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Abstract 23 

A geomorphologic study, using multibeam data as well as high- (airgun and sparker) and very 24 

high-resolution (topas) seismic profiles from the western slope of the Hatton Bank (NE 25 

Atlantic), in 600 to 2000 m water depth, has identified a range of geomorphologic features in 26 

an oceanographic setting. Two principal sea-bed domains have been recognised: (1) a non-27 

depositional area (corresponding to the top of the bank) and (2) a depositional area in which 28 

the Hatton Drift has developed. Five morphological areas have been identified associated to 29 

both domains: in (1) outcrop and ridges areas and in (2) smooth surface, slides and bedforms 30 

areas controlled mainly by bottom currents interacting with the topography of the bank that 31 

describing the boundaries between two water masses (probably the Labrador Sea Water and 32 

the upper limit of the Lower Deep Water). Individual features as: contourite channels (moats, 33 

furrows and scours), wave fields, contourite-packages boundary, ponded deposits, scarps, 34 
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gullies, ridges, depressions and slides, were identified on these areas. These morphologies can 35 

be due to past events and does not necessarily reflect the present-day current conditions. 36 

 37 

<heading1>Introduction 38 

The effect of the bottom currents in shaping the sea bed over both depositional (drift) and 39 

erosional characteristics is well known (Hollister and Heezen 1972; McCave and Tucholke 40 

1986; Masson et al. 2004). The sea floor is sculpted into a wide variety of bedforms (flow can 41 

erode, mould, transport and redistribute sediments) that gain an insight into bottom currents 42 

features (Stow et al. 2008). Recent studies by Kuijpers et al. (2002); Masson et al. (2004) and 43 

MacLachlan et al. (2008) have used bedforms and related erosional features to map the 44 

distribution of bottom currents in NE Atlantic Ocean. As recently reviewed by MacLachlan et 45 

al. (2008) in Hatton Bank margin, the interaction between bottom currents and slope 46 

configuration, control the morphology of the deposits. 47 

In this paper we present a geomorphologic study of the western slope of Hatton Bank using 48 

multibeam data and high-resolution seismic profiles in order to identify possible depositional, 49 

erosional and gravitational features. We then attempt to interpret these in terms of existing 50 

knowledge of the regional bottom current regime. 51 

 52 

<heading1>Physical setting 53 

<heading2>Physiography 54 

The Rockall Plateau comprises the shallow-water banks of Rockall Bank, Hatton Bank 55 

(object of this work) and George Bligh Bank. Hatton Bank is separated from Rockall Bank by 56 

the Hatton-Rockall Basin (Roberts et al. 1970; Fig. 1) and has a sinuous bathymetric 57 

planform. South of 59ºN, it is aligned approximately SW–NE and further north the alignment 58 

is more W–E (Hitchen 2004). The study area is located between 600 and 2,000 m water depth 59 

on the western upper and middle slope of Hatton Bank (Fig. 1) which is a slope remote from 60 

any major terrigenous sediment supply; at present, it lies over 360 km from the closest 61 

onshore sediment source (MacLachlan et al. 2008). The area is dominated by contourite drifts 62 

that are the primary deposits of bottom currents (Weaver et al. 2000). Contourites are deep-63 

sea sediments that accumulate under the influence of strong thermohaline bottom currents. 64 

 65 

<heading2>Oceanography  66 

In the mid-latitude NE Atlantic Ocean, Van Aken (2000) categorised the Northeast Atlantic 67 

Deep Water in terms of four local source water types: the Iceland-Scotland Overflow Water, 68 
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Lower Deep Water, Labrador Sea Water and Mediterranean Sea Water. The western slope of 69 

Hatton Bank is influenced by a branch of the Labrador Sea Water which meets with the 70 

Iceland-Scotland Overflow Water, forming the Deep Northern Boundary Current (McCartney 71 

1992; Fig. 1), and possibly by the Lower Deep Water (Bianchi and McCave 2000) which 72 

travels toward NE from the southern part of Hatton Bank until 58–59ºN before turning 73 

westwards into the Iceland Basin circulating anticlockwise (Van Aken 1995). Hunter et al. 74 

(2007) propose that the upper and lower limits of the Labrador Sea Water are at about 700 75 

and 1,500 m water depth respectively in the Iceland and Irminger Basins, consistent with the 76 

overall water depth of 1,000 m described by McCartney (1992). In addition, Due et al. (2006) 77 

reported northward currents in the permanent thermocline above a water depth of approx. 78 

1,500 m. McCave et al. (1980) also documented a strong NE-flowing bottom current along 79 

the foot of Hatton Bank, comprising North Atlantic Deep Water with some admixture of 80 

Antarctic Bottom Water. Measured current velocities in this area reach a maximum of 23 cm 81 

s–1 (Stow and Holbrook 1984). 82 

 83 

<heading2>Geology 84 

The Rockall Plateau is a broad, topographically elevated region in the NE Atlantic Ocean, 85 

underlain by continental crust which, before the opening of the North Atlantic Ocean in the 86 

Mesozoic to early Cenozoic (Stoker et al. 1998), was juxtaposed between Greenland and 87 

Europe. The present-day configuration of the Rockall Plateau is the result of a complex 88 

geological evolution involving continental plate movements, tectonics, massive volcanism, 89 

and differential subsidence and inversion (Hitchen 2004). The Rockall Plateau comprises a 90 

volcanic continental margin with the continental-ocean transition located beneath the lower 91 

western slope of Hatton Bank (Kimbell et al. 2005; Smith et al. 2005). The south part of 92 

Hatton Bank, (at least part of the underlying geological structure) comprises an inverted 93 

Cretaceous (and older) to Paleocene basin (McInroy and Hitchen 2008). Further north the 94 

structure comprises a large anticline with minor thrusts climbing up its southern limb 95 

(Hitchen 2004). Widespread early Palaeogene flood basalts sub-crop (and occasionally crop 96 

out) over most of the Rockall Plateau. Although not definitely proven, the tectonism within 97 

the Hatton Bank appears to become more intense, and younger, northwards (Hitchen 2004).  98 

Although commonly described as ‘passive’, the NE Atlantic Margin adjacent to the British 99 

Isles, of which the Rockall Plateau is a component, has undergone significant tectonic activity 100 

throughout the Cenozoic. This includes basin margin tilting, differential subsidence and the 101 
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formation of large scale structural domes and ridges due to episodic compression (Stoker et al 102 

2005, Johnson et al. 2005, Tuitt 2009). 103 

The Hatton Drift (Ruddiman 1972; Fig. 1) was classified by McCave and Tucholke (1986) as 104 

a plastered-contourite drift which lies at the foot of the NW side of the Rockall Plateau and is 105 

composed mainly of mud (McCave et al. 1980). Sediment transport along the Hatton Drift to 106 

the northeast is both by suspended transport of fines in locally generated nepheloid layers and 107 

by bedload transport of cohesionless sand (McCave et al. 1980). Linear erosive features were 108 

described by Hernández-Molina et al. (2008) including large contourite channels and smaller 109 

elongate furrows, as well as channels related to slope drifts (contourite moats). Sediment 110 

drifts in the NE Atlantic have maintained their basic characteristics at least since the mid-111 

Pleistocene (Huizhong and McCave 1990). 112 

 113 

<heading1>Materials and methods 114 

<heading2>Multibeam data 115 

Within the framework of the Ecovul-Arpa project (http://www.ieo.es/proyectos/pesquerias/ 116 

ecovularpa.htm); Kongsberg-Simrad EM300 multibeam echosounder data were collected 117 

between 2005 and 2007, providing 100% coverage of the whole study area (18,760 km2) from 118 

600 to 2,000 m water depth (Fig. 2). The data were processed with the CARAIBES software© 119 

(http://www.ifremer.fr/fleet/equipements_sc/logiciels_embarques/caraibes/index.html), and a 120 

50×50 m resolution grid produced. In addition, backscatter mosaic was extracted from the 121 

multibeam data. Morphologic analysis was done using ArcGIS Desktop. 122 

 123 

<heading2>Seismic data 124 

High-resolution airgun and sparker seismic data were acquired in 1992, 1998 and 2002 along 125 

2,840 km with line spacing varying between 5 and 20 km (Fig. 2). The airgun system 126 

consisted of an array of four 40-inch3 Bolt guns connected to a 30-m Geomechanique 127 

hydrophone cable. All channels were summed for optimum output. Sparker data were 128 

collected at up to 3-kJ maximum power via a 10-m Teledyne hydrophone cable. In both cases, 129 

the power and firing rate varied according to water depth. All data were stored onto a CODA 130 

DA200 recording system and navigation was by DGPS. 131 

From 2005 to 2007, a network of approx. 1,120 km of very high-resolution seismic profiles 132 

was collected with a parametric Topas PS 018 echosounder (Fig. 2b), at 16–20 kHz. The data 133 

were processed by means of Kingdom Suite software (http://www.seismicmicro.com/). 134 

 135 
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<heading1>Results 136 

Figure 3 presents a general overview of dominant seabed morphology and the slope gradients 137 

recorded in the study area. The study area can be subdivided in two main domains (Fig. 3a): 138 

(1) an area where little or no deposition occurs (outcrop) and (2) a depositional area (drift). (1) 139 

The outcrop shows at the most only thin (<20 ms) sediment deposits, mainly shallower than 140 

1,100 m water depth (Fig. 3a) and it is characterized by an uneven surface. Seabed gradients 141 

(Fig. 3b) reaching 40º occur locally and high backscatter values (>-20 dB) are typical. A 142 

special morphological area, named “ridges area” (Fig. 3c), can be described associated to the 143 

outcrop forming a series of parallel barriers extended up to 1,600 m water depth. 144 

(2) Downslope, a surface recognised as the top of the Hatton Drift (Fig. 3a) has been 145 

identified. It follows the general trend of the slope of the bank and overall has gradients of 0–146 

3º (Fig. 3b), reaching 30° in places (e.g. moats). It exhibits moderate–low backscatter values 147 

(generally <-20 dB). Based on the seismic data, this surface belongs to a deposit characterized 148 

by variable sediment thickness (>400 ms downslope), generally increasing basinward and 149 

onlapping upslope as a wedge with well-stratified layers (Fig. 2b). In places, this deposit can 150 

be seen covering the outcrop. There are three main morphological areas associated to the drift: 151 

smooth surface area, bedforms area and slides (Fig. 3c). The sediment drift exhibits 152 

differences in seabed morphology at water depths shallower and deeper than 1,400–1,500 m. 153 

Upslope, the sea bed has smooth relief whereas downslope the uneven surface contains 154 

furrows, scours and slides.  The “smooth surface” (Fig. 3c) is located in the southern part 155 

(Fig. 3a) of the study area between ~1,100 and ~1,400 water depths (except attached to the 156 

“ridges area” where the “smooth surface” is reduced). In the “bedforms area” (Fig. 3c) the 157 

drift shows an irregular surface and it is located contouring the outcrop in the northern part of 158 

the study area with a minimum of ~1,100 m water depth, whereas in the southern part the 159 

“bedforms area” is deeper than ~1400 m water depths. “Slides” (Fig. 3c) are located in the 160 

southern part and the headwalls of the slides are at ~1400 m water depths. 161 

 162 

Individual features– contourite channels (moats, furrows and scours), wave fields, contourite-163 

packages boundary, ponded deposits, scarps, gullies, ridges, depressions and slides– are 164 

described in more detail (Fig. 4-7): 165 

 166 

<heading2>Contourite channels  167 

We distinguished three types of contourite channels, occurring mostly in groups. 168 

 169 
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1. Moats (Fig. 4a) typically occur at the boundary between the areas of outcrop and drift 170 

formation, at 1,000–1,300 m water depth and are characterised by a main axis parallel to the 171 

bathymetric contours. Mean moat length is 23 km (range of 14–38 km), and mean width 1.3 172 

km (maximum of 3.5 km). In cross section, the upslope bedrock surface of the moat is steeper 173 

than the downslope drift surface, below which the internal reflectors of the drift illustrate 174 

decreased sedimentation into the moat. The gradient recorded on such drift flanks has a mean 175 

value of 2º, but reaches maximum values of 30º at some locations. In the northern part of the 176 

study area, two wave fields have been identified associated with moats drift-flanks (c.f. 177 

below) and the crest of waves are oblique to the moats axis.  178 

 179 

2. Furrows (Fig. 4b) trend parallel to the bathymetric contours and possess different plan 180 

geometries each other. On the whole, they are characterised by a single axis, (although some 181 

show an axis bifurcation). The furrows usually have flat bottoms (although occasionally small 182 

ridges are observed inside) and steep sedimentary sides (Fig. 4b). The furrows are located 183 

between 1400 and 1800 m water depth and have a mean length of 9 km (range of 3-34 km). 184 

The mean gradient of the furrow walls varies: those on the northern slope of Hatton Bank 185 

(axis with W–E trend) have typical gradients of 6–7º on the northern wall and 16–17º on the 186 

southern wall (upslope); and furrows further south, where the slope of the bank faces west, 187 

have shallower gradients, typically 2–3º on the western wall and 5–6º on the eastern wall. On 188 

seismic data, furrows exhibit a complex history of excavation, erosion on the flanks and 189 

partial infilling by drift sequences. 190 

 191 

3. Scours (Fig. 4c) can be detected on the multibeam bathymetry data as U-shaped scars at 192 

only shallow depths (5–15 m) and vary in length between 1 and 29 km. Scours can not be 193 

detected clearly on seismic data owing to the fact that the scale of the profiles and in places, 194 

can be observed on the backscatter mosaic with higher values (~22 dB) than the surrounding 195 

areas. They are orientated parallel to the main trend of the bathymetric contours and are 196 

adjacent to others morphologies such as furrows.  197 

 198 

<heading2>Wave fields 199 

Two wave fields occur in the north of the study area, on the flanks of moats. 200 

1. The western wave field (Fig. 5a) covers an area of 10.2 km2 (6 by 1.7 km), between 201 

1,180 and 1,270 m water depth. Mean wave heights are 15–20 m, mean wavelength 0.9 km, 202 

and the waves are symmetric. 203 
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 204 

2. The eastern wave field covers an area of 18.3 km2 (7.8 by 2.7 km) in water depths 205 

between 1,390 and 1,500 m. The waves are symmetric, with amplitude of 5–7 m and 206 

wavelengths varying between 0.4 and 1.2 km. Crest orientation changes from overall SE–NW 207 

on the flank to E–W towards the axis of the moat. 208 

 209 

<heading2> Contourite-packages boundary  210 

The multibeam imagery provides evidence of a concave boundary in the form of a marked 211 

change in the overall slope gradient of the Hatton Bank at the limit between two contourite 212 

packages (Fig. 5b), occurring between 1,000 and 1,300 m water depth and has a length of 40 213 

km. The gradient is 2–3º upslope and 0.3–1º downslope. On seismic data, the boundary marks 214 

the upslope limit of an accreting drift wedging out against a lower drift deposit. 215 

 216 

<heading2>Ponded deposits 217 

Sediments which fill irregular hollows in the bedrock surface (or located in surrounding 218 

areas) are here termed ponded deposits (Fig. 5c). On multibeam bathymetry theses deposits 219 

appear as flat surfaces between crests of outcropping bedrock. On seismic profiles, they can 220 

be recognised by well-stratified layers onlapping against the outcrops. In places surrounding 221 

outcrops, the sediments are forming wedge-shaped deposits with a downslope progradational 222 

internal structure. Sediment thickness (up to 50 ms) and area (40 km2) vary depending on the 223 

surrounding outcrop geometry. Ponded deposits show low backscatter, in contrast to the 224 

adjacent outcrop. 225 

 226 

<heading2>Scarps 227 

Scarps are shown as abrupt gradient changes which divide two areas with different level and 228 

softer gradient, and the majority of which face downslope (Fig. 6a). The strike of the scarps 229 

usually parallels that of the regional slope. The scarps are located in both the outcrop and 230 

sediment drift areas. The gradients vary between 3 and 10º, although they can reach 20–30º 231 

locally. The height is up to 55 m and generally, the areas around the scarps show a high 232 

backscatter (~20dB). 233 

 234 

<heading2>Gullies 235 

In the south of the study area two gullies are recognized between 1100 and 1300 m water 236 

depth showing sinuous shapes, in plan view, crossing the main trend of the bathymetric 237 
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contours with an overall WSW–ENE orientation (Fig. 6b). Usually the southern side of the 238 

gullies is steeper than the north side with gradients of 7–8°, reaching 15° at some locations. 239 

The side-wall scarp varies in height but reaches a maximum value of 70 m in the easternmost  240 

part of one of the gullies. Both gullies are approximately 4 km in length although the southern 241 

one may previously have been up to 8 km (Fig. 6b). There is strong evidence for infilling of 242 

other gullies (or lateral migration of the same gully) in the immediate vicinity leaving only a 243 

shallow present-day depression of up to 10 m. This is corroborated by the seismic profile 244 

which illustrates a deep erosive gully and now partially infilled by sediments prograding 245 

downslope leaving a highly asymmetric present-day profile (Fig. 6b). 246 

 247 

<heading2>Ridges 248 

In the outcrop area there is a series of parallel and elongated ridges 5 km apart above 1600 m 249 

water depth. Ridges are long narrow raised land formations with sloping sides which show 250 

common segmentation (Fig. 6c) with sections of 2–7 km length, with four main orientations: 251 

N90ºE, N78ºE, N67ºE and N53ºW. The heights of the ridges vary between 5 and 45 m and 252 

generally have steeper gradients downslope (up to 17º). There maybe a thin veneer of 253 

sediment on these features. Ridges are associated to ponded-deposits explain above (Fig. 5c). 254 

Superimposed on the ridges are conical mounds (Fig. 6c); some of them symmetrically 255 

shaped single features whereas others are asymmetrically-shaped features formed by 256 

coalescing former individual mounds. These mounds stand 10 to 25 m above the ridges and 257 

are a few hundred metres in width. 258 

 259 

<heading2>Depressions 260 

The depressions appear on the multibeam bathymetry as near-circular with areas of 0.2–0.9 261 

km2, variations in depth between 20 and 30 m (Fig. 6d) and have steeper upslope sides (7–262 

10º) compared to the downslope sides (2–4º). Some of them show a backscatter change 263 

between the bottom of the depressions (up to -17dB) and the surrounding areas (~ -35db).  264 

 265 

<heading2>Slides 266 

The data have revealed two slides. 267 

 268 

1. The Talismán Slide (Sayago-Gil et al. 2009) (Fig. 7), at the southern western edge of the 269 

study area (Fig. 3c), covers a minimum of 194 km2 and extends at least 15 km downslope. It 270 

is a very conspicuous feature with only the thinnest post-slide veneer of sediments. The slide 271 
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is orientated E-W from its headwall scar at 1358 m water depth and to, at least, 1900 m water 272 

depth. The 7.7-km headwall scar shows a SW–NE trend with an irregular zigzag form. The 273 

scarp varies in height between 50 and 76 m and has a slope angle of 34º. The northern 274 

sidewall has a linear NW-SE trend with a scarp height of up to 100 m. The southern sidewall 275 

has an irregular form, comparable to the headwall, with a scarp height of 50 m decreasing 276 

downslope to 30 m and with slope angles of 25–30º. The remnant surface of the slide mass 277 

shows discontinuous morphologies (Fig. 7). There are depressions in the surface and 278 

upstanding blocks (with a relief up to 20 m), both of which have a step-like appearance. 279 

Seismic data show the remnant slide mass is 10–20 m thick above the slide plane. The slide 280 

plane cuts into a sequence of contourite deposits. 281 

 282 

2. About 160 km north of the Talismán Slide (Fig. 3c), a partially buried slide, informally 283 

named the Granadero Slide (Sayago-Gil et al. 2009), has been reported by MacLachlan et al. 284 

(2008) using independent dataset. Here, we expand the earlier findings with new information 285 

forming part of the results of the present study. The multibeam data show it covers an area of 286 

230 km2 and extends at least 11 km downslope in an E–W orientation. Its headwall scarp is at 287 

1385 m water depth and the slide extends to at least 1980 m water depth. The 18 km headwall 288 

scar has a NE–SW trend. The maximum height of the headwall scar is 68 m but the sidewalls 289 

may locally reach 120 m. The slope angles of the sidewalls are on mean 6° but may locally 290 

reach 24° on the northern sidewall. The slide mass shows a slope angle <3°. The seabed 291 

within the slide area exhibits a smooth relief with some gentle waves mainly parallel to the 292 

headwall. However, a single mounded deposit, attached to the southern sidewall, is more than 293 

60 m high. These sediments are contourite deposits accumulated in the lee of sidewall since 294 

the slide event. 295 

 296 

A new morphological sketch of the part studied of Hatton Bank is presented in figure 8, 297 

showing the bedform details of the two main domains describe in this work (outcrop and 298 

drift) in the northern and southern parts of the bank. The outcrop area is characterized by an 299 

uneven surface with crest and scarps and the ridges area can be seen with ponded deposits 300 

associated.  Three main morphological areas have been associated to the drift: smooth surface 301 

area, bedforms area and slides. The smooth surface is nearly a flat surface located in the 302 

southern part of the bank. Bedforms area are describe as a surface with different morphologies 303 

as furrows,  scours and scarps located in the northern part as well as in the southern part of the 304 

bank. Slides can be seen in the southern part close to bedforms areas.  305 
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<heading1>Discussion 307 

In a general overview, the study area can be divided in two main domains: (1) outcrop and (2) 308 

drift, where the limit is about 1,100 m water depth.  309 

(1) Outcrop is characterized by an irregular surface (due to tectonic activity  and erosion) with 310 

crests and escarpments trending predominantly W-E and lag deposits of coarse sands and 311 

pebbles-boulders that give the high backscatter with only small areas of true outcrop (C. 312 

Jacobs, Pers. Comm.). Smith et al. (2005) described this area as a bedrock surface composed 313 

by flood basalts which were dated by McInroy et al. (2006) as late Palaeocene although in 314 

some areas may be Palaeogene and younger rocks. In places flood basalts are absent and the 315 

underlying Mesozoic sediments are imaged on seismic data (Hitchen 2004). Within the 316 

outcrop area many ridges (constructional basalt scarps originated probably by faults in depth) 317 

may owe their origin to compressional tectonics (Tuitt 2009) and conical mounds (individual 318 

or clustered) superimposed (10-25 m high) have been observed in this study. The mounds of 319 

Hatton Bank bear a strong resemblance, albeit smaller in size, to features reported in the 320 

Porcupine Seabight (Bailey et al. 2003) and at the southern end of the Rockall Bank (Van 321 

Weering et al. 2003) and proven to be bioclastic accumulations sustained by the growth of 322 

cold water corals. Small mounds on the crest of Hatton Bank are principally comprised of 323 

Lophelia pertusa (Roberts et al. 2008). The bare rock surface provided by the ridges has been 324 

opportunistically exploited by the corals leading to the development of the mounds. Ridges 325 

have been linked with cold-water corals in this area as a suitable substratum to their growth. 326 

Many samples of cold-water corals have been collected on the ridges under the Ecovul-Arpa 327 

project and they demonstrate the presence of alive and dead corals. The mounds bulk 328 

probably comprises dead cold-water corals that provide the platform for further growth of 329 

corals. Ridges act as barriers forming ponded deposits infilling and surrounding the uneven 330 

surface. These deposits result from the alongslope and downslope movement of sediment 331 

which becomes trapped in the irregular surface. The deposits consist of drift sediment and 332 

coral rubble derived from the adjacent ridges and mounds. At these locations, there is the 333 

potential to preserve the oceanographic record that is absent from the rest of the outcrop area. 334 

(2) The depositional area is dominated by the Hatton Drift which is located on the lower and 335 

middle-western slope of Hatton Bank. It is a contouritic deposit composed mainly of mud and 336 

sand (Stow and Lovell 1979) and was classified by McCave and Tucholke (1986) and 337 

Faugères et al. (1993; 1999) as a "plastered drift" which is deposited on the slope of Hatton 338 

Bank. The structural, textural and compositional attributes of the drift sediments were 339 
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described, by Stow and Holbrook (1984), in two parts: (a) those deposited prior to the onset of 340 

northern hemisphere glaciation, and (b) those deposited during the glacial-interglacial cycles. 341 

The overall morphology of the Hatton Drift and the differential rates and thickness of 342 

sediment accumulation have been influenced by bottom currents since early Eocene times 343 

(Stow and Holbrook, 1984). However, strong bottom currents at first prevented any 344 

significant deposition and it was only after mid-Miocene time that drift accumulation began. 345 

In the NE Atlantic Ocean, sediment drifts have contrasting styles which most probably reflect 346 

the interaction between a variable bottom-current regime and the complex bathymetry of the 347 

continental margin (Stoker et al. 1998). The drift can be observed in the study area with 348 

different seabed morphologies which have the main origin in the activity of bottom currents. 349 

So, there are areas with smooth surface in contrast with other areas with several kinds of 350 

bedforms due to the interaction between the bottom current contouring the topography of the 351 

bank which cause change of direction in the main current flow. The upslope walls of the 352 

furrows show usually higher gradient than downslope walls which have the origin in the 353 

interaction between the flow and the slope configuration that prompt greater erosion on 354 

upslope walls. Besides, the drift sediments moving up-and-down slope covering, in some 355 

places, the outcrop and forming ponded sediments which are trapping by the ridges.  356 

 357 

A variety of current-induced bedform types provide further information on the bottom-current 358 

regime (e.g. Kuijpers et al. 2002). So, in the southernmost part of the bank, the sediment drift 359 

exhibits differences in seabed morphology (smooth area/ bedforms area and slides) at water 360 

depths shallower and deeper than 1,400–1,500 m which link with the lower limit to the 361 

Labrador Sea Water proposed by Hunter et al. (2007) to the Iceland Basin and the permanent 362 

thermocline described by Due et al. (2006) in the western flank of Hatton Bank. Labrador Sea 363 

Water transports sediments north-eastwards along the western slope of Hatton Bank 364 

(McCartney 1992; Due et al. 2006; MacLachlan et al. 2008). In addition, according to Bianchi 365 

and McCave (2000), the Lower Deep Water travels towards the north, from the south part of 366 

Hatton Bank until approx. 58–59ºN where it turns to the west as shown by the orientation of 367 

the furrows and other seabed features (Fig. 8). The bedform area (south 59ºN), rich in furrows 368 

and scours, may reflect an intensification of the Lower Deep Water as it turns westward 369 

owing to a topographic bulge in the slope of Hatton Bank at ~58.5ºN. However, the presence 370 

of another bedform area and another slide northward (59–59.5ºN) on the slope of Hatton Bank 371 

suggests that, at least, some of the Lower Deep Water could return to the slope of the bank 372 

north of the bulge.  373 
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The contourite-packages boundary and the moats are found along the length of Hatton Bank 374 

(Fig. 8)  having been mapped in water depths ranging from 1,000 to 1300 m, which match 375 

with the fact of McCartney (1992) found some of Labrador Sea Water ~ 1,000 m water depth. 376 

In this work, we propose the upper limit of the Labrador Sea Water at 1,000-1,300 m water 377 

depth depending of the topography of the slope. The upper boundary of the Labrador Sea 378 

Water could provide a limit to the upslope migration of the drift on the western slope of 379 

Hatton Bank. 380 

Different morphologies of the contourite deposits indicate erosion which has excavated the 381 

original furrows and truncated the reflectors within the exposed bedrock side of the moats that 382 

suggest periods of strong bottom-current erosion followed by reduced-strength currents which 383 

are responsible for the present-day infilling of the furrows and the constructive drift 384 

boundaries seen in the contourite-packages boundary and moats. Within this context it should 385 

be noted that various bedforms might result from extreme current events in the past and thus 386 

do not necessarily reflect present-day current conditions (Due et al. 2006). 387 

 388 

In the northern part of Hatton Bank, where the bank is orientated W–E, the morphological 389 

features are typically shallower than in the southern part. This could reflect a shallowing of 390 

the oceanographic currents northwards or a change in the current regime. Likewise, 391 

MacLachlan et al. (2008) show an area in the northern part of Hatton Bank which has a wide 392 

variety of bedforms (sediment waves, furrows and moats), reflecting a complex bottom 393 

current flow from the east (occasional overflow events of Iceland-Scotland Overflow Water 394 

travelling toward south from the Faeroe Bank Channel) in contrast to the Deep Northern 395 

Boundary Current. This current activity is occurring at a shallower level than in the 396 

southernmost part of the bank with the resultant bedforms developed higher up the outer 397 

slope. Furthermore, wave fields could be originated by an opposite flow (referenced to the 398 

main direction current) occur on the drift-flank of the moats close by the area where the 399 

adjacent outcrop change the direction creating a reversed flow. 400 

 401 

In addition, gravitational processes have been identified in the study area. Most notable are 402 

the Talismán Slide (Sayago-Gil et al.2009) clearly seen on the sea bed at the southern part of 403 

Hatton Bank (Fig. 8) and the buried slide previously noted by MacLachlan et al. (2008), both 404 

occurring within the acoustically well-layered drift sequences. Talismán Slide shows only the 405 

thinnest post-slide veneer of sediments on top which could imply a recent age, although this is 406 

highly dependent on sedimentation rate. The original dimensions of the buried slide may have 407 
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been greater but have been reduced due to partial infilling of the feature. Failures of slopes 408 

detached of the emerged land are rarely reported. A range of trigger mechanism is plausible 409 

and could include a combination of several causative factors. Changes in current regime may 410 

erode the base of the drifts thereby removing support at the base of slope (Sayago-Gil et al. 411 

2009). Alternatively increases in sedimentation at the top of the slope may overload the upper 412 

part of the drift. Fluids, including gas, may facilitate movement in response to ground 413 

acceleration (due to earthquakes) although there is no clear evidence for shallow gas on the 414 

western side of Hatton Bank. Despite difficulties in detecting low seismic activity in Hatton 415 

Bank area from land based seismometers, earthquakes have been recorded. Two events have 416 

been detected in recent years (1998 on Hatton Bank and 1999 on Lousy Bank) to show that 417 

although this is a passive margin, it is not aseismic (Simpson and Ford 1999; Simpson et al. 418 

2000) corroborating intra-plate seismic activity. The presence of two similar-sized slides on 419 

the outer slope of Hatton Bank suggests episodic repetition of conditions required to trigger 420 

slope failure. 421 

 422 

The depressions  on the seabed south of the Talismán Slide could be related to fluid escape 423 

(including gas) but they are larger (1 km diameter by 20 m depth) than pockmarks commonly 424 

reported for other continental margins along NE Atlantic Ocean (Paull et al. 2008; Fernández-425 

Puga et al. 2007). However, Hammer et al. (2009), describe an upstream convergence of flow 426 

lines followed by upwelling over the pockmark which could explain the 427 

presence/maintenance of these depressions in the absence of fluid or gas seepage. 428 

 429 

At the southern end of the study area, rock outcrops (Fig. 8) differ from the rest of the margin. 430 

This may reflect strong currents or lack of sediment supply. Higher up the bank, the seabed 431 

image shows several, partially infilled downslope gullies. These may have been cut during 432 

periods of lower sea level, at glacial maxima, when alongslope currents were reduced. The 433 

partial infill appears to be derived from the northwest, which is contrary to the present 434 

regional current regime, but which may reflect the scarcity of geophysical profiles in the area.  435 

 436 

However, there is uncertainty concerning some of the features and further seismic profiling 437 

and ground-truthing by shallow coring as well as other oceanographic data (as for example 438 

CTDs and current-meters) are required to elucidate the sedimentary history and current 439 

regime. 440 

 441 
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<heading1>Conclusions 442 

1. Interpretation of the multibeam and shallow seismic data has identified morphological 443 

features that can be attributed to the Labrador Sea Water and Lower Deep Water 444 

boundaries between them suggestive of a complex oceanographic regime. This limit could 445 

be located at 1,400-1,500 m water depth which would be the lower limit of the Labrador 446 

Sea Water and the upper limit of the Lower Deep Water. In addition, the upper boundary 447 

of the Labrador Sea Water could be at 1,000-1,300 m water depth and provide a limit to 448 

the upslope migration of the Hatton Drift. More oceanographic data are necessary to 449 

confirm the exact water masses affecting to the western slope of Hatton Bank. 450 

2. The Lower Deep Water was described travelling toward north until ~58.5ºN where the 451 

bulge of the bank is. This work proposes that the Lower Deep Water could return to the 452 

slope north of the bulge ~59–59.5ºN. 453 

3. The erosion features and present-day infilling deposits suggest periods of strong bottom-454 

current erosion followed by reduced-strength currents. So, the present morphology of the 455 

western slope of Hatton Bank can be due to past events and does not necessarily reflect 456 

the present-day current conditions. 457 

4. This work extends the geographical extent where cold corals have been mapped on Hatton 458 

Bank in the ridges area until ~ 1,500 m water depth. 459 

 460 
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Captions 

Fig. 1 Locality map showing the study area along the north-western margin of the Rockall 

Plateau, as well as the regional bathymetry and present-day bottom current circulation 

(arrows). HB Hatton Bank, RB Rockall Bank, HRB Hatton-Rockall Basin, GBB George Bligh 

Bank, FBC Faeroe Bank Channel, IB Iceland Basin. ISOW Iceland-Scotland Overflow Water, 

AABW Antarctic Bottom Water, LDW Lower Deep Water, LSW Labrador Sea Water, DNBC 

Deep Northern Boundary Current (based on McCave et al. 1980; McCartney 1992; Stoker et 

al. 1998; Bianchi and McCave 2000; Hassold et al. 2006; McLachlan et al. 2008; regional 

bathymetry from GEBCO-General Bathymetry Chart of the Oceans) 

 

Fig. 2 a Locations of data collection for hill-shade bathymetric imagery and seismic profiling. 

Purple lines Sparker/airgun seismic profiles, red lines Topas seismic profiles. b Topas 

seismic section in the southern part of the study area, showing the sedimentary set increasing 

basinwards, and onlaping upslope as a wedge with well-stratified layers 

 

Fig. 3 a Map showing the two main domains identified in the study area: outcrop and drift. 

Black line marks the limit between northern (W-E orientation) and southern (SW-NE 

orientation) part of the bank based on the change of the main trend of the slope. b Map 

showing the variations in slope recorded in the study area, based on multibeam bathymetry 

data. c Large-scale sketch illustrating the main morphologic areas identified on this work. 

Also indicated are the locations of selected datasets shown in more detail in Fig. 4, 5, 6 and 7 

 

Fig. 4 Selected datasets showing examples of hill-shade bathymetry and vertical depth 

profiles (location on bathymetry image) used to identify the main morphological features of 

the study area: a moat (arrow indicates moat axis), b furrow, c scours (arrows indicate scours 

axis) 

 

Fig. 5 Selected datasets showing examples of hill-shade bathymetry and vertical depth 

profiles (location on bathymetry image) used to identify the main morphological features of 

the study area: a wave field, b contourite-packages boundary (arrow indicates the seabed 

affected by the limit between two different contourite deposits), c ponded deposits (arrows 

indicating the deposits against ridges) 
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Fig. 6 Selected datasets showing examples of hill-shade bathymetry and vertical depth 

profiles (location on bathymetry image) used to identify the main morphological features of 

the study area: a scarps (arrows indicate the gradient changes), b gullies, c ridges (arrows 

indicate barriers axis with mounds on top), d depressions (arrows indicate hollows) 

 

Fig. 7 Hill-shade bathymetry, 3D image and topas seismic section (location on bathymetry 

image) of the Talismán Slide identified in southern part of the study area 

 

Fig. 8 a Large-scale sketch presented in figure 3 illustrating the seabed morphologic details in 

the northern (b) and southern (c, d) parts of the Hatton Bank. Morphological features of the 

main areas describe in this work can be observed in detail in b, c, d. The outcrop area (a) is 

characterized by an uneven surface with crest and scarps (b, c, d) and the ridges area can be 

seen with ponded deposits associated (b).  The smooth surface (a) is nearly a flat surface 

located in the southern part of the bank (b, c, d). Bedforms area (a) are describe as a surface 

with different morphologies as furrows,  scours and scarps (b, c, d) located in the northern 

part as well as in the southern part of the bank. Slides (a) can be seen in the southern part (c, 

d) close to bedforms areas. The slide located in d is the Talismán Slide describe in this work. 
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