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ABSTRACT 

The Cenozoic sedimentary basins on the Atlantic margin of NW Britain contain a 

remarkable record of tectonically influenced post-breakup sedimentation. We have mapped 

the distribution and quantified the solid grain volume of four unconformity-bound 

successions in the region: the Eocene (~6–8 × 104 km3), Oligocene (~2 × 104 km3), 

Miocene−Lower Pliocene (~4–5 × 104 km3) and Lower Pliocene−Holocene (~4–5 × 104 km3) 

complementing previous work on the Paleocene succession. Approximately 80% of the total 

Cenozoic sediment volume on the Atlantic margin of NW Britain was deposited in Eocene 

and later times. The relative volumes of the Cenozoic succession do not support previous 

claims that the Paleocene was the main period of Cenozoic uplift and erosion of sediment 

source areas. Rather, the Cenozoic sedimentary basins on the Atlantic margin of NW Britain 

record the detritus of four major episodes of Cenozoic uplift of the British Isles (Paleocene, 

Eocene–Oligocene, Miocene and Pliocene–Pleistocene). 

INTRODUCTION 
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The uplift and deformation of passive continental margins is a matter of wide debate 

and interest, because passive margins are generally expected to experience only decaying 

thermal subsidence during the post-rift stage of their evolution (Praeg et al., 2005). The 

Cenozoic uplift and deformation of the British Isles and the adjacent Atlantic Margin is an 

example that has been well studied both onshore and offshore using data largely acquired in 

the search for hydrocarbons. We previously analyzed the exhumation history of the British 

Isles using Apatite Fission Track Analysis (AFTA) and other quantitative techniques, 

concluding that there were several episodes of Cenozoic exhumation (Paleocene, Eocene–

Oligocene and Miocene; Hillis et al., 2008; Holford et al., 2009). We argued that the 

distribution and chronology of Cenozoic exhumation are not consistent with a dominant 

control by Paleocene uplift induced by the Iceland plume, as has been proposed (White and 

Lovell, 1997; Jones et al., 2002), and that episodic intraplate compression, driven by plate 

boundary forces was the principal cause of uplift responsible for the observed multiple phases 

of exhumation (Holford et al., 2009).  

The Cenozoic sedimentary rocks in the basins surrounding the British Isles, with 

particular focus on the Paleocene, have been interpreted as the erosional products of source 

areas uplifted due to the Iceland plume, and sedimentary patterns have been taken as a 

potentially sensitive measure of plume activity (White and Lovell, 1997; Jones et al., 2002). 

Here we present new two-way travel-time (TWTT) thickness maps and estimates of the solid 

grain sediment volume for four distinct, unconformity-bounded, post-breakup Cenozoic 

sedimentary successions within the Rockall and Faroe-Shetland Basins off NW Britain: the 

Eocene, Oligocene, Miocene–Lower Pliocene, and Lower Pliocene–Holocene (Fig. 1). 

Approximately 80% of the total Cenozoic sediment volume on the Atlantic margin off NW 

Britain was deposited in Eocene and later times, hence Paleocene plume-related uplift was 

not a dominant control on Cenozoic sedimentation in the area. Rather, the ages of the mapped 
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successions correlate closely with recognized episodes of uplift in the British Isles during the 

Eocene–Oligocene and Miocene (Holford et al., 2009) and also in the Pliocene– Pleistocene 

(e.g., Maddy, 1997; Watts et al., 2005). In this paper, we describe the post-breakup Cenozoic 

sedimentary successions within the northern Rockall and Faroe-Shetland basins and discuss 

their implications for Cenozoic uplift of the British Isles and its continental shelf. 

CENOZOIC POST-RIFT SEDIMENT DISTRIBUTION OFF NW BRITAIN 

Our maps are based on four decades of seismic acquisition and borehole drilling by 

the British Geological Survey as part of its mapping of the UK continental margin, 

supplemented by additional industry and non-industry data as part of the EC-funded 

STRATAGEM project (further details of data used and mapping methodology are provided 

in Appendix DR11). These data reveal multiple sediment sources to the deep-water basins 

throughout the Cenozoic, and suggest that sedimentation has not declined in any systematic 

manner since breakup. This stepwise pattern of sedimentation is incompatible with the notion 

that the Cenozoic succession is dominated by erosional detritus from sediment source areas 

uplifted in the Paleocene by the Iceland plume (e.g., Jones et al., 2002). 

Sedimentation in both the Rockall and Faroe-Shetland basins continued in several 

pulses throughout the Eocene, as reflected by the deposition of a series of progradational 

shelf-margin to basinal sequences derived from the Hebrides and West Shetland shelves, the 

Faroe Shelf, and the Rockall Plateau (Andersen et al., 2002; Praeg et al., 2005; McInroy et 

al., 2006; Fig. 2A). Our maps also show focused intrabasinal sedimentation during the 

Oligocene, particularly in the northeast Rockall Basin, and in the Faroe-Shetland Basin 

during the Miocene–Early Pliocene (Egerton, 1998; Elliott et al., 2006). This reflects the 

contemporary response of sedimentation to compressional tectonics during these times 

(Stoker et al., 2005; Figure 2B−C). Although axially-transported deposition from deep-water 

bottom currents was instigated in the Late Eocene, as reflected in the sedimentary 
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architecture of the Oligocene and younger basinal deposits (Fig. 1), much of this material was 

derived from contemporary erosion of the adjacent continental margin (Laberg et al., 2005). 

The Early Pliocene–Pleistocene interval witnessed significant (50−100 km) expansion of the 

shelf-margin off NW Britain and the Faroe Islands, as sedimentation became focused in a 

number of discrete prograding sediment wedges (Figs. 1 and 2D). Climate change and 

glaciation are known to have made a major contribution to the sediment budget during this 

interval. However, the onset of prograding wedge development on the NW British margin 

was linked to large-amplitude seaward tilting of the margin , which occurred up to 1 My prior 

to mid-latitude glaciation (Stoker, 2002; Praeg et al., 2005). 

We estimated solid grain sediment volumes by converting our TWTT maps into 

depth-maps, using representative end-member velocities for the Cenozoic succession of 1.5 

and 2.0 km s-1, and then subtracted the pore-space volume as predicted by a standard 

porosity-depth relationship (Appendix DR2). Our results indicate that the northern Rockall 

Basin and the Faroe-Shetland Basin contain volumes of ~57,500–76,800 km3 for the Eocene 

succession, ~16,300–22,500 km3 for the Oligocene succession, ~35,100–48,800 km3 for the 

Miocene–Lower Pliocene succession and 37,900–52,100 km3 for the Lower Pliocene–

Holocene succession. The volume of Eocene sediment compares well with previous estimates 

for the Faroe Shetland Basin alone (~48,000 km3: Smallwood, 2008) and is larger than the 

volume of Eocene sediment in the northern North Sea Basin (~51,598 km3: Liu and 

Galloway, 1997). It is also larger than the volume of Paleocene sediment in the Faroe-

Shetland Basin (~35–55,000 km3: Smallwood, 2005) and is significantly higher than 

estimates of the Paleocene solid sediment volume in the northern North Sea Basin (i.e., 

26,000 km3: White and Lovell, 1997; 36,301 km3: Liu and Galloway, 1997). Our analysis 

indicates a reduction in sediment input to the Rockall and Faroe-Shetland Basins during the 

Oligocene in comparison to the Eocene, but our volumetric estimate for the Miocene–Lower 
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Pliocene succession is comparable to the volumes of Paleocene and Eocene sediment 

estimated for the Faroe-Shetland Basin by Smallwood (2008). Perhaps the most surprising 

aspect of our results is the volume of the Lower Pliocene–Holocene succession, given the 

comparatively short time interval (~5 My) this succession represents. Its volume is 

comparable to the Paleocene succession of the Faroe-Shetland Basin and is considerably 

larger than the volume of Paleocene sediment in the northern North Sea. Our results thus lend 

little support to the notion that the acme of Cenozoic sedimentation around the British Isles 

occurred during the Paleocene, as the Paleocene succession constitutes only ~20% of the total 

Cenozoic solid grain sediment volume off NW Britain. 

CORRELATION WITH THE UPLIFT HISTORY OF THE BRITISH ISLES AND 

IMPLICATIONS FOR POST-BREAKUP TECTONIC HISTORY OF THE 

ATLANTIC MARGIN 

Eocene, Oligocene, Miocene–Early Pliocene and Early Pliocene–Holocene sediment 

pulses have been identified in the basins of the Atlantic Margin, in addition to the well 

documented pulses of Paleocene age that have been described from the North Sea and Faroe-

Shetland basins (e.g., White and Lovell, 1997; Smallwood, 2008). This record of ~60 Myr of 

near-continual sediment pulsing implies major uplift and erosion (exhumation) throughout 

the Cenozoic across likely source areas, such as the British Isles and its continental shelf. 

Previous studies of the Cenozoic sedimentary record of the Atlantic Margin have emphasized 

the role of the syn-breakup Iceland plume as the primary tectonic influence on sedimentation 

patterns (White and Lovell, 1997; Jones et al., 2002). However, we have shown that 

significant tectonically driven sedimentation continued throughout the Cenozoic Era. Plume-

related underplating is thought to be restricted to the Paleocene (White and Lovell, 1997) and 

thus may have influenced contemporary sedimentation which comprises ~20% of the total 

Cenozoic succession, but cannot account for uplift of the source areas of the Eocene, 
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Oligocene, Miocene–Early Pliocene and Early Pliocene–Holocene phases of sedimentation. 

Furthermore, a recent study of the Cenozoic mass flux history of the Iceland plume (Poore et 

al., 2009) has shown that plume flux (and thus dynamic support) peaked in the early Eocene 

and subsequently declined throughout most of the Cenozoic, indicating that dynamic support 

by the Iceland plume is unlikely to have controlled later sedimentation pulses. However, from 

Miocene times onwards, the body forces generated by plume-related geoid undulation around 

Iceland are likely to have increased horizontal stress levels and contributed to widespread 

Miocene compression in the continental margins surrounding Iceland (Doré et al., 2008). 

A recent synthesis of AFTA data (which can provide constraints on the timing of 

exhumation-related cooling) from the British Isles has revealed a complex, multi-stage 

exhumation history for this area (Holford et al., 2009). This synthesis identified several 

distinct regional episodes of km-scale exhumation beginning between 65 and 55 Ma (which 

may correlate with the early Paleogene uplift described above), between 40 and 25 Ma and 

between 20 and 15 Ma. The latter is the major episode across much of the southern British 

Isles and is characterised by deeper burial of Paleogene rocks in the Irish Sea and southern 

England by ~1.5 km prior to uplift beginning in the Early to Mid-Miocene (Hillis et al., 2008; 

Holford et al., 2009). There is also widespread geomorphological evidence for significant 

uplift and exhumation of south–central England during the Late Pliocene– Pleistocene 

(Maddy, 1997; Watts et al., 2005) that is not identified by AFTA data (which is insensitive to  

the thermal histories of samples below ~60 °C). These episodes correlate closely with plate 

boundary reorganizations during the Cenozoic era (Fig. 3; Holford et al., 2009), thus 

implying that plate boundary forces exert a key control on vertical motions across this region. 

Changes in the nature of plate boundaries due to plate reorganizations lead to fluctuations in 

the magnitude of intraplate stresses (e.g. Gölke and Coblentz, 1996). Uplift and deformation 

along the Atlantic Margin is manifested by numerous compressional growth anticlines 
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(amplitudes ≤4 km; axial traces ≤ 250 km) and reverse faults that have deformed the 

Cenozoic succession. In a similar manner to the multiphase uplift and exhumation history of 

the British Isles, detailed seismic-stratigraphy studies (Andersen et al., 2002; Stoker et al., 

2005; Ritchie et al., 2008) have documented an episodic chronology of compressional 

deformation along the margin (Fig. 3). 

The regional impact of these exhumation episodes is demonstrated by their temporal 

correlation with the unconformities that bound the major Cenozoic sediment sequences along 

the Atlantic Margin (Fig. 3). Of particular note are the large-amplitude stratal rotations that 

occurred in association with the formation of the Upper Eocene (≤4°) and intra-Pliocene 

(<1°) unconformities west of Britain and Ireland, indicative of long-wavelength sagging and 

tilting, which Praeg et al. (2005) attributed to evolving patterns of upper mantle convection. 

Incremental rotation and landward truncation of the shelf-margin sediment wedges is clearly 

observed beneath the Hebrides and West Shetland shelves (Fig. 1). The multi-stage Cenozoic 

exhumation record of the British Isles displays strong temporal correspondence with the 

record of Atlantic margin sediment input. The 65–55 Ma episode overlaps with the input of 

Paleocene clastic sediments into the North Sea and Faroe-Shetland basins. The 65–55 and 

40–25 Ma episodes are coeval with the Eocene and Oligocene progradation of shelf-slope 

wedges into the Atlantic Margin basins, while the Miocene–Early Pliocene pulse of 

sedimentation corresponds closely with the 20–15 Ma exhumation episode constrained by 

AFTA data. Pliocene–Pleistocene uplift and exhumation is coeval with the latest phase of 

shelf-margin progradation. By correlating the exhumation episodes and unconformities we 

infer that the shelf-to-deepwater Atlantic Margin basins may also have been initially affected 

by regional uplift, which generated both subaerial and submarine unconformities. The 

submarine unconformities were cut by deep-water erosional processes through bottom 

currents responding to a change in palaeobathymetry and/or circulation regime. Following 
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this, the basins acted primarily as the repositories for material eroded from regions where 

exhumation was concentrated. 

We note that our maps also show significant sediment input into the Atlantic Margin 

basins from sources beyond the British Isles and its adjacent shelf area. The Eocene and 

Oligocene successions include progradational pulses from the Rockall Plateau (Figs. 1 and 2). 

Seismic data demonstrate almost continuous Paleocene to Pleistocene sediment input via 

prograding shelf-slope wedges from the Faroe Platform, where ~46,000 km3 of Palaeocene 

basalt is thought to have been removed from the Eocene onwards (Andersen et al., 2002). On 

the outer continental margin, prograding Eocene deposits have been linked to intra-Eocene 

tectonic movements on the Rockall Plateau (McInroy et al., 2006). We suggest that this 

pattern of sedimentation is indicative of a margin-wide response to post-rift differential uplift. 

CONCLUSIONS 

We conclude that post-rift sedimentation off NW Britain represents a direct response 

to episodic passive margin uplift concomitant with plate reorganisation. Regional patterns of 

sedimentation combined with volumetric data, stratal disposition and AFTA analyses imply 

three major phases of post-rift uplift (Eocene–Oligocene, Miocene and Pliocene–Pleistocene 

time), following which the sedimentary system was repeatedly rejuvenated. These results are 

incompatible with a post-rift decrease in sedimentation. Instead, the successive tectonic 

episodes have driven changes in sedimentation patterns, which have in turn found expression 

from the shelf to the deep-water basins as regionally significant stratigraphic sequences 

bounded by correlative unconformity surfaces. Our preferred model for the tectonic control 

on post-breakup sedimentation in the Atlantic Margin combines short and long-wavelength 

compressional uplift of sediment source areas in response to fluctuating intraplate stress 

fields whose magnitudes and orientations are governed by the net torques of all the boundary 

forces that act on the plate (e.g. Gölke and Coblentz, 1996).  Regional phases of tilting and 
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sagging may be related to evolving upper mantle convection patterns, whilst enhanced body 

forces resulting from the geoid anomaly around Iceland may be responsible for episodic 

compression and uplift of the surrounding margins from the Miocene onwards (e.g. Doré et 

al., 2008). 
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FIGURE CAPTIONS 

Figure 1. Geoseismic profiles across the Atlantic margin of NW Britain, focusing on the 

Cenozoic post-rift stratigraphic architecture, which is divided into a series of unconformity-

bounded successions. This stratigraphic architecture has been traced for over 2,500 km along 

the length of the NW European margin, from SW Ireland to Mid Norway, as part of the EC-

supported STRATAGEM project (Stoker et al., 2005). Inset map shows bathymetry (x 1000 

m) of the NW European margin, location of profiles across the Faroe-Shetland (a–b) and 

Rockall (c–d) basins, and limit of map area in Figure 2. Map is defined using Lambert’s 
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Conformal Conic projection with two standard parallels. Abbreviation: FSB—Faroe-Shetland 

Basin.  

Figure 2. Maps showing the sediment thickness, in two-way travel time (TWTT), for the 

Eocene (a), Oligocene (b), Miocene–Lower Pliocene (c), and Lower Pliocene–Holocene (d) 

successions, together with established provenance directions. Map projection same as Figure 

1. Abbreviations: BF—Barra Fan; EFW—East Faroe Wedge; FR—Fugloy Ridge; FS—Faroe 

Shelf; FSB—Faroe-Shetland Basin; HS—Hebrides Shelf; NSF—North Sea Fan; RB—

Rockall Bank; RW—Rona Wedge; SSF—Sula Sgeir Fan; WSS—West Shetland Shelf; 

WTR—Wyville-Thomson Ridge. 

Figure 3. Cenozoic post-rift tectonostratigraphic framework for the Atlantic margin off NW 

Britain, including sediment volumes (gray bars) calculated in this study for the Rockall Basin 

(RB) and the Faroe-Shetland Basin (FSB). Comparative sediment volumes from the Northern 

North Sea (NNS: black bars) and the Paleocene of the Faroe-Shetland Basin (white bars), 

together with regional tectonic events, are from a variety of sources (see text). MPU—mid-

Paleocene unconformity; LEU—lower Eocene unconformity; UEU—upper Eocene 

unconformity; BNU—base Neogene unconformity; IPU—intra-Pliocene unconformity. 

1GSA Data Repository item XXXXXX, mapping methodology (Appendix DR1) and 

database (Figure DR1), volumetric methodology (Appendix DR2) and results (Table DR1). 
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APPENDIX DR1 

Map compilation 

The extent of the data coverage underpinning our mapping is indicated in Figure DR1. In the 

study area, the dataset largely comprises four decades of geophysical and geological 

acquisition by the British Geological Survey (BGS) as part of its reconnaissance mapping 

programme of the United Kingdom continental margin. From 2000 to 2003, these data were 

combined with additional industry and non-industry data as part of the EC-supported 

STRATAGEM project (Stratigraphic development of the glaciated European margin), which 

extended the available seismic coverage southwestwards to about 51°N and northeastwards to 

about 69°N. The seismic database comprises tens of thousands of line-kilometres of 

reflection-seismic profiles (high-resolution single and multi-channel), with a grid spacing of 

about 5 km along the western seaboard of Britain (including the Rockall and Faroe-Shetland 

basins), but less dense on the outer margin (Rockall Plateau) (cf. Evans et al., 2005 for 

details). A unified Cenozoic stratigraphy derived from the seismic database has been 

calibrated and correlated (using biostratigraphy) by released commercial and non-commercial 

(BGS, DSDP, ODP) wells and shallow boreholes along this length of the NW European 

margin, the details of which have been published by Stoker et al. (2005).  

 

In this study, the distribution and thickness of the Eocene and Oligocene successions has 

been determined from regional offshore mapping by the BGS (Stoker et al., 1994; British 

Geological Survey, 2002, 2007; Stoker, 2010; Stoker & Varming, 2010) and from 

commercial seismic datasets (Robinson, 2004). For the Miocene–Lower Pliocene and Lower 

Pliocene–Holocene successions we utilized the STRATAGEM database. The bounding 

1 
 



surfaces of all these successions are major regional unconformities that can be traced and 

correlated along the entire margin, and are dated by the biostratigraphic data to within 1–5 

My precision (Stoker et al., 2005; McInroy et al., 2006).  

 

We present our maps of preserved sediment thicknesses in seconds (s) two-way travel time 

(TWTT). Accurate depth conversion for Cenozoic sediments along the Atlantic Margin is 

difficult because of the drilling of relatively few wells, especially in the deep water Rockall 

Basin. Sound velocities in the Cenozoic post-breakup succession are of the order 1.5–2.0 km 

s-1, so the thicknesses in TWTT can be taken as maximum estimates in kilometres (i.e. 1 s 

TWTT is ≤1 km).  

 

APPENDIX DR2 

Calculation of total sediment volumes 

We estimated volumes by converting our TWTT maps into depth-maps using representative 

end-member velocities for the Cenozoic succession of 1.5 and 2.0 km s-1. We then subtracted 

the pore-space volume predicted by a standard exponential porosity-depth relationship (Φ = 

Φ0 exp(-z/ λ) where Φ is the fractional porosity, Φ0 = 0.6 is initial porosity, z is depth and λ = 

2 km is the compaction coefficient). We digitized the corrected solid grain volume thickness 

maps and using Surfer 8TM produced grids applying the Nearest Neighbour method from 

which we then calculated volumes from using an Extended Trapezoidal Rule.  

 

All of our estimates should be considered as minima because of uncertainties in the total 

thickness of each succession, particularly in the main depocentres where well control is poor. 

Our estimates will invariably include a certain proportion of pelagic and hemipelagic 

sediments that have been derived from erosion of source areas eyond the British Isles and 
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from the Rockall–Faroe region, as evidenced by the increasing influence of Oligocene-

onwards bottom current activity. Furthermore, there is evidence for erosion of the post-rift 

succession itself e.g. the regional intra-Cenozoic unconformities and the compression-

influenced sedimentation patterns in the Miocene-Early Pliocene. Our calculated total 

sediment volumes are compared with previous estimates from the Rockall and Faroe-

Shetland basins, and adjacent basins, in Table DR1. 
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Table DR1. Comparison between calculated total sediment volumes derived for this study with previous estimates. 
 

 
Undifferentiated 

Cenozoic 
Paleocene Eocene Oligocene Miocene–Lower Pliocene Lower Pliocene–Holocene 

Faroe-

Shetland Basin 
~55–70,000 km³ 

(Jones et al., 2002) 

 

35–55,000 km³ 

(Smallwood, 2005) 

 

48,000 km³ 

(Smallwood, 2008) 
   

Rockall Basin 

~60–95,000 km³ 

(Jones et al., 2002) 

 

 

     

Faroe Shetland 

and northern  

Rockall basins 

(this paper) 

  57,500–76,800 km³ 16,300–22,500 km3 35,100–48,800 km3 37,900–52,100 km3 

Porcupine 

Basin 

~50–60,000 km³ 

(Jones et al., 2002) 

 

 

     

Northern 

North Sea 

Basin 

~95–115,000 km³ 

(Jones et al., 2002) 

 

 

 

            26,000 km³  

(Reynolds, 1994; 

White & Lovell 1997) 

 

36,301 km³ 

(Liu & Galloway 1997) 

51,598 km³ 

(Liu & Galloway 

1997) 

 

41,502 km3 

(Liu & Galloway, 1997) 

21,400 km³ 

(Liu & Galloway, 1997) 

 

 

TOTAL 
 

~260–340,000 km³ 
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