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Summary 

Pyrithione (PT) is used as an active agent in some shampoos and other household products, 

and consequently may enter freshwaters following use. Dissolved metal (copper, zinc) salts 

of pyrithione are toxic to freshwater organisms, with toxicity dependent upon the metal. For 

this reason, the chemical speciation of pyrithione may be important in controlling its 

environmental toxicity. The objective of this work was to gather and assess data on the 

binding equilibria of pyrithione that could be used to assess its environmental speciation. 

Binding constants for the proton and a small number of metals were found in the literature. 

They were supplemented by binding constants for other metals estimated from constants for 

a ligand with an analogous structure to pyrithione. Using these tentative binding constants 

demonstration calculations of pyrithione speciation in a circumneutral freshwater were done. 

Pyrithione speciation was dominated by the binding of iron(III) with smaller contributions from 

aluminium, copper and zinc. Speciation was highly dependent upon water pH and the 

concentration of natural organic matter. These calculations demonstrate the feasibility of 

modelling to elucidate the speciation of pyrithione in freshwaters; for more robust 

calculations, experimental determination of more binding constants is needed. Knowledge of 

pyrithione speciation may be useful in other aspects of its risk assessment, specifically in 

understanding and predicting the rate at which it degrades in the natural environment. 
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1. Introduction 

Pyrithione (PT) is an organic chemical that has been used for several decades in various 

forms as an industrial biocide, particularly as a marine ship antifouling agent. It is also used 

as an active agent in anti–dandruff shampoos, in the form of the compound zinc pyrithione.  

This latter use represents the main source of pyrithione to the natural environment

1. Pyrithione compounds have been shown to be highly toxic to organisms (e.g. 2,3,4) although 

previous risk assessment1 has suggested that the effects may be limited by its tendency to 

undergo photolytic degradation in sunlight. Toxicity testing and risk assessment for pyrithione 

and metal salts has previously focused on the marine environment(e.g.3,4) with some limited 

testing of freshwater organisms (e.g. 2,5). Where comparative testing was done with zinc and 

copper(II) pyrithione complexes, the latter was consistently found to be more toxic, indicating 

an important role of the complexing metal ion in exerting the overall effect. Although 

pyrithione is largely used commercially as a zinc or copper(II) compound, it is known (e.g.6) 

that it can form complexes with a range of metal ions such as manganese and iron(II). 

Pyrithione is known to be an ionophore for zinc and has also been shown to act as such for 

lead7; bioaccumulation of both uncomplexed and zinc–complexed pyrithiones has been 

demonstrated8. Therefore, knowledge of the distribution of pyrithione among its different 

chemical forms (speciation) in the environment is likely to be an important aspect of refining 

current assessments of its ecological risks. While measurement of different forms of a 

chemical in the environment may be theoretically possible it is frequently technically 

complex. For the purposes of risk assessment and prediction, modelling of the chemical 

speciation is a highly useful tool. In order to robustly model speciation it is necessary to know 

or to confidently estimate equilibrium constants for the reactions of the compound in question 

with the other components of the system under analysis. As well as trace elements such as 

copper and zinc, these components include the proton, major ions such as calcium and 

magnesium, and possible competing ions such as aluminium and iron. It is also necessary to 

know the constants for the other interactions (e.g. metal-ligand binding) within the system as 

these side-reactions will influence the speciation of the compound in question. In natural 

systems the most important class of ligands are those comprising natural organic matter 

(NOM), which is composed mainly of humic substances (humic and fulvic acids). The latest 

generation of speciation models (e.g. WHAM, ECOSAT) include models for the interactions 

of metals with humic substances and so are ideal for modelling the environmental speciation 

of specific ion–binding compounds such as pyrithione. 
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The purpose of the work described here is to assess the current state of knowledge with 

respect to modelling the speciation of pyrithione in natural systems, specifically: 

1. To review the literature and identify stability constants for the binding of ions (e.g. zinc, 

copper) to pyrithione. 

2. To assess whether a speciation model (such as WHAM) could be used to estimate the 

speciation of pyrithione in river waters. 

3. To outline data needs to carry out  a detailed assessment of pyrithione speciation and 

refine current risk assessments. 

2. Ion binding chemistry of pyrithione 

Searches were initially done to identify possible equilibria of pyrithione with cationic entities 

(protons and metals) and to find literature containing determinations of binding constants for 

these reactions. Searches indicated that pyrithione undergoes a single proton dissociation 

reaction within the likely range of environmental pH values, and can potentially form 1:1, 1:2 

and 1:3 complexes with metal ions (6,9): 

PT- + H+ ↔ HPT; Ka 

PT- + Mz+ ↔ MPT(z-1)+; β1 

MPT(z-1)+ + Mz+ ↔ M(PT)2
(z-2)+; β2 

M(PT)2
(z-2)+ + Mz+ ↔ M(PT)3

(z-3)+; β3 

where M is a binding metal ion of charge z. Thus for ions such as Zn2+ and Cu2+ the M(PT)2 

complex is neutral while for others such as Al3+ and Fe3+ it is the M(PT)3 complex that is 

neutral. Two protonation equilibria have been identified (6) but only one (shown) is relevant at 

environmental concentrations.  

Jones and Katritzky10 measured a proton dissociation constant for pyrithione corrected to 

standard conditions (T = 298K and zero ionic strength). Sun and co–workers (6) measured 

metal binding constants at T = 298K and an ionic strength of 0.1M. These are summarised in 

Table 1. The metal binding constants have been corrected to standard conditions. No 

measurements of reaction enthalpies could be found in the literature. 
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Table 1. Measured binding of pyrithione to protons and metals. 

Binding 

ion 

Reaction log Ka/log β1 log 

Ko
a/log βo

1
¶ 

Reference

H+ PT- + H+ ↔ HPT 4.67 4.67 10 
Mn2+ PT- + M2+ ↔ MPT+ 3.1 3.5 6 
Fe3+ " 4.8 5.2 11 
Co2+ “ 4.8 5.2 6 

Ni2+ “ 5.1 5.5 6 
Cu2+ “ >8.5 — 6 
Zn2+ “ 5.3 5.7 6 

¶ Constants corrected to standard conditions (T = 298K, ionic strength = 0). 

 

Although these data are certainly useful they are rather limited in scope, since they do not 

include binding constants for other metal ions of possible importance (e.g. Al3+), nor do they 

include constants for the formation of 1:2 and 1:3 complexes. Thus, the use of these binding 

constants alone in a speciation model might provide a misleading picture of pyrithione 

speciation. In order to estimate binding constants for other reactions, it is necessary to 

consider binding of metals to ligands having a binding site structure analogous to the HO–N–

C=S binding site of pyrithione, which binds a metal ion by formation of a five-membered 

chelate ring. Unknown binding constants for the reaction of a metal ion with the ligand of 

interest can then be estimated from the constant for binding to the analogous ligand, given a 

regression relating binding constants for the analogous ligand to the ligand of interest. Such 

a family of ligands are the hydroxamic acids (Figure 1), which contain an OH–N–C=O  

Figure 1. Structures of pyrithione (left) and a hydroxamic acid (right). 

 

binding site. Sun and co–workers measured binding of Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ to 2-

hydroxypyridine-1-oxide (1,2–HOPO), the hydroxamic acid analogue of pyrithione (i.e. with 

an O atom replacing the S of pyrithione). The correlation between pairs of binding constant 

for each metal was significant (r = 0.996; p < 0.001), suggesting that 1,2–HOPO was a 

suitable analogue; however, a literature search indicated that there were insufficient 
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constants for the binding to 1,2–HOPO of metals for which constants for binding to PT were 

required. Therefore, a systematic search was conducted of the NIST Database of Critically 

Selected Binding Constants12 for a hydroxamic acid having a suitably comprehensive  

Table 2. Measured binding of acetohydroxamic acid (AHA) to protons and metals. 

Binding 

ion 

Reaction log βn log βo
n
¶ 

Al3+ AHA- + Mz+ ↔ MAHA(z-1)+ 8.0 8.6 
Ca2+  “ 2.4 2.9 
Mn2+ “ 4.0 4.5 
Fe2+ “ 4.8 5.3 
Fe3+ “ 11.4 12.1 
Co2+ “ 5.0 5.4 
Ni2+ “ 5.2 5.6 
Cu2+ “ 7.9 8.4 
Zn2+ “ 5.2 5.7 
Cd2+ “ 4.5 5.0 
Pb2+ “ 6.7 7.2 
Al3+ AHA- + MAHA(z-1)+ ↔ M(AHA)2

(z-2)+ 7.3 7.8 
Mn2+ “ 2.9 3.1 
Fe2+ “ 3.7 3.9 
Fe3+ “ 8.4 8.9 
Co2+ “ 3.9 4.1 
Ni2+ “ 4.1 4.3 
Cu2+ “ 6.2 6.4 
Zn2+ “ 4.9 5.1 
Cd2+ “ 3.3 3.5 
Pb2+ “ 4.0 4.2 
Al3+ AHA- + M(AHA)2

(z-2)+ ↔ M(AHA)3
(z-3)+ 6.2 6.7 

Fe3+ " 7.1 7.6 
¶ Constants corrected to ionic strength = 0. For Co2+, Ni2+, Fe3+, Zn2+, Cu2+, T = 298K, for the remainder, T = 293K. 

database of metal binding constants. One ligand, acetohydroxamic acid  (In Figure 2, R1 = H 

and R2 = CH3), was found to have a reasonably comprehensive set of binding constants 

available; these are summarised in Table 2.  

It was not possible to correct all the constants found to standard temperature (298K) since no 

enthalpy data were available. The constants found were all measured at T = 298K or T = 

293K; the difference between the measured values at 293K and the values corrected to 

298K is likely to be small for these simple binding equilibria. 

With the dataset in Table 2, binding constants for the 1:1 reaction between PT and the ions 

Ca2+, Al3+, Fe2+, Fe3+, Cu2+, Cd2+ and Pb2+ were estimated, from the expression for the 

regression between pairs of 1:1 binding constants for PT and AHA for Mn2+, Co2+, Ni2+ and 

Zn2+. The 1:1 binding constant quoted in Table 1 for Fe3+ was excluded from these 
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calculations since it was significantly lower than would be expected given the binding 

constant for AHA, and appears to be highly suspect. The regression obtained was: 

log β1 (PT) = 1.819log β1 (AHA) – 4.69; R2 = 0.997, p < 0.001 

which was used to estimate the missing b1 values for PT. For the estimation of 1:2 binding 

constants (β2 values) for PT, the solution was less clear. No 1:2 binding constants for PT 

were found in the literature so direct regression against β2 values for AHA was not an option. 

However, inspection of the log β1 and log β2 values for AHA showed a very strong 

relationship: 

log β2 (AHA) = 0.775log β1 (AHA); R2 = 0.877; p < 0.001, 

Thus, constants for the stepwise binding of a second PT were estimated by assuming the 

same relationship between log β1 and log β2 for PT as was found for AHA. 

The AHA binding constants included values for the formation of 1:3 complexes with Al3+ and 

Fe3+, and it is likely that these metals can form analogous complexes with PT. Scarrow and 

co–workers13 synthesised the 1:3 complex of Fe3+ with 1,2–HOPO and calculated a β3 of 

~7.6. Based on these data, highly tentative estimates of 7.0 and 8.0 for the β3 of Al3+ and 

Fe3+ were made. Given their nature, these constants were not used in the main 

demonstration calculations but were incorporated into a scoping calculation to consider their 

possible importance in the overall speciation of PT. 

The full set of binding constants for PT is summarised in Table 3. All but five of the constants 

have been obtained by estimation using the binding constants for the analogue ligand AHA. 

Thus the robustness of these estimates relies upon the correctness of the assumption that 

AHA is a suitable analogue for PT in terms of relative metal binding strength, and the relative 

binding strengths of 1:1 and 1:2 complexes. Also, the PT binding strengths (β1 values) from 

which the remainder of the binding constants have been derived cover a relatively small 

range of binding strengths (~2 log units), thus for some metal ions (particularly, Al3+ and Fe3+) 

the estimated binding constants are extrapolations along the regression line. The constants 

should therefore be regarded as tentative. Nonetheless, the derived values should allow 

relative binding strengths and trends in metal-PT binding to be assessed. 

The strength of metal binding varies in the order Fe3+ > Al3+ > Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ 

> Fe2+ > Cd2+ > Mn2+ > Ca2+. This is broadly consistent with the expected order of binding 

strength for ligands that have binding sites comprising O(-II) moieties, and as such is 

consistent with the participation of O(-II) and S(-II) moieties in the binding of metals. 
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Table 3. Measured and estimated proton and metal binding constants for PT. Estimated 
constants are given in italics 

Binding 

ion 

Reaction log Ko
a/log βo

n
¶ 

H+ PT- + H+ ↔ HPT 4.67 
Al3+ PT- + Mz+ ↔ MPT(z-1)+  11.0 
Ca2+ “ 0.6 
Mn2+ “ 3.5 
Fe2+ “ 5.0 
Fe3+ “ 17.2 
Co2+ “ 5.2 
Ni2+ “ 5.5 
Cu2+ “ 10.6 
Zn2+ “ 5.7 
Cd2+ “ 4.4 
Pb2+ “ 8.4 
Al3+ PT- + MPT(z-1)+ ↔ M(PT)2

(z-2)+ 8.5 
Ca2+ “ 0.5 
Mn2+ “ 2.7 
Fe2+ “ 3.8 
Fe3+ “ 13.4 
Co2+ “ 4.0 
Ni2+ “ 4.3 
Cu2+ “ 8.2 
Zn2+ “ 4.4 
Cd2+ “ 3.4 
Pb2+ “ 6.5 

¶ Constants corrected to ionic strength = 0. For Co2+, Ni2+, Fe3+, Zn2+, Cu2+, T = 298K, for the remainder, T = 293K. 

3. Chemical speciation of PT in freshwaters 

The next stage of assessment is to carry out speciation calculations for representative 

freshwaters.  This was done using the WHAM (Windermere Humic Aqueous Model) model, 

version 6.1 (http://windermere.ceh.ac.uk/Aquatic_Processes/wham). WHAM includes a 

description of the chemistry of natural organic matter (humic substances), thus allowing a 

more realistic depiction of the speciation of natural waters. 

To run WHAM, a chemical composition for the water of interest was required. This would 

ideally comprise measurements of pH, temperature, dissolved organic matter (DOC) and 

concentrations of major ions, Fe, Al, trace metals and any ligands considered significant (for 

our purposes this will comprise PT). For our purposes, demonstration calculations using a 

generic river water composition were used, rather than using specific water compositions. 
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The basic water composition used for the demonstration calculations is given in Table 4. The 

composition represents a moderately hard water typical of a large lowland river. Trace metal 

concentrations are set to levels typical of moderately contaminated UK lowland systems. 

Aluminium and iron(III) concentrations are not specified; rather, the activities of their free ions 

are calculated assuming them to be controlled by the metal hydroxide. Recent work14,15 has 

shown this to be a reasonable assumption and a more reliable way to speciate these metals 

than to use measured dissolved concentrations. Standard solubility products of 8.5 and 2.7, 

respectively, are used in calculations. The dissolved organic carbon concentration was set to 

that of a typical temperate lowland system. A temperature of 298K was assumed for the 

calculations. While not representative of temperate systems, it can be considered sufficient 

for these demonstration calculations since no information on the temperature dependence of 

PT binding constants was available. In order to simplify calculations and reduce the number 

of outputs, some relatively weakly binding trace elements (Fe(II), Co, Ni) were not included in 

the composition. 

The concentration of PT was set to 100nM (12.7 µg/l), based on the measurement of Mackie 

and co–workers16 in the Mersey Estuary, UK. This was the only measurement of PT 

concentration in a natural environment identified in the literature and so was taken as broadly 

representative, although it was most likely derived mainly from ship anti–fouling agent use. 

Initially, a set of predictions of PT speciation was made for a range of pH from 5 to 8, by 

adjusting Ca concentration from the default value given in Table 4. Prediction results are 

Table 4. Basic water composition for WHAM calculations 

Determinand Value Units 
pH 7.5 — 
Temperature 298 K 
DOC 5 mg/l 
Dissolved Na 11.5 mg/l 
Dissolved Mg 1.2 mg/l 
Dissolved Al Controlled by Al(OH)3 solubility. 
Dissolved K 2.0 mg/l 
Dissolved Ca 40 mg/l 
Dissolved Mn 100 µg/l 
Dissolved Fe(III) Controlled by Fe(OH)3 solubility. 
Dissolved Cu 5 µg/l 
Dissolved Zn 20 µg/l 
Dissolved Cd 0.1 µg/l 
Dissolved Pb 2 µg/l 
Dissolved Cl 19.5 mg/l 
Dissolved SO4 24 mg/l 
Alkalinity 155 mg/l CaCO3 
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shown in Figure 2. The top chart shows the proportional distribution of the major predicted 

forms of PT, i.e. those having an abundance of 0.1% or greater, for at least one pH value. 

The lower chart shows the complete predicted speciation. Complexes with metals dominated 

the predicted speciation although a non–negligible amount of the dissociated species PT- 

was predicted to form when pH > 7. Metal complexes are strongly dominated by Fe(III), 

particularly the Fe(III)(PT)2
- complex. Small amounts of copper(II) complexes were predicted 

to form when pH > 6.5 and some aluminium complex when pH < 6. Zinc complex made a 

small (<1% of the total) contribution when pH > 7.5. 

The full predicted speciation is also shown in Figure 2. This presents a complex picture 

containing a large number of PT species. Many species were predicted to comprise only a 

negligible proportion of the total PT, including all the uncharged species (HPT and M(PT)2 

where M has a charge of +2) with the exception of Cu(PT)2. 

Allowing the formation of 1:3 complexes with Al3+ and Fe3+ had little overall effect on the 

predicted speciation. Al(PT)3 formed <0.1% of the total PT at all pH values. Fe(PT)3 formed 

up to ~8% of the total PT at pH 8 but overall the change in Fe(III)–bound PT was negligible. 

Dissolved organic carbon (DOC) is an important ligand for trace metals in natural waters and 

as such is expected to be an important competitor for metals with PT. In order to assess the 

likely importance of this competition, a sensitivity calculation was performed, using the same 

water composition but setting the DOC concentration to half the original value. The computed 

distribution of major PT forms is shown in Figure 3. 

Changing the amount of DOC present in the system had a notable effect on the speciation at 

pH > 6.5, with a greater degree of copper binding to PT predicted. The extreme case of zero 

DOC resulted in extensive formation of CuPT+ at higher pH although it must be noted that 

this is not a physically realistic simulation but instead illustrates the importance of DOC in 

competing with PT to bind copper. 
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Figure 2. Speciation of Pt in a model river water with DOC = 5 mg/l. Top: % distribution of PT 
among its major forms. Bottom: complete calculated speciation of PT. 
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Figure 3. % distribution of PT among its major forms in a model river water with DOC = 2.5 mg/l 
(top) and 0 mg/l (bottom).  
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4. Discussion  

Clearly the very strong binding of Fe(III) to PT is predicted to exert an important control on 

the speciation of the ligand in freshwaters. Based on these results, we would expect PT 

discharged into freshwaters as a salt of another metal to transform predominantly into Fe(III) 

complexes, although at circumneutral pH copper binding may be important if DOC 
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concentrations are low. Aluminium may become more important at relatively low pH, and 

copper at relatively high pH, depending upon the relative concentrations of metals and PT in 

the system. Complexes of other metals, including zinc, do not appear to be significant unless 

their dissolved concentrations are elevated above those used for the calculations. This has 

important implications for risk assessment as it implies that Predicted Environmental 

Concentrations for metal pyrithiones may be flawed by not taking shifts in PT speciation into 

account. Such shifts in speciation, and the resulting changes that may occur in the toxicity 

characteristics of the PT, need to be incorporated into risk assessments. This requires more 

knowledge on the toxicity of different species of PT and on the extent to which PT transforms 

into different complexes on entering the environment. The set of tentative binding constants 

that we have derived here represents a start to gathering such knowledge but more 

experimental work is required to validate the approach taken. There is a need for firmer 

knowledge of the metal complexation chemistry of PT as a means to further understanding of 

its effects in the environment. In the first instance, binding constants for iron(III), copper and 

aluminium, and possibly zinc, need to be better understood. Knowledge of the temperature 

dependence of binding constants would also be highly useful. 

Clearly, toxicity studies on PT should be interpreted in terms of the speciation of the ligand 

and any associated metals. Currently there has been little comprehensive work done and 

most has focused on the relative abundances of zinc and copper complexes in artificial test 

systems. Doose and co–workers9 studied the effects of mixtures of PT with zinc, copper and 

iron(III) on rat leukemic cells, finding that the toxicity was relatively similar and concluding 

that PT binding to metals was a relevant aspect of it toxicity that required further study.  

Although not part of the original scope of this work, the possibility of a relationship between 

PT speciation and its photolytic degradation requires consideration, as the literature suggests 

that degradation may well be a crucial aspect of the environmental behaviour of PT. 

Literature reports that metal pyrithiones can be rapidly degraded in the presence of ultraviolet 

light (e.g.16,17) with half lives of the order of minutes to hours reported, but there are studies 

reported where pyrithione appears to be more stable (e.g.18). It is plausible that the 

speciation of the PT has an influence on its stability and hence the potential for harm to the 

environment. Galvin et al.19 reported that only the undissociated fraction of PT (i.e. HPT) can 

be photolysed; in our speciation calculations, this form consistently represents <0.1% of the 

total PT. There is a need to investigate the stability of PT in freshwaters as a function of its 

speciation. 
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5. Conclusions and recommendations 

1. A set of tentative binding constants for pyrithione can be derived from the literature and 

by the use of an analogous ligand to estimate missing values. The binding constants can 

be used to estimate the equilibrium speciation of pyrithione in freshwaters. 

2. Pyrithione is predicted to complex strongly to metals in circumneutral freshwater. Binding 

is particularly strong to iron(III), aluminium and copper. The extent of binding depends 

upon the pH, concentrations of metals and of competing ligands in natural organic matter. 

3. Binding constants for PT complexation, particularly to the strongly binding metals noted in 

2., need to be determined experimentally in order to perform more robust and detailed 

assessments of pyrithione speciation in the environment. Concentrations of pyrithione in 

the freshwater environment need to be measured, particularly in locations where high 

concentrations might be expected. 

4. The speciation of pyrithione has not been fully considered in previous toxicity testing. 

More focused approaches to testing are needed, that take the speciation in natural 

waters into account and seek to relate toxic effects to specific forms of PT. The 

relationship between the photolysis and degradation of PT in natural systems and its 

speciation also needs investigation so that if such a relationship exists it can be 

incorporated into risk assessment methods. 
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