, 397 

exhibiting only simple oscillatory zoning.  Given their small size and delicate elongate 398 

form, the grains were only lightly abraded, making total elimination of Pb-loss difficult. 399 

Additional analyses using CA-TIMS were not pursued as the high-U domains that best 400 



represent new zircon growth during leucogranite emplacement and crystallization would 401 

have been removed during the preliminary leaching steps. 402 

 403 

 Monazite was found only in leucogranite sample, GX 1734, where it forms sharply 404 

faceted greenish-yellow euhedral crystals and crystal fragments up to 100 μm long.  Fe-405 

oxide inclusions are common in most of the monazite grains but only inclusion-free 406 

crystals were selected for analysis.  This high quality monazite is considered to be the 407 

most reliable and preferred mineral for dating the leucogranite crystallization at 408 

Rosemarkie. Although zircon is abundant in the leucogranites, its near ubiquitous 409 

inheritance is a serious impediment to achieving concordant TIMS ages. A similar 410 

problem has previously been noted in Himalayan leucogranites (e.g. Noble & Searle 411 

1995).  412 

 413 

 One acicular zircon fraction from sample GX 1731 is reversely discordant but 414 

overlaps the concordia curve, yielding a concordia age (Ludwig 2003) of 400.8 ± 2.6 Ma 415 

(Fig. 7a).  The second zircon fraction is normally discordant and slightly younger than 416 

400 Ma.  Its position on the concordia plot is consistent with Pb-loss coupled with a 417 

small amount of inherited older zircon present. 418 

 419 

 The monazite data are slightly reversely discordant, which results from excess 206Pb, 420 

as is normally found in pristine monazite that does not show Pb-loss (Schärer 1984).  The 421 

data spread along concordia but all four analyses overlap within error.  The 422 

crystallization age is best constrained by the average monazite 207Pb/235U age of 397.6 ± 423 

2.2 Ma based on all of the data (MSWD = 1.4). This age is consistent with the concordia 424 

age obtained from the GX 1731 acicular zircons. 425 

 426 

 The more equant, multi-faceted zircons from sample GX 1731 and zircons with 427 

similar morphology from the gneisses GX 1732 and 1737 share the same general internal 428 

compositional zoning characteristics, as revealed by CL imaging.  Normal igneous 429 

oscillatory zoning is absent and most grains show broad bands of contrasting 430 

luminescence (e.g. Fig. 6b, c).  Some internal zones have boundaries that suggest original 431 



crystal faces and resorption features (Fig. 6b, c) or vague primary compositional zoning 432 

(Fig. 6c).  However, for the most part the textures indicate complete internal 433 

recrystallization with weak sector (e.g. Fig. 6d) or chaotic zoning (e.g. Fig. 6e) being the 434 

most pronounced features.  Sample GX 1737 also has a number of intergrown and 435 

completely recrystallized zircons (Fig. 6f). These textures are characteristic of rocks 436 

known to have been metamorphosed under granulite-facies conditions (Corfu et al. 437 

2003), attesting to a high-grade metamorphic history for the Rosemarkie gneisses.  438 

Similar textures have been noted in zircons from the high-metamorphic grade gneisses 439 

from the mainland and offshore Lewisian Gneiss Complex (Corfu et al. 1998; 440 

Whitehouse & Bridgwater 2001; Love et al. 2004). 441 

 442 

 LA-MC-ICP-MS data from these complex zoned zircons are listed in Table 2 and 443 

summarized in Figure 7b.  Data were obtained from the cores of the zircons, and in 444 

general only a single compositional zone was sampled. In a few instances the pit (c. 25 445 

μm diameter) did sample across several compositional zones but there was no significant 446 

difference in isotope ratio or calculated age.  Three main observations can be drawn from 447 

the data: sample GX 1732 is an Archaean gneiss; sample GX 1737 contains Archaean 448 

zircons that are distinctly younger than those in GX 1732; sample GX 1737 experienced 449 

new zircon growth or complete metamorphic resetting during the Palaeoproterozoic. 450 

 451 

 Zircon analyses from sample GX 1732 plot mainly as concordant to reversely 452 

discordant, giving ages between 2932 ± 8 Ma and 2808 ± 9 Ma.  The older concordant 453 

analyses are from grains with central regions preserving vestiges of oscillatory zoning 454 

within euhedral grain outlines, surrounded by the broad banding.  The younger 455 

concordant analyses are from zircons with broad sector and fir-tree zonation or from 456 

grains with roughly homogeneous and low CL.  This age pattern suggests that the gneiss 457 

formed either from an igneous protolith emplaced at c. 2900 Ma with subsequent 458 

metamorphism, or at c. 2800 Ma under high-grade metamorphic conditions with c. 2900 459 

Ma inheritance. The age of granulite-facies metamorphism certainly extended to c. 2800 460 

Ma, by which time many of the zircons had undergone significant recrystallization.  461 



 The reversely discordant GX 1732 grains have similar 207Pb/206Pb ages to the 462 

concordant grains, and correlate with ablations from low CL regions dominated by broad 463 

sector or chaotic zoning.  In contrast, the normally discordant data do not correlate with a 464 

particular CL texture. These zircon data form an array consistent with the main period of 465 

Pb-loss occurring between 0 Ma and 400 Ma, and do not show evidence of Proterozoic 466 

Pb-loss (see Fig. 7b). 467 

 468 

 Sample GX 1737 has Archaean zircons that show the affects of significant Pb-loss or 469 

new zircon growth in the Palaeoproterozoic.  Unlike GX 1732, none of the Archaean 470 

zircons in this rock show reverse discordance.  Concordia ages range from 2781 ± 13 Ma 471 

to 2719 ± 10 Ma, indicating a younger protolith age than GX 1732.  The discordant, 472 

largely Archaean grains fall in an array towards ~1750 Ma (Fig. 7b).  A second Pb-loss 473 

array is outlined by concordant to moderately discordant analyses.  A regression through 474 

these data (see Table 2) yields an upper intercept age of 1746 ± 31 Ma with a lower 475 

intercept anchored at the GX 1734 monazite age of 398 Ma (MSWD = 2.6).  An 476 

unconstrained regression yields intercepts of 1740 ± 16 Ma and 233 +140/-150 Ma 477 

(MSWD = 2.0).  The data and CL textures are consistent with the gneiss being generated 478 

from an Archaean protolith and metamorphosed under granulite- or upper amphibolite-479 

facies conditions between c. 2780 and 2720 Ma, followed by further upper amphibolite-480 

facies metamorphism during pervasive Laxfordian reworking at c. 1745 Ma.   481 

 482 

 Finally, the cores of a few rounded zircons from sample GX 1731 were analysed by 483 

LA-MC-ICP-MS merely to determine the nature of inheritance in the leucogranite. Both 484 

Archaean age and ca. 1700 Ma grains were observed, consistent with their derivation 485 

from the adjacent Proterozoic-Archaean gneisses of the inlier. 486 

 487 

Implications of Dating 488 

 The zircon U-Pb data from the two felsic and mafic gneisses sampled in the 489 

Rosemarkie Inlier clearly show their Lewisianoid affinity. Protolith ages for GX 1732 490 

range from c. 2930 Ma to 2810 Ma, with evidence of a granulite- or upper amphibolite-491 

facies metamorphic overprint at c. 2810 Ma. GX 1737 shows younger protolith ages 492 



between 2780 Ma and 2720 Ma with evidence of Laxfordian recrystallisation at c. 1745 493 

Ma. Friend et al. (2008) presented similar Archaean ages for the Borgie, Farr and Ribigill 494 

Lewisianoid inliers of north Sutherland. The variability of ages shown by the Rosemarkie 495 

samples is surprising given their proximity. It suggests the inlier contains structurally 496 

interleaved slivers that represent different parts of the Lewisianoid basement to the 497 

Moine succession. Interleaving of Moine and Lewisianoid rocks occurred prior to 498 

emplacement of the leucogranites and the subsequent ‘D2’ event. The planar nature of the 499 

fabric and basement-cover contacts and lack of small- or medium-scale F1 folding 500 

suggests that this interleaving represents part of a ‘D1’ ductile shear zone (see Harris, 501 

1978). 502 

 503 

 The U-Pb TIMS zircon and monazite ages of 401 Ma and 398 Ma respectively 504 

obtained from the two leucogranite samples date their emplacement as late Emsian. 505 

Taking an average value of 399 Ma for leucogranite vein intrusion, and given that the 506 

inlier was unconformably overlain by conglomerate and sandstones by late Eifelian times 507 

at c. 393 Ma (Marshall et al. 2007), exhumation of the inlier and related deformation are 508 

restricted to some 6 million years. Leucogranite deformation textures, metamorphic 509 

assemblages in the Moine pelitic rocks, and the fabrics and fold geometries now exposed 510 

are all indicative of mid-crustal levels. Hence, c. 12-15 km uplift apparently occurred in a 511 

maximum time frame of 6 Ma. However, given that this period included planation of the 512 

topography and generation of the overlying erosional surface, 4 to 5 million years would 513 

be a more realistic estimate. Implied exhumation rates for the Rosemarkie Inlier thus 514 

range from 2 mm/year to about 4 mm /year. The early Devonian Lower ORS succession 515 

is present on the NW side of the GGF but absent from its immediate SE side except 516 

offshore. However, outliers of Lower ORS rocks are present farther east in the Grampian 517 

Highlands and there is little apparent difference in topographical level of the basal 518 

unconformity across the GGF. Hence the Rosemarkie Inlier has apparently behaved as an 519 

extruded, constricted, elongate ‘pip’ linked to sinistral transcurrent movements on the 520 

GGF. 521 

 522 



 We now review the available structural and strain data and the regional structure to 523 

try and explain the evolution of the Rosemarkie Inlier, particularly with respect to the 524 

history of the adjacent GGF. 525 

 526 

Structural Model 527 

 The local structure of the Learnie shore section is described above and the foliation 528 

and lineation orientations shown in Fig. 4. The foliations strike NE, orientated some 8° 529 

clockwise of the trend of the GGF, and dip moderately to steeply NW. The only 530 

measured strain values from the inlier indicate a strongly constrictional strain (Rathbone 531 

1980) with a k value of 2.88. This obliquity of foliation, NE-plunging stretching 532 

lineation, and related D2-D4 prolate strain, suggest a strong component of transpression 533 

or transtension (e.g. Sanderson & Marchini, 1984; Dewey et al. 1998; Fossen & Tikoff, 534 

1998). Given the proximity of the GGF and localised nature of the uplift this seems a 535 

likely circumstance. Oblate to plane strains are more generally characteristic of 536 

transpression, whereas prolate to plane strains are more typically developed in 537 

transtension (Tikoff & Teyssier 1994; Jones et al. 2004). Although both types of 538 

deformation can give rise to steeply dipping fabrics, they are more commonly developed 539 

in transpression. Steeply dipping lineations generally form during transpression, whereas 540 

shallow dipping, commonly horizontal lineations are typical of most transtensional 541 

situations (see Fossen & Tikoff, 1998; Krabbendam & Dewey, 1998). In the Rosemarkie 542 

Inlier the steeply dipping foliation, moderately dipping lineation (37° to 050°), and 543 

documented rapid uplift are compatible with transpression but not with transtension. The 544 

boundary conditions in effect require that the inlier is extruded, an unreasonable 545 

circumstance for a regional strain field, but plausible in small domains. It is proposed that 546 

the inlier formed at a restraining bend of the GGF due to a fault step-over to the NW that 547 

developed in mid-Devonian times. The fault geometry and the internal structure of the 548 

inlier indicate that transpressional uplift accompanied significant sinistral lateral 549 

movements on the GGF.  550 

 551 

 Theoretical transpressional deformation models and field examples on several scales 552 

have been amply documented (e.g. Robin & Cruden 1994; Lin et al. 1998; Jones et al. 553 



2004). Although specific cases can be modelled, most authors have found it difficult to 554 

describe the transpressional deformation fully, even in specific well-documented 555 

geological examples. The variations in boundary conditions, convergence angles, 556 

vorticity, strain and fabric development, strain rates, and the common occurrence of 557 

strain partitioning, all impose limits on the accuracy of the model (Robin & Cruden 558 

1994; Jones & Tanner 1995; Lin et al. 1998). In the Rosemarkie Inlier the bounding 559 

faults are either unexposed or have been reactivated subsequent to mid-Devonian 560 

deformation and uplift; brittle deformation effects and alteration affect much of the 561 

exposed section. However, the structural geometry, strong prolate strain, and poorly 562 

developed and apparently contradictory kinematic indicators seen in the Learnie shore 563 

section do constrain the possible transpressional models. Tikoff & Fossen (1999) 564 

provided 12 reference 3-D deformation models applicable to thrust and 565 

transpressional/transtensional deformation. The Rosemarkie deformation features and 566 

prolate strain fit well in the widening shear or widening/shortening shear categories, 567 

dominated by vertical or possibly oblique extrusion. Robin & Cruden (1994) described 568 

transpressional shear zones from Canada and Sweden and derived dynamic theoretical 569 

models of the stress and strain distribution in a vertical transpression zones. Again, the 570 

Rosemarkie Inlier would fit well as a sinistral transpressive zone with a strong ‘Press’ 571 

(i.e. vertical or steep extrusion) component. One is left to speculate as to whether the 572 

inlier was extruded with fixed bounding faults or became thinner as extrusion occurred. 573 

Oblique transpression models introduce further complications, particularly with regard to 574 

strain and vorticity variations, both across the zone and at different vertical levels (see 575 

Robin & Cruden 1994, Figure 12).   576 

 577 

 Searle et al. (1998) documented transpressional tectonics along the dextral 578 

Karakoram Fault Zone in Ladakh where a fault splay gives rise to a restraining bend. The 579 

resulting inlier (the Pangong Range), which consists of Cretaceous-age migmatitic and 580 

high-grade metamorphic ortho- and paragneisses (Searle et al. 2010), was exhumed 581 

between 18 and 11 Ma. Leucogranite bodies (Tangtse Granite) were intruded at the start 582 

of transpression and show S-C fabrics and a prominent lineation that plunges 20° to the 583 

NW. Searle et al. (1998) used the offset of geological features and the lineation 584 



orientation to conclude that lateral slip totalled 56 km and vertical exhumation some 20 585 

km during this c. 7 Ma Miocene event, giving average lateral slip rates of 8.3 mm/year 586 

and vertical uplift rates of 3.0 mm/year.  587 

 If we take the strain values obtained by Rathbone (1980) as representative of the 588 

deformation during transpressional uplift of the Rosemarkie Inlier, then we can obtain a 589 

crude estimate of the amounts of uplift and lateral movement. We must assume that:  590 

i) the strongly deformed leucogranites were emplaced at the start of 591 

deformation, as suggested by the field relationships 592 

ii) the strain is representative of the inlier as a whole,  593 

iii) the inlier is 2 km wide.  594 

 Approximating the inlier as a simple prolate ellipsoid and restoring it to an unstrained 595 

state (Fig 8) implies uplift of c. 15 km and sinistral displacement of c. 29 km. Despite the 596 

admitted simplicity of the assumptions (see above), these values are of a sensible order 597 

and compatible with the structural and metamorphic state at the current level of outcrop. 598 

They fit with the structural and geochronological evidence that the Rosemarkie Inlier was 599 

extruded obliquely as a rising but deforming body (elongate ‘pip’) coeval with a short-600 

lived (4 to 6 Ma) mid-Devonian transpressional event. Lateral slip rates of 4.8 – 7.25 601 

mm/year and vertical uplift rates of 2.3 – 3.65 mm/year are implied. These rates are of 602 

the same order as those reported from the Yammouneh and related faults in the Lebanon 603 

(Gomez et al. 2007; Butler et al. 1998), but less that those reported from major plate-604 

bounding strike-slip fault zones such as the Alpine Fault in New Zealand (Walcott, 1998) 605 

or the Karakoram Fault (see above).  606 

 The Cromarty Inlier possibly represents a further ‘pip’ that was exhumed from 607 

somewhat shallower crustal levels, implying that the restraining bend developed on the 608 

GGF but was partitioned into blocks by linking faults, perhaps indicating that step-overs 609 

developed sequentially to the northeast as sinistral movements occurred. Similarly the 610 

fault-bounded sliver of Lower ORS rocks that lies adjacent to the Precambrian rocks of 611 

the Rosemarkie Inlier on its southwestern side (Fig. 2.) appears to represent only limited 612 

uplift during transpression.  613 

 614 

Discussion 615 



Tectonic Implications 616 

 Transpressional uplifts are a well-documented phenomenon linked to restraining 617 

bends in strike-slip fault zones. The Rosemarkie Inlier is a good small-scale example of a 618 

sharp restraining bend within a cratonic strike-slip fault system based on older crustal 619 

faults and removed from active plate boundaries. Mann (2007) provided an extensive 620 

overview and classification of restraining- and releasing bends related to active and 621 

ancient strike-slip fault systems. He noted that the bends act as ‘concentrators’ of 622 

intraplate stresses and the related uplifts affect relatively small rhomboidal step-over 623 

areas. Such bends are typically short-lived as they are bypassed by subsequent faulting or 624 

become extinct with continuing lateral movement. Examples of small-scale focused uplift 625 

have been reported from the San Gabriel Mountains adjacent to the San Andreas Fault 626 

(Buscher & Spotila 2007), and from the Ocotillo Badlands (8 km x 2 km step-over) along 627 

the active Coyote Fault in Southern California (Segall & Pollard, 1980). In contrast, Paul 628 

et al. (1999) described a c. 500 Ma example from the northern Flinders Ranges (South 629 

Australia) where localised sinistral transpressional uplift occurred during the Delamerian 630 

Orogeny.  Uplift was accompanied by very high heat flows with the exhumed 631 

metamorphosed basement rock assemblages implying that temperatures of 500-550°C 632 

were attained at depths of c. 10 km. 633 

 634 

Late Silurian – Mid-Devonian evolution of the Great Glen Fault (GGF) 635 

 As noted above the GGF has had a lengthy history of movement dominated in 636 

Silurian and Devonian times by sinistral lateral displacements. Most authors favour at 637 

least 200 kilometres of late Silurian sinistral movement based on the offset of Caledonian 638 

regional tectonic features (e.g. Dewey & Strachan, 2003) and prominent geophysical 639 

reflectors in the upper mantle lithosphere (Hall et al. 1984; Snyder & Flack 1990). The 640 

GGF appears to have acted as a near planar sub-vertical structure from Neoproterozoic to 641 

early Devonian times (see Stewart et al. 1999, 2001), but its subsequent geometry in the 642 

Moray Firth area is more complex. The Rosemarkie Inlier lacks evidence of linear or 643 

planar fabrics formed during the late Silurian sinistral movements along the GGF at c. 644 

425 Ma. The planar fabrics that predate the leucogranite sheets and veins lie near parallel 645 

to bedding and relate to the earlier interleaving of Moine and Lewisianoid rocks. Hence, 646 



the formation of the restraining bend, related step-overs and main structures in the inlier 647 

are mid-Devonian in age. So why did the geometry of the GGF change at this time?  648 

 649 

 Watson (1984) estimated that regional uplift of the Inverness area totalled some 10-650 

15 km during the late Silurian-early Devonian period. The bulk of uplift was completed 651 

prior to deposition of the Lower ORS lacustrine and fluvial sandstone, siltstone and 652 

conglomerate succession that commenced in the Emsian at c.407 Ma. Thick bituminous 653 

mudstone, siltstone and impure limestone units are developed both in the Beauly- 654 

Strathpeffer area (Mykura & Owens 1983), NW of the GGF, and also beneath the 655 

Mesozoic units of the Inner Moray Firth, SE of the GGF (Marshall & Hewett 2003). 656 

These lacustrine rocks form part of the Struie Formation and attain over 1000m in 657 

thickness. The Lower ORS facies distribution and sedimentology define a pattern of 658 

restricted fault-controlled basins with proximal infill marking a period of extension 659 

(Trewin & Thirlwall 2002; Marshall & Hewett 2003). Possibly the GGF was reactivated 660 

in transtension at this time (Dewey & Strachan, 2003). During end Caledonian uplift and 661 

extension new faults were formed and the structural template was changed. Hence, when 662 

sinistral transpression occurred in the mid-Devonian as a result of a northward directed 663 

compressive ‘pulse’, lateral movement stepped northwest. This short-lived deformation 664 

event (399-393 Ma) signalled a marked change in the applied stress direction, apparently 665 

focused on the GGF and in the adjacent early Devonian basins where localised thrusting, 666 

folding and faulting occurred.  667 

 668 

Late Palaeozoic – Mesozoic evolution of the Great Glen Fault (GGF)  669 

 Underhill & Brodie (1993) evaluated the structural geology of Easter Ross and the 670 

Moray Firth basin and described a sequence of NNE-trending folds and faults lying NW 671 

of the GGF trace in Middle and Upper ORS rocks around Tain. They concluded that the 672 

structures, developed during Permo-Carboniferous inversion, reflected major faults in the 673 

underlying early Devonian and older rocks. Limited dextral movements occurred on the 674 

adjacent GGF. However, the main offshore extension of the GGF was inactive during 675 

widespread extension in the Permo-Triassic and Jurassic and the fault zone was only 676 

reactivated as part of a transtensional flower structure in the late Cretaceous or early 677 



Cainozoic. Fault movements from Jurassic times onward were focused at the margins of 678 

the Moray Firth Basin (Andrews et al. 1990). Bird et al. (1987) showed that during the 679 

Mesozoic lateral movements transferred to the northwest onto the Helmsdale Fault giving 680 

rise on the Sutherland Terrace to localised extensional deformation during sinistral 681 

movements, and inversion and localised compression during dextral movements. This 682 

migration of movement resulted in formation of a series of step-overs linked in the 683 

Mesozoic sequences by moderate to gently dipping thrusts or extensional faults.  Hence, 684 

the onshore and offshore record shows that strike-slip movements migrated 685 

northwestwards onto parallel faults with their timing dependent on the regional plate 686 

tectonic geometry and the prevailing stress orientations (Underhill & Brodie, 1993). The 687 

northeast extension of the GGF into the Moray Firth Basin was locked for much of the 688 

Late Palaeozoic and Mesozoic. Underhill and Brodie (1993) concluded that because the 689 

GGF was a vertical structure and lay orthogonal to the northwest-southeast extensional 690 

strain field, strike-slip reactivation only occurred when extensional slip vectors changed 691 

to become near-parallel to the fault., i.e. in the Permo-Carboniferous and Cainozoic. 692 

Thus, the mid-Devonian transpressional event marked a major change in the pattern of 693 

movement on the GGF, with the locus of fault movement migrating progressively 694 

northwest; this pattern continued into Mesozoic times with lateral and vertical 695 

movements becoming focused on the Helmsdale Fault (Roberts & Holdsworth 1999).  696 

 697 

The generation of the Rosemarkie Inlier  698 

 It is proposed that the Rosemarkie Inlier was generated by oblique extrusion at a 699 

sharp restraining bend developed on the GGF between about 399 Ma and 393 Ma. The 700 

formation of the step-over reflected the regional stress conditions that prevailed during 701 

this sinistral transpressional event, the increased frictional resistance to renewed 702 

movement along the pre-existing GGF trace, and the newly formed structural template. 703 

This short-lived mid-Devonian transpressional event marked the end of late Caledonian 704 

uplift, extension and sinistral transtension in the late Silurian and early Devonian (see 705 

Dewey and Strachan 2003). The event was coeval with the Acadian compressional event 706 

that is widely developed in England and Wales (Woodcock & Soper 2006; Woodcock et 707 

al. 2007) and even recorded in western Ireland (Meere & Mulchrone 2006). In contrast, 708 



in West Norway and possibly also in Shetland there is evidence of widespread extension, 709 

transtension, and strike-slip fault movements during this period, which was dominated by 710 

the uplift and erosion of the emerging Caledonide chain (Krabbendam & Dewey 1998; 711 

Walsh et al. 2007; Fossen, 2010). Although the Acadian event resulted from the onset of 712 

collisional activity in the developing Rheic Ocean south of Avalonia we argue below that 713 

it also affected Scotland giving rise to localised sinistral transpression focused along the 714 

main terrane-bounding faults and extending as far north as the Moray Firth. 715 

 716 

 717 

The nature of the Acadian Event in Scotland 718 

 The Devonian succession in Scotland contains evidence of periods of uplift and 719 

possible tectonic activity that separate it into three distinct sequences. These were termed 720 

the Lower, Middle and Upper Old Red Sandstone (ORS) by Murchison (1859) and the 721 

terms are still in use today, albeit with considerably modifications (see Trewin & 722 

Thirlwall 2002). 723 

 724 

Midland Valley 725 

 The Midland Valley terrane is separated from the Highlands on its northwest side by 726 

the Highland Boundary Fault Zone (HBFZ) and from the Southern Uplands on its 727 

southeast side by the Southern Uplands Fault (SUF) (Fig. 8). Within this terrane, fluvial 728 

and lacustrine Lower ORS rocks of late Silurian to early Devonian age are widely 729 

developed (Bluck 2000). In Strathmore the sequence consists mainly of fluvial 730 

sandstones and conglomerates with volcanic rocks in its lower parts. These include the 731 

distinctive dacitic Lintrathen Tuff (Porphyry), dated at 415 ± 6 Ma (Thirlwall 1988). In 732 

its uppermost parts thick conglomerate units are developed locally adjacent to the HBFZ. 733 

A prominent example is the c.1500 m thick Strathfinella Hill Conglomerate near 734 

Fettercairn that represents a proximal alluvial fan deposit (Haughton & Bluck 1988). 735 

Unlike most conglomerate units in the Lower ORS sequence that consist largely of 736 

reworked quartzite cobbles derived from the northeast, this unit contains first cycle 737 

metamorphic and volcanic clasts, derived from the northwest. It is dominated by 738 

Dalradian psammite and semipelite clasts that can be matched readily in the nearby 739 



Grampian Highlands and clearly records syn-depositional uplift of the adjacent 740 

Highlands. The conglomerate passes rapidly to the southeast into siltstones and 741 

mudstones which have been dated as Emsian from miospores (Richardson et al. 1984). 742 

The Lower ORS sequence is folded into the Strathmore Syncline and Sidlaw Anticline 743 

(Fig. 8) and overlapped unconformably by the late Devonian Upper ORS succession. 744 

Hence fault movement, deformation, uplift, and erosion are bracketed as mid-Devonian 745 

in age. The Lintrathen Tuff crops out on both sides of the HBFZ, but shows an apparent 746 

sinistral offset of some 34 kilometres. The structural features and timing of deformation 747 

are consistent with an Acadian sinistral transpressional event focused along the HBFZ 748 

during the mid-Devonian (see Jones et al. 1997 for kinematic analysis; Tanner 2008). 749 

Deposition of the youngest Emsian parts of the sequence appears to have overlapped with 750 

fault movements along the HBFZ.  751 

 752 

 Lower ORS sandstones, conglomerates, and andesitic and basaltic volcanic rocks also 753 

crop out near the southeast margin of the Midland Valley (Smith 1995) (Fig. 8). Again 754 

the volcanic rocks yield a Lochkovian age, here c. 412 Ma (Thirlwall, 1988).  The rocks 755 

were deformed during a mid-Devonian tectonic event whose effects become more intense 756 

towards the SUF. Deformation resulted in the formation of kilometre-scale, asymmetrical 757 

anticlines and synclines whose axes trend NE to ENE, oblique to the SUF. They form en 758 

échelon arrays and Smith (1995) interpreted the fold pattern as indicative of sinistral 759 

transpression focused along the SUF. Floyd (1994) presented evidence for some 12 km 760 

of sinistral offset of structures just north of the Loch Doon granite pluton. 761 

 762 

Meall Fuar-mhonaidh Outlier 763 

 Lower ORS sandstones and conglomerates are preserved in the Meall Fuar-mhonaidh 764 

outlier adjacent to the GGF some 32 km southwest of Rosemarkie (see above for details 765 

of lithology and structure) (Fig. 5).  The c. 2km thick sequence was deposited rapidly in a 766 

fault-bounded basin (Mykura & Owens 1983). At its northeast end the Craig Nay 767 

Conglomerate contains large angular clasts of psammite and pink-orange leucogranite 768 

veins that match those exposed in the Rosemarkie Inlier. Given its highly proximal 769 

nature and high stratigraphical position, it is proposed that this conglomerate unit formed 770 



by erosion of the inlier, which at the time was situated immediately to the northeast. This 771 

would date the start of exhumation of the inlier and sinistral movement on the GGF as 772 

late Emsian in accord with the age of leucogranite emplacement. Note that the eroded 773 

material would be derived from a much higher crustal level than that presently exposed. 774 

The fold pattern, limited WNW-directed thrusting and decreasing strain away from the 775 

GGF in the outlier are all compatible with the development of a positive flower structure 776 

linked to sinistral transpression. Although this deformation cannot be dated with certainty 777 

here its low grade and structural pattern are best explained as due to the Acadian event. 778 

 779 

Rosemarkie and Easter Ross 780 

 Deformation also affects the Lower ORS sequence northwest of the GGF on the 781 

Black Isle and in Easter Ross. Rogers et al (1989) placed the sequence in the late Emsian 782 

and noted that its northwestern bounding faults, the Torr Achilty and Glaick-Polinturk 783 

faults, show evidence of limited compressional and strike-slip reactivation. Localised 784 

thrusting occurs at the base of the succession, e.g. at Contin, and farther north on Struie 785 

Hill, where the gently ESE-dipping Struie Thrust forms a prominent feature marked by 786 

low grade mylonites (Armstrong, 1964). The thrust lies some 25 kilometres northwest of 787 

the GGF trace, and 20 km from the Cromarty Inlier (Fig.8). Underhill and Brodie (1993) 788 

deduced that the thrust formed as a consequence of footwall collapse linked to inversion 789 

along the Polinturk Fault. They interpreted the resultant flower structure as Permo-790 

Carboniferous, linked to Variscan deformation in the Moray Firth, but its geometry is 791 

also compatible with Acadian transpression. In Easter Ross the Middle ORS sandstone 792 

and conglomerate sequence (with fish beds) overlies the Lower ORS with slight to 793 

moderate angular unconformity and is in turn overlain by Upper ORS sandstones. The 794 

whole sequence is folded by the large open Black Isle Syncline, a probable Permo-795 

Carboniferous age structure. 796 

 The angular unconformable Middle ORS – Lower ORS boundary can be traced 797 

northeastwards into the Golspie and Badbea basins, but at Sarclet (by Wick) in Caithness 798 

the two successions are conformable (Trewin & Thirlwall, 2002), possibly documenting 799 

the northward waning of Acadian tectonic effects.  800 

 801 



Conclusions 802 

 The Rosemarkie Inlier consists of Moine psammites and semipelites and Lewisianoid 803 

felsic and mafic gneisses, all intruded by abundant pink leucogranite veins. Zircon U-Pb 804 

LA-MC-ICP-MS data from two gneiss samples give Archaean protolith ages between 805 

2930 and 2720 Ma; zircon morphologies are consistent with their formation in high grade 806 

gneisses at deep crustal levels. One sample contains evidence of significant zircon 807 

growth at c. 1745 Ma, indicative of Laxfordian reworking. Hence, the inlier exposes 808 

structurally interleaved Moine and Lewisianoid rocks, effectively providing a ‘snapshot’ 809 

of the deeper levels of the Caledonian orogen in this area. The interleaving and related 810 

planar fabrics predate leucogranite emplacement and may be late Silurian (Scandian), 811 

early Ordovician (Grampian) or Neoproterozoic (Knoydartian) in age. Similar 812 

relationships are found at the Sgurr Beag Thrust some 28 km to the WNW (Grant & 813 

Harris 2000). 814 

 815 

 Monazite and zircon U-Pb TIMS data from the leucogranite veins show that they 816 

were emplaced into the Moine and Lewisianoid rocks at 399 Ma. The veins are 817 

discordant to the early fabrics (S1) but are strongly deformed and folded in three 818 

structural phases (D2-D4). Metamorphic assemblages and the structural style of the main 819 

D2 deformation are compatible with their formation at depths of 12-15 km.  The inlier is 820 

overlain unconformably by mid-Devonian (Eifelian – Givetian) sandstones and 821 

conglomerates whose deposition commenced at c. 393 Ma; thus deformation and 822 

exhumation are restricted to a maximum time frame of 6 Ma, implying local uplift rates 823 

of 2-4 mm/year.  824 

  825 

 The structure of the Rosemarkie Inlier is dominated by a generally steep NE-trending 826 

foliation (S2), moderately NE-plunging lineation (L2/L3) and strongly constrictional 827 

strains (Rathbone 1980). These features are compatible with its extrusion as an elongate 828 

‘pip’ at a sharp restraining bend of the Great Glen Fault (GGF) during sinistral 829 

transpression. The Rosemarkie and adjacent Cromarty inliers represent fault-bounded 830 

step-overs, formed as the locus of sinistral lateral movement on the GGF migrated onto 831 

sub-parallel faults farther to the northwest.  832 



 833 

 It is suggested that in early Devonian (Emsian) the Rosemarkie Inlier lay adjacent to 834 

the Meall Fuar-mhonaidh Outlier, now situated some 32 km to its SW. The Lower ORS 835 

sequence in the outlier contains a highly proximal conglomerate unit at its northeast end 836 

whose clasts match the lithologies of the Rosemarkie Inlier. It is proposed that the final 837 

stages of Lower ORS sedimentation in the outlier overlapped with the initial exhumation 838 

of the inlier and thus the onset of significant lateral fault movement at c. 399 Ma. The 32 839 

km offset is broadly compatible with the strain values obtained from the deformed 840 

leucogranites and the structural geometry in the inlier. 841 

 842 

 The mid-Devonian sinistral transpressional event identified at Rosemarkie is 843 

interpreted as a manifestation of the Acadian Event, a short-lived northward-directed 844 

compressional pulse generated between 400 and 390 Ma by the collision of an Armorican 845 

microcontinent with Avalonia (Woodcock et al. 2007). In Scotland this pulse was 846 

focused on the main terrane-bounding fault zones, namely the Southern Upland, 847 

Highland Boundary and Great Glen fault zones. It was generally partitioned into sinistral 848 

strike-slip movements on the faults and related orthogonal compressional deformation. 849 

Intensity of deformation is greatest adjacent to the fault zones and decreases with 850 

distance away from them. Deformation was preferentially taken up by the Lower ORS 851 

sequences that had accumulated in nearby fault-bounded extensional basins. Adjacent to 852 

the HBFZ there seems to have again been an overlap of fault movement and the later 853 

phases of ORS sedimentation. Positive flower structures were formed on the northwest 854 

side of the GGF in the Meall Fuar-mhonaidh Outlier and in the Lower ORS succession in 855 

Easter Ross, e.g. the Struie Thrust. The Lower ORS – Middle ORS unconformity can be 856 

traced northwards as far as Caithness, possibly reflecting the waning effects of the 857 

Acadian Event. 858 

  859 

 The mid-Devonian (Acadian) sinistral transpression marked a significant change in 860 

the kinematics of the Great Glen Fault. Prior to this event in the late Silurian and early 861 

Devonian the fault appears to have been a planar structure and a focus for sinistral lateral 862 

movements, firstly in transpression (Stewart et al. 1999), but mainly in transtension 863 



(Dewey & Strachan 2003). The end Caledonian uplift and formation of small scale basins 864 

in the early Devonian altered the structural geometry, particularly in the Moray Firth 865 

area. Hence, when the far-field Acadian effects reached northern Scotland, the GGF 866 

formed a restraining bend to facilitate the migration of lateral movement northwestwards. 867 

This pattern of fault migration was repeated in late Palaeozoic and Mesozoic times 868 

during transtensional and transpressional events, both sinistral and dextral.  869 
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 1159 

Figure Captions 1160 
 1161 
Fig. 1. Generalised geology of the area around Inverness showing the location of the 1162 

Rosemarkie and Cromarty inliers. 1163 

Fig. 2. Geology of the Rosemarkie Inlier 1164 

 1165 
Fig. 3 (a) Learnie foreshore showing the steeply dipping Moine psammites and 1166 

Lewisianoid gneisses intruded by a prominent, near concordant, pink leucocratic 1167 

microgranite vein. The hammer (38 cm long) marks the vein. Locality for GX 1168 

1731, 1732. [NH 7620 6124].  (b) Interference fold (F2 + F3) of thin 1169 

leucogranite vein in Moine psammites and semipelites. [NH 767 617]. 1170 

Fig. 4. Structural data from the Rosemarkie Inlier below Learnie Farm (lower 1171 

hemisphere projection). 1172 

Fig. 5. Geological map of the Meall Fuar-mhonaidh Outlier showing its stratigraphy 1173 

and structure (modified after Mykura & Owens 1983). 1174 

Fig. 6. Cathodoluminescence images. (a) acicular zircon (leucogranite - GX 1731) 1175 

showing oscillatory zoning and high U (low CL) tip, (b) xenocrystic zircon 1176 

(leucogranite - GX 1731) showing remnants of a now recrystallized primary 1177 

zircon surrounded by a metamorphic zircon rim, (c) and (d) complex zoned 1178 

zircons (gneiss - GX 1732) showing a possible primary zircon outline and 1179 

embayed surface (c) and completely recrystallized internal structure (d), (e) and 1180 

(f) chemically abraded complex zoned zircons; the conjoined grains both give 1181 

ages of c. 1740 Ma (gneiss - GX 1737).  1182 

 1183 

Fig. 7. Concordia diagrams showing: (a) ID-TIMS data for samples GX 1731 and 1184 

1734; light grey ellipses are GX 1731 zircons, medium grey ellipses are GX 1185 

1734 monazites. (b) LA-MC-ICP-MS data for samples GX 1731, 1732 and 1186 

1737.  Black ellipses are GX 1731, medium grey ellipses are GX 1732, and 1187 

white ellipses are GX 1737.  Reference lines are 2781 – 1740 Ma and 1740 – 1188 

398 Ma. 1189 

 1190 



Fig. 8.  Strain modelling, see text for details. 1191 

 1192 

Fig. 9. Acadian features in the British Isles.  GGF – Great Glen Fault, HBF – Highland 1193 

Boundary Fault, SUF – Southern Upland Fault. Ro – Rosemarkie Inlier, MF – 1194 

Meall fuar-mhonaidh Outlier, SHC – Strathfinella Hill Conglomerate. 1195 

 1196 



Table 1.  Zircon and monazite U-Pb ID-TIMS data for samples GX 1731, 1732 
           
                 

    Concentrations †      Atomic ratios       Ages (Ma)  

    Com             

Fractions * Weight U Pb -mon 206Pb/ 208Pb/ 206Pb/  207Pb/  207Pb/  206Pb- 207Pb- 207Pb-  

 (µg) (ppm) (ppm) Pb(pg) 204Pb § 206Pb # 238U # err 235U # err 206Pb # err 238U 235U 206Pb ρ** 
                 

GX 1731 Leucogranite [NH 7620 6124]                

1. zr, cl-pbr, 5:1, abr, 50-70 μm (13) 4.4 647.0 46.67 11.2 1042 0.1844 0.0642403 0.67 0.4829 0.80 0.05452 0.35 401.4 400.1 392.5 0.90

2. zr, pbr, 4:1, abr, 80-100 μm (2) 7.7 724.0 49.48 16.4 1351 0.1636 0.06315 0.34 0.4827 0.53 0.05544 0.39 394.8 399.9 429.9 0.67

                 

GX 1734 Leucogranite [NH 7641 6144]                

3. mo, 2:1 eu, 80 µm (1)     1.0 1325 1286 5.3 1026 16.24 0.06417 0.52 0.4778 0.56 0.05401 0.21 400.9 396.6 371.4 0.93

4. mo, 2:1, eu, 90 µm (1) 1.3 935.0 977.0 7.4 683.3 17.5 0.06434 0.56 0.4783 0.66 0.05392 0.33 401.9 396.9 367.7 0.87

5. mo,  2:1, sub, 80 µm (1)        1.0 870.0 690.0 5.9 623.6 12.86 0.06492 0.77 0.4835 0.82 0.05401 0.29 405.5 400.5 371.5 0.93

6. mo, 1:1 eu, 70 µm (1)        1.2 850.0 1157 4.7 903.9 23.23 0.06410 0.35 0.4795 0.48 0.05425 0.33 400.5 397.7 381.3 0.74

                 

*   mo = monazite, zr = zircon; l:w aspect ratio; abr = air abraded; eu = euhedral, sub = subhedral; cl = colourless, pbr = pale brown; length (µm); (x) = number of   

     grains analyzed.                 

†   Maximum errors are ± 20%.  Weights were measured on a Cahn C32 microbalance or calculated from grain dimensions measured on binocular microscope photos. 

§   Measured ratio corrected for mass fractionation and common Pb in the 205Pb/235U spike.          

#   Corrected for mass fractionation, spike, laboratory blank Pb and U, and initial common Pb (Stacey and Kramers 1975; calculated at 400 Ma).     

     The laboratory blank Pb composition is 206Pb/204Pb:207Pb/204Pb:208Pb/204Pb = 17.46: 15.55: 37.32.  Quoted errors are 2 σ (% for atomic ratios, absolute for ages). 

**   207Pb/235U - 206Pb/238U error correlation coefficient calculated following Ludwig (1993).                
           

           

           

          

          
          

         

          



Table 2.  Zircon U-Pb LA-MC-ICP-MS data for samples GX1731, 1732, 1737      
                  

  Concentrations †   Atomic ratios #       Ages‡ (Ma)      
                  

Analysis U Pb 206Pb/  207Pb/  207Pb/   206Pb/  207Pb/  207Pb/  Conc. Err 

 (ppm) (ppm) 238U err 235U err 206Pb err ρ** 238U err 235U err 206Pb err age (MSWD) 
                  

GX 1731 Leucogranite [NH 7620 6124]              

1731-1 664 179 0.3030 0.8 4.425 0.8 0.1059 0.1 0.99 1717 24 1706 13 1730 3   

1731-2 365 108 0.3234 0.7 4.747 0.7 0.1064 0.1 0.98 1776 21 1807 12 1739 5   

1731-3 295 127 0.4725 0.8 11.46 0.9 0.1759 0.4 0.91 2562 33 2495 16 2615 12   

1731-4 267 108 0.4552 0.9 10.91 1.0 0.1738 0.4 0.92 2515 35 2418 18 2595 12   

1731-5 150 63.4 0.4490 0.9 11.02 0.9 0.1780 0.2 0.99 2525 35 2391 17 2635 5   

1731-6 80.8 33.4 0.4486 1.4 10.99 1.4 0.1777 0.3 0.98 2523 55 2389 26 2632 9   

                  

GX 1732 Hornblende-biotite felsic gneiss [NH 7620 6124]           

1732-1 17.8 9.6 0.5603 0.9 15.68 1.1 0.2030 0.7 0.81 2858 43 2868 21 2851 22 2854 20 (0.5) 

1732-2 31.7 16.7 0.5610 0.9 15.90 1.0 0.2056 0.4 0.90 2871 40 2871 18 2871 14 2871 14 (<0.1)

1732-3 18.6 7.8 0.4390 0.8 12.05 1.1 0.1991 0.8 0.73 2608 31 2346 20 2819 25   

1732-4 61.5 31.8 0.5498 0.9 15.63 1.0 0.2062 0.2 0.97 2855 42 2824 18 2876 7   

1732-5 51.6 26.7 0.5536 0.9 15.64 1.0 0.2049 0.3 0.96 2855 42 2840 18 2866 9 2864 11 (0.5) 

1732-6 13.2 6.3 0.5161 1.0 14.51 1.3 0.2039 0.9 0.74 2784 43 2683 25 2858 29   

1732-7 9.3 4.5 0.5225 1.0 13.92 1.6 0.1932 1.2 0.63 2744 45 2710 30 2770 41   

1732-8 37.7 18.7 0.5413 0.8 15.02 0.9 0.2013 0.4 0.91 2817 36 2789 17 2836 12   

1732-9 28.9 15.1 0.5533 0.8 15.46 1.0 0.2026 0.5 0.87 2844 38 2839 18 2847 15 2837 16 (1.2) 

1732-10 26.8 14.3 0.5701 0.9 16.70 1.0 0.2125 0.4 0.89 2918 40 2908 18 2925 14 2923 15 (0.6) 

1732-11 22.4 11.8 0.5487 0.8 15.28 0.9 0.2019 0.5 0.83 2833 35 2820 18 2842 17 2831 13 (5.9) 

1732-12 61.1 32.5 0.5615 0.7 16.02 0.7 0.2070 0.2 0.95 2878 33 2873 14 2882 8 2881 10 (0.3) 

1732-13 16.5 7.9 0.5087 0.8 14.09 1.1 0.2008 0.7 0.75 2756 36 2651 21 2833 24   

1732-14 76.4 40.5 0.5492 0.9 15.92 0.9 0.2102 0.2 0.98 2872 40 2822 17 2907 6   

1732-15 29.0 14.6 0.5329 0.8 14.78 0.9 0.2012 0.4 0.88 2801 37 2753 18 2836 14   

1732-16 45.6 24.1 0.5666 0.8 15.78 0.9 0.2020 0.3 0.94 2864 37 2894 16 2842 9   

1732-17 13.5 7.2 0.5754 0.9 15.78 1.3 0.1989 0.8 0.76 2864 44 2930 24 2817 27   

1732-18 125 64.1 0.5596 0.8 15.80 0.8 0.2047 0.2 0.98 2865 38 2865 16 2864 5 2864 8.3 (<0.1)

1732-19 75.6 35.3 0.5166 1.5 14.06 1.5 0.1974 0.2 0.99 2754 64 2685 28 2805 7   

1732-20 43.7 20.9 0.5251 1.1 14.13 1.2 0.1951 0.4 0.95 2758 50 2721 22 2786 12   

1732-21 72.5 33.5 0.4974 0.9 13.46 0.9 0.1963 0.2 0.96 2713 37 2603 17 2796 8   

1732-22 103 54.6 0.5789 1.0 17.04 1.0 0.2135 0.2 0.99 2937 48 2944 20 2932 5 2933 7.1 (0.9) 

1732-23 109 52.4 0.5415 1.0 14.78 1.0 0.1980 0.2 0.99 2801 47 2790 20 2809 6 2809 8.7 (0.7) 

1732-24 55.2 29.3 0.5590 1.1 15.85 1.2 0.2056 0.2 0.98 2868 53 2863 22 2871 8 2871 12 (0.1) 

1732-25 40.3 20.3 0.5507 0.9 15.27 1.0 0.2012 0.3 0.94 2832 42 2828 19 2836 11   

1732-26 30.1 16.4 0.5863 0.8 16.75 0.9 0.2073 0.4 0.89 2921 38 2974 17 2884 13   

1732-27 86.3 43.8 0.5634 1.1 15.34 1.1 0.1975 0.3 0.96 2837 49 2881 21 2806 10   

1732-28 31.1 16.8 0.5923 0.8 16.87 0.9 0.2066 0.4 0.90 2927 39 2999 17 2879 13   

1732-29 20.5 10.7 0.5701 0.9 15.85 1.1 0.2016 0.6 0.85 2868 42 2908 20 2839 18   

1732-30 42.2 21.3 0.5521 0.8 15.50 0.8 0.2036 0.3 0.92 2846 34 2834 15 2855 10 2852 12 (1.3) 

1732-31 95.3 40.4 0.4585 1.0 12.45 1.0 0.1969 0.2 0.98 2639 39 2433 18 2801 7   

1732-32 22.1 9.0 0.4440 1.3 11.89 1.5 0.1942 0.7 0.88 2596 52 2369 27 2778 23   

1732-33 103 50.9 0.5400 1.1 14.84 1.2 0.1993 0.2 0.99 2805 51 2783 22 2820 6 2819 8.8 (0.16)

1732-34 130 63.2 0.5093 1.1 13.86 1.1 0.1974 0.2 0.99 2740 48 2654 21 2805 5   
                  

GX 1737 Hornblende-biotite felsic gneiss [NH 7649 6155]           

1737-1 83.5 33.9 0.4345 1.2 10.71 1.3 0.1788 0.5 0.92 2499 47 2326 24 2642 17   



1737-2 85.2 31.3 0.3998 1.2 8.007 1.4 0.1453 0.7 0.89 2232 46 2168 25 2291 22   

1737-3 272 104 0.4183 1.1 9.533 1.1 0.1653 0.2 0.98 2391 42 2253 20 2511 8   

1737-4 349 159 0.4947 1.2 12.81 1.2 0.1878 0.1 0.99 2666 50 2591 22 2723 5   

1737-5 168 43.9 0.2882 1.2 4.153 1.3 0.1045 0.6 0.87 1665 33 1632 22 1706 24   

1737-6 353 102 0.3183 1.1 5.275 1.1 0.1202 0.4 0.94 1865 34 1782 19 1959 13   

1737-7 478 214 0.4893 1.1 12.00 1.1 0.1779 0.1 0.99 2605 47 2568 21 2634 4   

1737-8 362 163 0.5029 1.1 13.09 1.1 0.1887 0.2 0.99 2686 47 2626 21 2731 6   

1737-9 196 73.0 0.4088 1.1 9.138 1.1 0.1621 0.3 0.95 2352 40 2209 20 2478 12   

1737-10 264 93.2 0.3907 1.2 9.154 1.3 0.1699 0.4 0.95 2354 43 2126 23 2557 13   

1737-11 84.7 33.9 0.4339 1.2 10.67 1.3 0.1784 0.6 0.89 2495 46 2323 24 2638 20   

1737-12 147 50.7 0.3809 1.8 8.014 1.9 0.1526 0.5 0.97 2233 64 2080 33 2375 16   

1737-15 315 140 0.4943 1.2 12.46 1.3 0.1828 0.3 0.97 2640 52 2589 24 2678 11   

1737-16 119 48.3 0.4479 1.2 10.40 1.3 0.1684 0.4 0.95 2471 48 2386 23 2542 13   

1737-17 127 51.1 0.4328 1.2 10.01 1.3 0.1677 0.5 0.93 2435 47 2318 24 2534 16   

1737-18 223 104 0.5042 1.1 13.45 1.1 0.1935 0.2 0.98 2712 47 2632 21 2772 7   

1737-19 216 82.2 0.4161 1.1 9.086 1.2 0.1584 0.4 0.95 2347 42 2243 21 2438 12   

1737-20 118 35.8 0.3344 1.2 6.711 1.3 0.1455 0.6 0.89 2074 38 1860 23 2294 21   

1737-21 234 91.1 0.4437 1.3 10.92 1.3 0.1785 0.3 0.97 2516 50 2367 24 2639 10   

1737-22 125 47.1 0.4299 1.3 10.24 1.5 0.1728 0.7 0.87 2457 50 2305 27 2585 24   

1737-23 302 84.1 0.3072 1.3 4.604 1.4 0.1087 0.5 0.93 1750 38 1727 22 1778 19   

1737-24 63.7 31.0 0.5304 1.2 13.92 1.3 0.1903 0.5 0.92 2744 54 2743 25 2745 17 2745 17 (<0.1)

1737-25 108 47.1 0.4741 1.2 11.32 1.3 0.1732 0.4 0.94 2550 49 2502 23 2588 14   

1737-26 99.8 49.0 0.5397 1.1 14.48 1.2 0.1945 0.4 0.95 2781 51 2782 22 2781 12 2781 13 (<0.1)

1737-27 152 62.3 0.4467 1.3 11.18 1.3 0.1815 0.3 0.97 2538 50 2380 24 2667 11   

1737-28 199 95.9 0.5256 1.3 13.58 1.3 0.1874 0.2 0.98 2721 57 2723 25 2719 8 2719 10 (<0.1)

1737-29 449 218 0.5163 1.3 13.81 1.3 0.1939 0.1 0.99 2736 56 2684 24 2776 4   

1737-30 255 126 0.5309 1.1 13.84 1.1 0.1892 0.2 0.99 2739 50 2745 21 2735 6 2735 9 (0.16) 

1737-31 97.6 41.6 0.4535 1.2 11.29 1.3 0.1806 0.4 0.94 2547 50 2411 24 2658 15   

1737-32 109 46.7 0.4621 1.1 11.50 1.2 0.1804 0.4 0.94 2564 45 2449 22 2657 14   

1737-33 281 101 0.3832 1.2 8.997 1.3 0.1703 0.3 0.98 2338 44 2091 23 2561 9   

1737-34 168 72.8 0.4636 1.2 11.43 1.3 0.1788 0.4 0.95 2559 51 2456 24 2641 14   

1737-35 44.5 13.8 0.3296 1.2 5.123 2.0 0.1127 1.6 0.58 1840 37 1837 33 1844 59   

1737-36 107 49.0 0.4852 1.2 12.37 1.3 0.1849 0.4 0.95 2633 51 2550 24 2697 14   

1737-37 216 38.2 0.1901 1.2 2.710 1.9 0.1034 1.5 0.62 1331 25 1122 28 1686 56   

1737-38 110 33.3 0.3244 1.3 4.839 1.5 0.1082 0.8 0.86 1792 41 1811 25 1769 28   

1737-39 101 30.2 0.3185 1.1 4.731 1.4 0.1077 0.8 0.80 1773 35 1782 23 1761 31   

1737-40 68.0 32.3 0.5075 1.2 12.91 1.3 0.1846 0.5 0.91 2673 50 2646 24 2694 17   

1737-41 201 93.9 0.4990 1.2 12.49 1.2 0.1815 0.2 0.98 2642 51 2610 22 2666 8   

1737-42 118 33.0 0.3060 1.2 4.467 1.5 0.1059 0.8 0.84 1725 37 1721 24 1730 29   
      † Errors are c. ± 10%.  # Measured ratios not corrected for common Pb.   ** 207Pb/235U - 206Pb/238U error correlation coefficient calculated 

      following Ludwig (1993). 
      ‡ Age errors quoted at the 1σ level. Concordia ages and goodness of fit expressed as MSWD were calculated using Ludwig 2003.      
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