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ABSTRACT

Ocean fronts are narrow zones of intense dynamic activity that play an important role in

global ocean-atmosphere interactions. Owing to their highly variable nature, both in space

and time, they are notoriously difficult features to adequately sample using traditional in-situ

techniques. In this paper we propose a new statistical modelling approach to detecting and

monitoring ocean fronts from AVHRR SST satellite images that builds on the ‘front following’

algorithm of Shaw and Vennell (2000). Weighted local likelihood is used to provide a smooth,

non-parametric description of spatial variations in the position, mean temperature, width

and temperature change of an individual front within an image. Weightings are provided

by a Gaussian kernel function whose width is automatically determined by likelihood cross-

validation. The statistical model fitting approach allows estimation of the uncertainty of each

parameter to be quantified, a capability not possessed by other techniques. The algorithm

is shown to be robust to noise and missing data in an image, problems that hamper many of

the existing front detection schemes. The approach is general and could be used with other

remotely sensed data sets, model output or data assimilation products.
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1. Introduction

The advent of Earth observation satellites in the 1970’s has revolutionized the oceanog-

rapher’s ability to study oceanic structures such as ocean fronts; the narrow regions marking

the transition between two different water masses. Fronts are characterized by intense hori-

zontal gradients in sea surface temperature, salinity, biological and/or chemical properties.

They are highly dynamic zones continually changing through both space and time as the

adjacent water masses are modified by across frontal mixing, vertical transport and air-

sea interaction. Ocean fronts are climatologically important regions and play a substantial

role in global ocean-atmosphere interactions. Of particular significance is the circumglobal

frontal system of the Southern Ocean where intermediate water masses are formed (Spall

1995; Garabato et al. 2001), heat, salt, nutrients and momentum are redistributed, biological

activity is stimulated (Moore and Abbott 2000), and atmospheric carbon dioxide is absorbed

(Murphy et al. 1991; Currie and Hunter 1998, 1999). Variability of the strength and location

of sea surface temperature fronts is also important to the coupling of winds and upper-ocean

processes (O’Neill et al. 2003; Chelton et al. 2004).

The availability of a large and rapidly expanding data set of remotely sensed sea surface

temperature (SST), altimetry and ocean colour has fueled a growing interest and demand

for objective and automatic techniques to detect and monitor fronts. Accurate knowledge

of frontal zones and how they change both temporally and spatially is important to many

organizations worldwide with such diverse tasks as climate variability and monitoring, oper-

ational weather and ocean forcasting, validating ocean and atmospheric models, ecosystem

assessment and fisheries research.
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Fronts exhibit nonlinear flows and processes on a range of different temporal and spatial

scales. Successful detection and monitoring therefore is a nontrivial problem. Capturing

frontal features as they grow, merge, split, shrink and disappear is a considerable challenge.

Complicating the task are the resolution limitations imposed by the instruments being used

to image these phenomena. Noise and missing data owing to sensor inaccuracies, thermal

calibration, atmospheric correction and cloud further add to the challenge of accurate de-

tection.

Finding ocean fronts in remotely sensed imagery is a problem that has been approached

in four different ways:

1. derivative based edge detection,

2. gradient magnitude thresholds,

3. statistical/probabilistic edge discrimination and classification, and,

4. surface fitting.

Derivative based edge detectors rely on locating gradient discontinuities in SST images

that mark a sharp transition from cold to warm water (or vice versa). Examples include

the Prewitt, Sobel, Kirsh, Roberts and LoG gradient operators (Simpson 1990). These

methods, based on image processing techniques, however are generally not well suited to

oceanographic remote sensing applications (Holyer and Peckinpaugh 1989); they struggle

to discriminate between weak, small scale features and noise. Often a pre-filtering stage

is required (e.g. Canny operator), but this smoothing blurs features and sharp gradients

and makes subsequent edge detection more difficult. Setting an SST gradient magnitude
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threshold is a simple alternative way in which fronts may be mapped (Belkin and Gordon

1996; Kostianoy et al. 2004; Moore et al. 1997, 1999; Dong et al. 2006).

More sophisticated techniques involve the classification of pixels or windows of data and

some form of statistical or probabilistic analysis to determine the presence of a front. Algo-

rithms that fall into this category may be further subdivided: distribution diversity (entropy)

based methods (Vazquez et al. 1999; Shimada et al. 2005); histogram analysis (Cayula and

Cornillon 1992, 1995; Marcello et al. 2005); a clustering based approach (Holyer and Peckin-

paugh 1989); and an examination of the moments combined with a-priori knowledge of the

region (Gerson et al. 1979; Coulter 1983). Other edge detectors tested in an oceanographic

frontal context include the wavelet based approach of Simhadri et al. (1998), mathematical

morphology algorithms (Lea and Lybanon 1993; Krishnamurthy et al. 1994) and the Or-

dered Structural Edge Detector of Holland and Yan (1992). The histogram based Single

Image Edge Detector (SIED) of Cayula and Cornillon (1992) has been used in many studies:

Ullman and Cornillon (2001), Hickox et al. (2000) and Mavor and Bisagni (2001) to name

but a few. Miller (2004) for example uses the SIED as the basis for constructing five day

composite sediment, chlorophyll and thermal front maps which are then combined into a

single multi-spectral image. This approach is ideal if a broad, perhaps exploratory study of

the variability and relationship between the surface physical and biological properties within

a region is required.

Shaw and Vennell (2000) use a surface fitting technique to ‘follow’ ocean fronts. An

S-shaped function is fitted using least-squares to data extracted within a 20×30 km window

centered at the front and orientated along its approximate direction. The approach is unique

in the sense that it provides estimates not only of the front’s location, but also of key frontal
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parameters: the mean temperature at the front, its width, and the temperature difference

between the water masses on either side. Calculation of the orientation allows the extraction

window to be stepped 2 km further along the projected path of the front resulting in a

tracking routine across the image. One of the disadvantages of this technique is the bias

introduced by user interaction. Since the algorithm is unable to track through cloud due to its

field-of-view being limited to the extraction window, it is often necessary to break the front up

into a series of segments, the processing of each requiring initialization parameters provided

by the user. In an attempt to eliminate this bias Lou et al. (2005) apply a Prewitt gradient

operator to automatically locate the front and initiate the ‘front following’ algorithm at each

segment. The fixed window size used by Shaw and Vennell (2000) is a further limitation

of the technique since it restricts the smallest resolvable feature to 20 km in an along-front

direction. This is evident when the algorithm is compared to a 3×3 Prewitt edge detector.

The ‘front following’ technique fails to capture the smaller scale features resolved by the

gradient operator. The fixed size may be optimal for one segment, providing a sufficient

amount of smoothing while not blurring oceanic features of interest, but be suboptimal for

another where the length scale of features or number of available observations has changed.

In this paper we introduce a new front detection algorithm, based on Shaw and Vennell

(2000), that targets a specific frontal structure, is robust to noisy and missing data and

requires a minimum of user interaction. We extend the idea of statistical model fitting by

using a weighted local likelihood approach to provide a smooth, non-parametric description

of spatial variations in the position and strength of ocean fronts from remotely sensed SST

images. A likelihood based approach allows us to quantify estimation uncertainty associated

with each parameter. As yet, no other front detection technique is able to do this.
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We illustrate the algorithm with data from the Southland Front, a localized section of

the global Subtropical Front off the south-east coast of South Island, New Zealand. The

Southland Front is a well defined boundary separating subantarctic and subtropical surface

waters (Jillett 1969; Heath 1985; Shaw and Vennell 2001).

This paper is divided into a further six sections. Section 2 describes the data we use

to illustrate the algorithm. In Section 3 the idea of maximum likelihood is introduced in

the context of front detection and the mathematical function used to model the change in

surface temperature across a front is described. Section 4 extends the idea of likelihood

to regression models as a means of estimating spatial trends in frontal characteristics i.e.

estimating any increases or decreases in the strength or temperature of the front as it’s

location changes. The performance and limitations of the algorithm are evaluated in Section

5 and the results compared to the ‘front following’ algorithm (Shaw and Vennell 2000) in

Section 6. Conclusions are presented in Section 7 together with a discussion of the algorithm’s

advantages, limitations and potential future developments.

2. Data set

To illustrate the method we use a series of monthly composites of 4 km Pathfinder V5

AVHRR infrared SST data from around South Island, New Zealand. These were downloaded

through NASA’s Physical Oceanography Distributed Active Archive Center (PO.DAAC)

POET data server (http://poet.jpl.nasa.gov/) in netcdf format. Observations are globally

gridded into equiangle 0.044×0.044◦ pixels. Data were obtained for the period between

January 1985 though to December 2005 (inclusive), providing a twenty-one year time series
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of 252 images that were used in the development of the algorithm. Only night-time overpasses

were used to avoid any surface skin created by diurnal warming masking the true surface

frontal structure.

3. A model ocean front: maximum likelihood

Remote thermal infrared and passive microwave sensors allow us to measure the rapid

change in SST across ocean fronts. It is this surface expression that we aim to model.

Suppose that Z = {z(1), z(2) · · · , z(n)} is a vector of independently observed temperatures at

right angles across an ocean front. The probability of these observations being drawn from a

given model front may be expressed in terms of a likelihood function. This may be thought

of as the formula for the joint probability distribution of the sample Z. If p(Z; θ) represents

the probability density function of Z with a vector of unknown parameters θ, then:

Likelihood ≡ l(θ; Z) ≡ p(Z; θ) =
n∏
i=1

p(z(i); θ), (1)

where n is the number of observations across the front. The aim of maximum likelihood esti-

mation is to find the set of values of the unknown parameters θ, that given SST observations

Z, make the likelihood l(·) a maximum.

Now assume that each SST observation (z(i)) is drawn from a normal distribution, φ(·),

with mean E(z(i)) and variance V(z(i)) = σ2, assumed to remain constant for all i. A

normal distribution is chosen in the absence of any other information about the observations

and could be changed when necessary, for example where, because of incorrect flagging
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of scattered cloud, the distribution is skewed. If the expectation E is determined by the

function m(Y; θ), where Y = {y(1), y(2) · · · , y(n)} is a vector of known distances across the

front corresponding to observations Z = {z(1), z(2) · · · , z(n)}, and the parametric model m(·)

has a vector of unknown parameters, θ = {θ1, θ2, . . . , θq}, we may express the likelihood of

observed temperatures Z by:

l(θ, σ; Z) =
n∏
i=1

φ
(
E(z(i)),V(z(i))

)
=

n∏
i=1

φ
(
m(y(i); θ), σ2

)
=

n∏
i=1

1√
2πσ2

exp

[
−(z(i) −m(y(i); θ))2

2σ2

]
Sigma, σ, may be thought of as the standard deviation of noise about the model function.

These concepts and assumptions are illustrated graphically in Figure 1a.

It is often more convenient to maximize the log of the likelihood. Letting L(·) denote the

log of the likelihood, ln(l(·)):

L(θ, σ; Z) =
n∑
i=1

ln

{
1√

2πσ2
exp

[
−(z(i) −m(y(i); θ))2

2σ2

]}

=
n∑
i=1

[
ln(1)− (ln

√
2π + lnσ)

]
−

n∑
i=1

(z(i) −m(y(i); θ))2

2σ2
,

Since ln(1) = 0, and ignoring − ln
√

2π as an irrelevant constant,

L(θ, σ; Z) = −n lnσ − 1

2σ2

n∑
i=1

(z(i) −m(y(i); θ))2. (2)

The maximum likelihood estimates θ̂ and σ̂ are attained when the rate of change of L(·),

with respect to the unknown parameters θ and σ, equals zero.
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The function m(·) used to model the change in surface temperature across a front is

required to be a sigmoid (S-shaped) function that is able to emulate the steep thermal

gradient at the interface between two water masses with disparate surface temperatures.

Previous work by Shaw and Vennell (2000) uses the hyperbolic tangent, and we adopt the

same function here to represent a cross section of sea surface temperature observations.

Z = m(Y; θ) + ε = θ1 + θ2 tanh

[
Y + θ4

θ3

]
+ ε. (3)

θ1 is the front’s mean temperature. 2θ2 and 2θ3 define the temperature difference and

width respectively. θ4 is a translation parameter determining the position of the front within

an equiangle arc degree grid. The noise, ε, is assumed to be normally distributed with zero

mean and standard deviation σ. Figure 1b is a graphical representation of the how the model

parameters may be interpreted in a more physical sense.

Using this model, and setting θ = {θ1, θ2, θ3, θ4, σ}, the log-likelihood may now be ex-

pressed in full as follows:

L(θ; Z) = −n lnσ − 1

2σ2

n∑
i=1

(
z(i) −

(
θ1 + θ2 tanh

[
y(i) + θ4

θ3

]))2

. (4)

The advantage of using maximum likelihood over other parameter estimation techniques

such as least-squares are its statistical properties that allow the construction of confidence

intervals around θ̂ = {θ̂1, θ̂2, θ̂3, θ̂4, σ̂}. Asymptotically (as n→∞), the maximum likelihood

estimator is unbiased, has the smallest possible variance and is consistent. Thus as n→∞,

it holds that E(θ̂) = θ, Var(θ̂) = −H−1(θ̂) and therefore θ̂ ≈ φ(θ,Var(θ̂)), where H

is a matrix of second order partial derivatives with respect to the unknown parameters.
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That is, the distribution of estimates is asymptotically normal with the true (but unknown)

parameters θ as expectation. For small n this is an approximation (Davison 2003). The

estimated variances of the maximum likelihood estimates are equal to the diagonal elements

of, −H−1(θ̂) , the asymptotic variance-covariance matrix. The square root of the diagonal

elements yields the standard errors. Given the asymptotically normal distribution of the

maximum likelihood estimates, confidence intervals for θ̂ may be constructed:

θ̂ − tα,υ · Var(θ̂)
1
2 ; θ̂ + tα,υ · Var(θ̂)

1
2 ,

where tα,υ is the t-value for a t-distribution with υ degrees of freedom for a 100(1 − α)%

confidence interval. υ is defined as n− 5, the number of observations minus the number of

unknowns being estimated.

Maximum likelihood parameter estimates are made based on the assumption that each set

of SST observations (Z) are taken at approximately right angles across the front and we may

want to orientate our data to make this assumption more reasonable. In our illustration, the

Southland Front approximately follows the 500 m isobath (Shaw and Vennell 2001), that runs

south-west to north-east along the east coast of South Island, New Zealand. Observations

from the original AVHRR SST image are therefore extracted within a rotated window and

set within a new co-ordinate system before parameter estimates are made (Figure 2). In this

way more accurate estimates of frontal characteristics are obtained. The limitations and

complications of not specifically including an orientation parameter in the model function

are discussed in Section 5.

A Newton-Raphson optimization scheme is used to calculate the maximum likelihood
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estimates θ̂. Initial values are needed for parameters in the model to start the optimization.

In our example we take the mean temperature (11.01◦C), width (8.36 km), and temperature

range (1.76◦C) of the Southland Front as estimated by Shaw and Vennell (2001) as start-

ing values for θ1, 2θ2 and 2θ3. The position (θ4) and standard deviation about the mean

model (σ) are set initially to 0.5◦ and 0.15 respectively. To facilitate rapid and successful

convergence a linear transformation is applied to all unknown variables by imposing upper

and lower bound constraints (Table 1). The limits are determined by the resolution and

accuracy of the data set, the size of the image and reasonable geophysical values expected

for sea surface temperatures and frontal scales in the region.

Given that sea surface temperatures around New Zealand are unlikely to exceed 23◦C

throughout the year (Heath 1985; Chiswell 1994; Uddstrom and Oien 1999; Shaw and Vennell

2001), the mean frontal temperature (θ1) is given an upper bound of 23◦C. As in Shaw and

Vennell (2000), a lower bound of 5◦C is set for θ1 so as to exclude any high level cloud that

may have been missed by the cloud clearing algorithms. Taking into account the range of the

seasonal SST cycle around New Zealand (Heath 1985; Chiswell 1994; Uddstrom and Oien

1999), an upper limit of 6◦C was set for the temperature difference (2θ2) across the front.

Any greater difference seems unreasonable and likely to include cloud. The lower bound for

the temperature range was set at 0.1◦C, the approximate relative accuracy of the Pathfinder

data set (K.Casey, NOAA, personal communication). The maximum and minimum bounds

for the frontal width (2θ3) are determined by the size (1◦×2.8◦) and resolution (0.044◦) of the

images. Note that only one front is allowed to exist. Each image is 1◦ wide, approximately

100 km (across-front scale), therefore an upper width range was set at 0.6◦(∼60 km). This

allows for roughly 20 km of data from each plateau region on either side of the front. Having
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a sufficient amount of data to identify these regions was found to be important by Shaw and

Vennell (2000). The lower limit is set by the 0.044◦ (∼4 km) data resolution. The width and

therefore gradient of features smaller than this can not be accurately resolved. Estimates

of the temperature, temperature difference and position to within a pixel however may still

be regarded as reliable, although the errors associated with them may not be. The frontal

position (θ4) is bounded by the limits of the extracted image.

Figure 3 is an example of the model function fitted to five different sets of SST observa-

tions taken across the Southland Front. 95% confidence intervals are given for each estimated

parameter. Note how the estimated characteristics of the front vary between each profile.

4. A non-parametric model for spatial trend

The position, strength and temperature of fronts change across ocean basins in response

to localized oceanic and atmospheric conditions and interactions such as: stratification,

wind stress and mixing, sea level pressure, bathymetry, vorticity constraints, regional eddy

activity, circulation dynamics and remote ocean-atmosphere forcing. To capture these spatial

changes local likelihood, an extension of weighted local fitting techniques to likelihood based

regression models (Tibshirani and Hastie 1987), is used to create a smooth, non-parametric

description of spatial variations in frontal characteristics.

Assume that temperature observations Zj = {z(1)
j , . . . , z

(n)
j } are available at fixed and

known positions xj along the front, where j = {1, . . . ,m}. Observations Zj are realizations

from the parametric model of Eq.(3):
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Zj = m(xj,Yj; Φ(xj)) = θ1,j + θ2,j tanh

[
Yj + θ4,j

θ3,j

]
+ εj,

where εj is normally distributed random noise with a mean of zero and unknown variance

σj. Yj = {y(1)
j , . . . , y

(n)
j } is a vector of known distances across the front indexed by the

superscript i = {1, . . . , n}. We now assume that the unknown parameters θ are themselves

a smoothly varying function of x denoted by Φ(xj). θj = {θ1,j, θ2,j, θ3,j, θ4,j, σj} as before

represent the front’s mean temperature, the across-front temperature change, the width,

position and standard deviation of noise about the model fit. We are interested in estimating

the smooth function of parameters θ as they vary along the front, i.e. the function Φ(x).

A standard approach would be to assume a parametric model for the form of Φ(x),

such as a linear regression where θj = α + βxj. The likelihood equation l(α,β) =∏m
j=1m(xj,Yj; Φ(xj; α,β)) would then be solved to obtain parameter estimates α̂ and β̂

and a fitted across-front temperature profile Ẑj = m(xj,Yj; Φ̂(xj)). However, such a para-

metric approach is not justified in the case of frontal modelling; we can not presume to know

how a parameter may vary in such a complex system.

In contrast, the local likelihood method assumes only that θ is a smooth function of x and

is an ideal alternative approach. We estimate the coefficients of the function Φ(x) locally

at each discrete point xj. The most basic case is where Φ(xj) is assumed approximately

constant at points close to xj, i.e. no particular model for the behavior of the parameters

near xj. Denoting the log-likelihood associated with m(·) from the jth set of temperature

observations as:
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L(θj; Zj) = −n lnσj −
1

2σj2

n∑
i=1

(
z

(i)
j −

(
θ1,j + θ2,j tanh

[
y(i) + θ4,j

θ3,j

]))2

, (5)

the local likelihood estimator for θj is of the form:

θ̂j = max
θj

m∑
k=1

K(xk − xj;h) · L(θj; Zk), (6)

where K(xk − xj;h) is a normal smoothing function such that
∑m

k=1K(xk − xj;h) = 1,

with bandwidth h > 0. The bandwidth controls the spatial smoothness of θ̂j. Note that

j is fixed with k varying over the points k = {1, . . . ,m}. The estimator θ̂j is the value

of θj which maximizes the weighted sum of likelihood contributions w(xk, xj)L(θj; Zk) in

which the weights w(xk, xj) = K(xk − xj;h) are dependent upon the separation of xk and

xj. The symmetry of the normal function ensures that most weight is given to the point of

interest xj. By solving each of these weighted local likelihood problems at each position xj

we obtain a series of smooth parameter estimates (xj, θ̂j), and a fitted set of temperature

profiles Ẑj = m(xj,Yj; θ̂j). Estimation uncertainty is quantified as before by constructing

the variance-covariance matrix of estimates at each position xj.

This local likelihood approach is a significant improvement over the standard maximum

likelihood estimates (i.e. where h = 0◦). The local likelihood estimates are constructed

from a much larger set of observations and therefore have reduced confidence intervals.

In addition, estimates in those regions with a sparsity or complete absence of temperature

observations are made possible by drawing on surrounding information. The quality flagging

system described in the appendix provides a means of identifying estimates made in these

areas. The algorithms ability to deal with missing data is illustrated in Section 5.
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a. Bandwidth selection: likelihood cross validation

The bandwidth h, which for the Gaussian kernel is the standard deviation, controls the

width of the kernel and hence the smoothness of the fitted non-parametric regression. Larger

values of h correspond to stronger levels of smoothing. Setting the bandwidth equal to zero,

the local likelihood estimator reduces to the standard maximum likelihood estimate in Eq.(4)

and parameters θj are estimated using only data from points xj. Taking h→∞ on the other

hand sets the parameters constant globally with distance. Somewhere in between there is

an optimal value of h, which may be considered as a measure of model order or complexity.

Likelihood cross-validation, an automatic method designed to determine the level of

smoothing best supported by the available data (Silverman 1986) is used to select an optimal

bandwidth hop for each image. Figure 4 compares the fitted non-parametric trend for each

model parameter using bandwidths h = 0◦, h = 0.025◦, hop = 0.11◦ and h = 0.3◦. When

h is small (h = 0.025◦) too much of the high frequency variability introduced by the noise

in the observations is modelled. When h is large (h = 0.3◦) much of the mesoscale spatial

structure is lost. The optimal bandwidth (hop = 0.11◦) captures mesoscale variability in the

front’s position, temperature and strength, while not over-smoothing and missing potentially

important features.

Returning to our example, out of 252 monthly 4 km resolution images of the Southland

Front the median value of hop based on likelihood cross-validation is 0.095◦ (∼10.6 km).

A kernel with this bandwidth assigns the highest 95% of weights to observations within

a 21.6 km window centred about the point of estimation. This distance is comparable to

the expected length scale of physical processes in the region; the Baroclinic Rossby Radius
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around South Island, New Zealand is approximately 20 km (Chelton et al. 1998). We can

be confident therefore that likelihood cross-validation is selecting a physically appropriate

length scale for the smoothing parameter as well as one that balances the bias and variance

of the estimates.

b. Local likelihood optimization

Newton-Raphson is used to find the local likelihood estimates θ̂j. Since this optimization

technique can be sensitive to the initialization parameters (Gill et al. 1995), the bandwidth is

initially set to zero and estimates from this simplified problem (i.e. no smoothing function)

are then used as a starting point for the full local likelihood solution. Other more robust

optimization routines such as the Simplex could be used where an initial guess close to the

true parameter values is not possible. This may result however in a substantial increase in

computing time. In an attempt to minimize the influence of areas where SST observations

are: a. limited; b. unevenly distributed such that the frontal structure is not detectable; or

c. where there is no discernible change in gradient, weightings additional to those supplied

by the kernel function K(·) based upon the distance between xk and xj are introduced. In

this way the quality or reliability of each likelihood contribution is also considered. Full

details of the criteria used to assign these extra weightings are given in Hopkins (2008) and

Appendix A.

Figure 5 shows the along-front trend in frontal characteristics for June 2004. This example

demonstrates the algorithms ability to make estimates in regions where SST observations

are unavailable. The size of the confidence interval increases where there is a lack of data.
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5. Performance evaluation

Two aspects of the algorithms performance were tested using a simulated data set: 1. its

ability to cope with noisy data; and 2. the implications of a meandering front. An artificial

image was constructed with the same size (1◦×2.8◦) and resolution (0.044◦) as the AVHRR

SST images used in algorithm development. A straight front with constant parameters

θ1 = 12◦C, 2θ1 = 2◦C, 2θ3 = 20 km, and θ4 = 0.5◦ was built centrally across this image.

The loss in accuracy and precision of estimates as the level of noise increases in an image

is shown in Figure 6. Normally distributed random noise φ(0, σ2) with σ between 0.05 and

0.55 was added to the base image and estimates with bandwidths h = 0◦ and h = 0.15◦

were made at each point xj. For σ = 0.05 the front is very well defined. When σ = 0.55

no frontal structure can be distinguished through the noise. For a bandwidth of zero, the

range of estimates increases rapidly as the amount of noise becomes more significant. This

is brought under control by increasing the smoothing parameter to h = 0.15◦. Note that

for h = 0◦, the standard deviation of noise is increasingly underestimated as the true value

increases (Figure 6a, panel E). This is improved by using a bandwidth of 0.15◦ (Figure 6b,

panel E). If the relative accuracy of AVHRR measurements between pixels is of the order

0.1◦C we conclude that the local likelihood estimates are not overly sensitive to noise and

errors in the AVHRR SST measurements.

The model function is fitted based on the assumption that the front is oriented east-

west across the image (i.e. each cross section of observations (Z) is at right angles to the

front). In reality fronts meander and the angle at which each cross section bisects the front

may change. The artificial front (with a width of 10 km) was rotated between 0◦ and 90◦
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from the horizontal. A front with an angle of 0◦ is bisected at right angles by each cross

section. An angle of 90◦ represents a front orientated north-south across the image. Figure

7 shows how each parameter estimate (for h = 0◦) deviates from its true value as the angle

of rotation increases. Estimates of the mean temperature, temperature range and position

remain unaffected by the orientation of the front. Estimates of the width and therefore

the gradient are more sensitive. The estimated width exponentially increases as the angle

steepens (Figure 7c). Beyond 25-30◦ the width is overestimated by >14% resulting in an

underestimate of the gradient. Additionally, the standard deviation of noise about the model

fit (Figure 7f) is slightly underestimated by 0-5% of the true value between 0◦ and 40◦. This

is consistent with results presented in Figure 6. At angles greater than 40◦ it is overestimated.

This experiment highlights that using this version of the algorithm estimates of the width

and gradient must be treated with caution in regions where the front meanders at angles

greater than 25◦. Note that if the front is not perpendicular to the axis along which the

cross sections are taken then the errors resulting from any rotation are not represented in

the algorithms error estimates.

The orientation of the front and hence the angle at which data Zk are extracted, like

the mean temperature and position etc. is an unknown variable, but not one that is easily

incorporated into the optimization. Unlike the other parameters in vector θ its value would

need to be allowed to vary spatially between points k during the optimization such that it

resulted in the smallest possible estimate of the width (or greatest gradient) at each position.

This would make the optimization more complex. Furthermore, continually adjusting the

extraction angle for vectors Z at each iteration would result in SST observations being

used more than once. The effect on the underlying statistics of the technique of repeatedly
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using the same data is difficult to quantify. Maximum likelihood requires samples to be

independent, if vectors Zk and Zk+1 contain some of the same measurements then this

requirement is clearly not met. Including a rotational parameter presents complications to

both the optimization, programming and statistical assumptions of the technique. Possible

solutions are discussed in Section 7.

One of the objectives in the development of a new front detection algorithm was to

minimize the loss of information owing to regions occluded by persistent cloud cover. To

test the robustness of the technique to data loss, SST observations are removed from a

cloud free composite image of the Southland Front (September 1997). Instead of trying

to simulate the real spatial patterns of cloud cover and contaminated SST retrievals, the

patterns of missing data from a selection of other months provides a means of removing

observations. Figure 8a shows along-front estimates of parameters for the cloud free image

of September 1997. Note that the data missing in the top left hand corner is the Dunedin

Headland. In Figure 8b a small (16%) percentage of the observations have been removed,

mostly over the front itself. In Figure 8c over 40% of measurements are missing. Estimates

of the front’s position are most robust to a sparse data set, deviating very little from the

original estimate made with a complete set of observations. Where observations have been

removed the width is underestimated, although the estimate made with a complete data set

falls, for the most part, within the 95% confidence interval. There are two peaks (>50km) in

the estimated width. These points correspond to increases in the angle of the front relative

to the horizontal and subsequent overestimation of the width.
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6. Comparison to other techniques

The local likelihood algorithm is directly compared to the ‘front following’ algorithm of

Shaw and Vennell (2000) as an independent means of validating its performance. In Figure 9

the location of the Southland Front on 28 March 1990 as estimated by both techniques from

a daily 1 km resolution AVHRR SST image is shown. Also plotted are the fronts identified

by the Single Image Edge Detector (SIED) (Cayula and Cornillon 1992).

The local likelihood and ‘front following’ algorithms produce very similar estimates of

the front’s position and both agree with the western most structure picked out by the SIED.

The local likelihood estimates highlight more of the mesoscale variability than the ‘front

following’ algorithm. This is likely due to the limited resolvable along-front length scale

imposed by the 20 km wide moving window used by Shaw and Vennell (2000). There are

gaps around 44.5◦S and 45.8◦S in estimates made by the ‘front following’ algorithm where the

routine was unable to identify the front. There are no gaps in the local likelihood estimates

although the location of the front over the Dunedin Headland is clearly incorrect. This

however is identified by flagging those sets of estimates where one or more of the parameters

in vector θ̂j is on an upper or lower bound (see Table 1).

The SIED helps identify frontal structures further offshore and reveals a possible double

structure to the Southland Front. North of Dunedin both the ‘front following’ algorithm and

local likelihood estimates most closely follow the more shoreward of the two SIED fronts.

This would suggest that the strongest of the two structures is found further west.

Table 2 compares the mean parameter estimates made by the ‘front following’ and local

likelihood algorithms over three discrete sections A-C (shown in Figure 9). Identifying
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latitudinal sections over which both algorithms performed successfully is the best way to

quantitatively compare the performance of the two techniques. Estimation of the standard

errors using the local likelihood algorithm allows weighted mean estimates for each section to

be calculated. Each estimate is weighted by the inverse of its own variance. No consideration

of the reliability of estimates contributing to the mean is possible with the ‘front following’

technique. In all three sections estimates of the temperature (θ1) and temperature range

(2θ2) are comparable. Estimates of the width (2θ3) however are not in such close agreement.

The disparity is most pronounced in section A, south of Dunedin, where the local likelihood

algorithm estimates a tight meander in the position of the front (Figure 9). Using the ‘front

following’ algorithm the width of the Southland Front over this section is estimated to be 8.10

km. The local likelihood approach returns a much greater estimate of 16.09±0.6 km. This

is likely the result of overestimation due to the front’s orientation. The moving extraction

window used in the ‘front following’ algorithm is aligned normal to the front and therefore

this technique does not suffer the same problem.

7. Discussion and conclusions

In this paper we have demonstrated how local likelihood may be used to help detect and

characterize ocean fronts. The rapid change in SST between two different water masses on

either side of a front is modelled using an S-shaped (tanh) function. The unknown parameters

of this model are determined by maximizing a weighed sum of likelihood contributions from

all available cross sections of SST observations in an image. A Gaussian smoothing function

assigns weightings based on the distance of observations from the point of estimation. The
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bandwidth of the kernel function determines the smoothness of the fitted nonparametric

regression, with larger values corresponding to stronger levels of smoothing. Likelihood

cross validation is used to determine the optimal level of smoothing best supported by the

available data. The weightings assigned by the kernel smoother are modified by an additional

weighting based on an assessment of the quality of the likelihood contributions from each set

of SST measurements. Estimation uncertainty is quantified by standard errors calculated

from the variance-covariance matrix of each local likelihood solution.

a. Advantages and limitations

The local likelihood approach has both advantages and disadvantages over other front

detection techniques. It should therefore be considered as an additional tool in the suite of

existing SST front detection algorithms. In this section we discuss the merits, drawbacks

and assumptions of the new technique.

The local likelihood algorithm is not overly sensitive to noise and regions with partially

missing data. This means that a pre-filtering routine often necessary with other techniques

(e.g. Canny edge detection, SIED) is not required. In this way all frontal structures within

the original image are preserved. The technique targets a unique frontal structure rather

than locating all gradient discontinuities in an image. Key estimates of frontal strength and

temperature are obtained, important variables in terms of the structure and dynamics of

the front and how it interacts with other oceanic phenomena and the atmosphere above.

Crucially, uncertainty estimates are made which may be taken into account when results

are used in further quantitative studies. However, using an S-shaped model function that
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allows for only one front is in some situations inappropriate. Fronts may bifurcate and then

merge back together, creating multiple frontal structures. Fronts may also be embedded in

a surrounding weak but non-zero gradient field for which the sigmoid function is not best

suited. In these situations other techniques better equipped for finding multiple fronts rather

than characterizing one particular feature may perform better. Similarly, the performance of

the local likelihood algorithm deteriorates in areas of high meandering intensity and where

small high gradient eddies are common. This is a further example of where alternative

techniques need to be explored. Adding a second, third or fourth etc. function to the model

would in theory allow more than one front in an image to exist. Further investigation into

how such a model would perform in practice however is left for future research. Possible

solutions to the problems caused by the front’s orientation are addressed in Section 7b.

Currently, the new algorithm requires some initial knowledge of the approximate location

and orientation of a front if it is to return good quality results. If little or no information

about the area and front to be studied is available then the automated front detection

techniques of Cayula and Cornillon (1992), Miller (2004) or Holyer and Peckinpaugh (1989)

would be a useful starting point in making a first estimate of location and variability. From

this, an appropriate range of values for the front’s mean temperature, temperature difference

and width could be estimated and used to initialize the optimization.

A normal distribution with standard deviation σ is assumed to model the noise about

the model function. Scattered cloud that has not been correctly flagged by cloud screening

algorithms will tend to skew this towards the colder side of the distribution. If there was a

particular problem with cloud flagging then a more complex skewed distribution could be

used. Similarly, σ may not always remain invariant across a front. It is allowed to vary
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along the front to take into account changes in meteorological conditions that may lead to

variations in cloud contamination, but is not permitted to change across-front.

Applications of the algorithm developed here are numerous. Climate variability and

monitoring studies, ocean forcasting, validating ocean models, ecosystem and fisheries re-

search all require an accurate understanding of the spatio-temporal behavior of ocean frontal

systems. The detailed results from such a front detection scheme would compliment in-situ

data sets where variability of a front is difficult to resolve. It may also help put into a wider

context findings from research cruises only able to sample a limited area.

Although the algorithm has been used with AVHRR SST data and illustrated with the

Southland Front it is by no means limited to this type of data and location. It is adaptable

to a wide variety of remotely sensed data sets (e.g. altimetry and ocean colour as well as

SST), model output and ocean forecasts. Ocean colour and altimetry data may be used

simply by adopting a model function that describes the change in colour or height across a

front rather than the temperature. In some cases these data sets may be more reliable and

appropriate indicators of frontal location.

b. Future developments

There are a number of improvements that could be made in future versions of the algo-

rithm. The bandwidth of the smoothing function used to process each image is determined

automatically using likelihood cross validation. An improvement on this scheme would be to

introduce a variable bandwidth within each image. This would allow the smoother to adjust

to localized variations in the density, distribution and quality of SST observations. For well
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defined structures that are not obscured by small scale clouds a smaller bandwidth would

be favoured, minimizing bias in parameter estimates. Where the frontal structure is poorly

defined or masked by cloud then a larger bandwidth would increase the weightings assigned

to data further afield and decrease variance in the parameter estimates. Also, the along-

front structure and variability of each parameter is different. Adopting different smoothing

functions and bandwidths for each parameter may therefore be advantageous. The local

likelihood framework however does not naturally allow the degree of smoothing applied to

each parameter to be controlled because smoothing takes place in likelihood rather than in

parameter space. Further investigation is needed to assess the possibilities of incorporating

such flexibility.

The local likelihood algorithm only uses spatial information to estimate the position

and characteristics of fronts in regions occluded by cloud cover. Incorporating temporal

information about the structure and local motion of the front from images taken before and

after the time of interest could improve estimates made in regions of very sparse data (Chin

and Mariano 1997). If the position of a front is well defined at times t − 1 and t + 1, but

obscured by clouds at time t, then estimates made at t − 1 and t + 1 could be used to

constrain optimization at time t. Accounting for temporal evolution would be most effective

when using daily or weekly images. Natural meso-scale variability (meanders, eddies) and

the temporal smoothing inherent in monthly composite images means that the position and

structure of a front in one month will not necessarily bear any resemblance to the location

of features in the previous or following months. The advection and deformation of features

over daily and weekly time scales is likely to be significantly less which would allow specific

structures to be detected and matched between time frames.
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Under the current design, changes in the orientation of the front can lead to overesti-

mation of the width and subsequent underestimation of the gradient. Incorporating some

form of angular dependency into the algorithm will be a high priority during future devel-

opments and will help to stabilize and correct estimates of the width. For angles less than

80◦ we have shown that the location of the front can be successfully estimated regardless of

orientation. Knowing the relationship between orientation and the error in the estimated

width, overestimation could be corrected for post-processing. A better solution would be

to extract data Zk at variable angles along the front during optimization. A standard edge

detection technique could be used to locate the front and estimate its orientation providing

the information needed to do this. Alternatively, the standard maximum likelihood model

fit (no smoothing kernel) at each position k could be optimized with respect to the angle

at which SST observations Zk are extracted across the front to obtain the minimum pos-

sible estimate of the width (or maximum gradient). This information could then be used

to extract vectors Zk at optimal angles during the full local likelihood calculation. Both

of these solutions would result in a certain number of SST observations being used more

than once and the maximum likelihood assumption of independence between vectors Zk vi-

olated. Strictly speaking however SST measurements in close proximity are not completely

uncorrelated and the assumption of independently observed temperatures within each cross

sectional vector made in Section 3 may be considered weak. Composite daily, weekly and

monthly images are derived from mapping and averaging procedures applied to a number of

individual satellite overpasses. This will introduce some level of dependence between mea-

surements. In an attempt to take this into account the spatial decorrelation length scale, the

distance at which data are no longer correlated, might be useful to consider when choosing
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the smoothing bandwidth. Despite these concerns over independence, it may be more ap-

propriate to sacrifice precise statistical correctness in order to gain more realistic estimates

of the front’s strength.
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APPENDIX

Quality Flags and Weightings

The Gaussian kernel function K(·) distributes weightings to likelihood contributions L(·)

at positions k based upon the distance between xk and xj. This is designed to ensure that

data closest to the point of estimation j have most influence on the local likelihood parameter

estimates. This weighting however does not take into account the quality or reliability of each

likelihood contribution. There are a number of situations where downweighting of likelihood

contributions L(·), in addition to weightings of the kernel K(·) is desirable.

In regions where there are a limited number of across-front SST observations, the algo-

rithms ability to make reliable estimates of frontal characteristics is reduced. The quality of

these estimates is somewhat dependent upon the amount of data missing and on how this

percentage is distributed across the front. Consider the case where h = 0◦. If a set of SST

observations Z is reduced by 50%, where every other data point across the profile is absent,

then the overall horizontal temperature structure is maintained and reliable estimates of the

temperature and position etc. may be made. At the other extreme, if all the missing values

are on one particular side of the front then vital information concerning one water masss is

lost and estimates may not be a true reflection of the structure of the front at that point.

Of course when there are no observations available then no estimate can be made. If when

h > 0◦ the data Zk are located close to the point of estimation j and thus assigned a high
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weighting by the kernel K(·), localized sparsity and uneven distribution of observations at

k may heavily bias the final local likelihood estimate away from the more realistic values

supported by other neighbouring observations.

The second situation in which we might wish to downweight data is where there is no

discernible change in gradient across the front, and the best fit to observations Zk would

be a straight line. This of course may be an accurate reflection of the state of the ocean;

a strong subsurface front can exist without a marked surface thermal signature. Strong

winds and mixing may break down the surface structure and increased solar insolation in

the summer stratifies the water column resulting in an isothermal top layer that may become

decoupled from and mask the sub-surface structure below (James et al. 2002). Alternatively

it may be the case that gradient changes have been blurred through temporal smoothing

in a composite image. This is particularly true of areas where the front has a high degree

of spatial variability and an increased number of plumes, as is the case toward the north

of South Island, New Zealand (Shaw 1998). A noisy set of observations may also make it

difficult to pick out any rapid change in temperature between the two water masses. In all of

these cases, the standard maximum likelihood estimate (h = 0◦) of the width has a tendency

to reach the upper bound of 60km (Table 1). As part of a local likelihood estimate this data

would bias the width toward larger values.

Thirdly, we must be cautious where we estimate a very sharp decrease in temperature

over spatial scales that we are unable to resolve. A lack of data directly over the front

where SSTs are changing most rapidly often results in a very narrow estimate of the width.

Unfortunately cloud cover over frontal regions is common and may not always be remedied

by composite images.
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Based on: 1. an evaluation of the optimizations convergence criteria, 2. the number of

estimates free from their upper and lower bounds, 3. the value of the likelihood, 4. the

residual sum-of-squares (RSS) of the model fit to data Zj, and 5. the percentage of missing

data from Zj, a quality flag (QF) between 1 and 7 is assigned to each set of estimates

θ̂
[h=0]
j . Flag 1 is the highest quality and Flag 7 the poorest. Figure 10 is the flow chart

that was used to assign each flag. The routines convergence criteria comprise an assessment

of whether the function value and parameter estimates are converging on a solution, and

whether the gradient vector at the solution (g(θ̂sol)) is zero (Numerical Algorithms Group

2006). Each flag is associated with a weighting (QW) between 0 and 1. This is combined

with the weightings assigned by the kernel K(·) to produce a new weighting that takes into

account both the location and reliability of each likelihood contribution L(·). If the quality

weightings for each Z in an image are combined into a 1 × m vector QW, the jth row of

weightings of the final smoother matrix Sj is given by:

Sj =
K(xk − xj;h) ·QW∑m

k=1[K(xk − xj;h) ·QWk]
. (A1)

Normalization ensures that
∑m

k=1 Sj,k = 1. Using weightings from the matrix S when cal-

culating the likelihood and optimal bandwidth helps ensure a smooth non-parametric trend

in along-front estimates of temperature etc. less likely to be interrupted by outliers. The

criteria shown in Figure 10 may be adjusted as deemed necessary for different applications,

or where a stricter or more leaniant weighting scheme is desired. Further discussion of the

quality control criteria may be found in Hopkins (2008) and Numerical Algorithms Group

(2006).
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Table 1. Geophysical upper and lower bounds used to apply a linear transformation to
unknown variables θ using a 1◦×2.8◦ window of data with a 0.044◦ pixel resolution.

Parameter Geophysical Geophysical

Lower Bound Upper Bound

Mean Temperature (θ1) 5◦C 23◦C

Temperature Range (2θ2) 0.1◦C 6◦C

Width (2θ3) 0.044◦ (∼4 km) 0.6◦ (∼60 km)

Position (θ4) -1 0

s.d (σ) 1e-06 6
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Table 2. a. Mean parameter estimates made over sections A-C on 28 March 1990 (as
marked in Figure 9) made by the ‘front following’ algorithm (Shaw and Vennell 2000). b.
Weighted mean estimates (±2×standard error of the mean) over sections A-C using the local
likelihood algorithm (Hopkins).

Latitude Parameter a. Shaw and b. Hopkins

Section Vennell (2000)

A θ1 (◦C) 13.07 13.47±0.02

46.16-45.96◦S 2θ2 (◦C) 1.95 2.53±0.02

2θ3 (km) 8.10 16.09±0.60

B θ1 (◦C) 13.26 13.41±0.01

45.76-44.93◦S 2θ2(◦C) 3.24 3.00±0.01

2θ3 (km) 12.85 9.30±0.21

C θ1 (◦C) 13.09 13.39±0.03

44.88-44.75◦S 2θ2 (◦C) 2.63 2.44±0.03

2θ3) 14.81 9.43±0.80
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Fig. 1. a. Schematic illustrating the assumption that each SST observation z(i) at distance
y(i) across the front is drawn from a normal distribution with mean E(z(i)) and standard
deviation σ. The expectation E is determined by the model function m(y(i); θ). b. Physical

interpretation of parameters in model m(Y; θ) + ε = θ1 + θ2 tanh
[

Y+θ4
θ3

]
+ ε.
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Fig. 2. A 1◦ by 2.8◦ window of data aligned approximately along the Southland Front off
the east coast of South Island, New Zealand is extracted from each AVHRR SST image.
The 500 m isobath is marked. Cross sections of SST observations A-E to which the model
function is fitted in Figure 3 are shown.
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Fig. 3. Examples of the model function fitted to five different sets of SST observations (A-
E) across a composite image of the Southland Front from June 2004. For each cross-section
the observed temperatures are represented by black crosses and the fitted model (Eq.(3)) by
a solid black line. ⊗ marks the estimated position. Also shown are the specific parameter
estimates ±95% confidence intervals.
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Fig. 4. Local likelihood parameter estimates along the Southland Front in June 2004 for
bandwidths h = 0◦, h = 0.025◦, h = 0.3◦ and hop = 0.11◦. The middle panels represent the
width and normalized weightings of each gaussian kernel function. Note the tendency for
peaks and troughs to be smoothed out as h increases. Weightings attached to observations
Zk become increasingly similar and the estimator approaches a fitted least-squares constant;
its variance decreases while its bias increases. As h decreases the variance of the estimator
increases, but its bias decreases and the non-parametric model is over-fitted.
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Fig. 5. Local likelihood parameter estimates ±95% confidence intervals (dashed lines) for
the Southland Front in June 2004. hop=0.11◦.
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Fig. 6. Distribution of estimated temperature (A), temperature range (B), width (C),
position (D) and standard deviation of noise (E) from a simulated data set with smoothing
parameters a. h = 0◦ (left), and b. h = 0.15◦ (right). True parameter values are shown by
the dashed line. Each box has lines at the lower quartile, median, and upper quartile values.
Whiskers extend to the most extreme values within 1.5 times the interquartile range from
the ends of the box. Outliers are marked by grey circles.
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Fig. 7. Effect of frontal orientation on parameter estimates. Angle of rotation vs a. mean
temperature (θ1), b. temperature range (2θ2), c. width (2θ3), d. gradient (2θ2

2θ3
), e. position

(θ4) and f. standard deviation of noise about mean (σ). The dashed line indicates the true
parameter value. The circles represent the mean estimated value at points across the image
within the range −0.1 > xj < 0.1. Error bars represent 2 × the mean of the standard errors
of these estimates. The shaded gray box represents the angle past which the algorithm
‘collapses’. Beyond 80◦ no useful output may be obtained. Eddies and meanders that loop
back on themselves are not resolved.
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Fig. 8. a. Parameter estimates for September 1997 ±95% confidence intervals, b. Parameter
estimates for September 1997 with 16% of observations removed (dashed line). Estimates
made with the full data set (column a.) are marked with a solid black line, c. As for b.
but with 43% of observations removed. n.b. missing data in the top left hand corner is the
Dunedin Headland and accounts for 5% of percentages quoted.
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Fig. 9. Location of the Southland Front on 28 March 1990 from Shaw and Vennell (2000)
compared with the estimated position using the local likelihood algorithm where hop = 0.025◦

(Hopkins). Gaps in the estimates made by Shaw and Vennell (2000) are where the algorithm
failed to converge within the set parameter bounds. Local likelihood estimates that fall
outside the range of acceptable values identified in Table 1 are identified in green. Fronts
identified using the single image edge detection (SIED) of Cayula and Cornillon (1992) are
also shown (minimum cross-front difference of 0.2◦C). Sections A, B and C refer to estimates
in Table 2.
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Fig. 10. Flowchart used to assign quality flags (QF) and weightings (QW) to each data
set Zj when h = 0◦. P = Pass, F = Fail. The stringent accuracy demanded by the NAG
optimization routine may result in an otherwise acceptable solution being reported as a
failure. Therefore, when not all conditions for a minimim have been met the gradient vector
g(θ̂sol) and condition number (cond) of the matrix of second order derivatives at θ̂sol are
assessed. A small condition number indicates a high rate of convergence and an accurate
estimate of g(θ̂sol). ε is the machine precision and RSS the residual sum-of-squares of the
model function fit.

53


