nerc.ac.uk

Energetic electron precipitation from the outer radiation belt during geomagnetic storms

Horne, Richard ORCID: https://orcid.org/0000-0002-0412-6407; Lam, Mai Mai ORCID: https://orcid.org/0000-0002-0274-6119; Green, Janet. C.. 2009 Energetic electron precipitation from the outer radiation belt during geomagnetic storms. Geophysical Research Letters, 36 (L19104). 4, pp. 10.1029/2009GL040236

Before downloading, please read NORA policies.
[thumbnail of Copyright American Geophysical Union]
Preview
Text (Copyright American Geophysical Union)
grl26427.pdf - Published Version

Download (2MB) | Preview

Abstract/Summary

Relativistic electron precipitation changes the chemistry of the upper atmosphere and depletes ozone, but the spatial and temporal distributions are poorly known. Here we survey more than 9 years of data from low altitude satellites for different phases of geomagnetic storms. We find that for the outer radiation belt, electron precipitation >300 keV peaks during the main phase of storms whereas that >1 MeV peaks during the recovery phase. Precipitation >300 keV can occur at all geographic longitudes in both hemispheres whereas that >1 MeV occurs mainly poleward of the South Atlantic anomaly (SAA) region. The data suggest that wave-particle interactions are strong enough to precipitate >300 keV electrons into the bounce loss cone, but precipitate >1 MeVelectrons into the drift loss cone. We find that whistler mode chorus waves alone cannot account for the higher MeV precipitation flux during the recovery phase. We suggest that whistler mode chorus waves accelerate electrons up to MeV energies during the recovery phase which are then precipitated by EMIC waves. The effects on atmospheric chemistry due to MeV electron precipitation are more likely to occur in the southern hemisphere poleward of the SAA region with a delay of 1–2 days or more from the peak of the storm. Citation: Horne, R. B., M. M. Lam, and J. C. Green (2009), Energetic electron precipitation from the outer radiation belt during geomagnetic storms, Geophys. Res. Lett., 36, L19104, doi:10.1029/2009GL040236.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1029/2009GL040236
Programmes: BAS Programmes > Polar Science for Planet Earth (2009 - ) > Climate
ISSN: 0094-8276
NORA Subject Terms: Space Sciences
Date made live: 19 Jan 2010 14:08 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/9086

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...