Hydrological Summary

for the United Kingdom

General
Indian Summer conditions characterised the first half of September but, thereafter, weather patterns were much more autumnal. September rainfall totals were considerably below average across most of the country. Correspondingly, reservoirs stocks generally followed a normal seasonal decline – but from elevated late summer levels in southern Britain. Early October stocks in some large Scottish impoundments (e.g. Loch Thom) were significantly below average but mostly very healthy elsewhere. For England & Wales as a whole, stocks were the 4th highest in a 20-year series; reflecting abundant runoff in most gathering grounds over the last 12 months. September river flows were typical of the early autumn except in some spring-fed rivers where they remained close to seasonal maxima. The return to more normal soil moisture conditions in the early autumn saw groundwater level recessions re-established but levels in most index wells were considerably above the September average. The recent dry spell has moderated, but not eliminated, the enhanced risk of groundwater flooding in vulnerable parts of the Chalk outcrop this winter.

Rainfall
The high pressure, which dominated synoptic patterns during the first half of September, receded in mid-month allowing frontal systems to bring significant rainfall to some areas, mostly in the western uplands; Lusa (Skye) reported 46.4mm on the 15th and Capel Curig (N. Wales) 55.6mm on the 24th (a day when several tornadoes were reported in southern Britain, e.g. in Farnborough). Of greater hydrological significance was a notable dry spell which had extended beyond 30 days by mid-September. Some areas (e.g. in the Lower Severn basin) registered no measurable rainfall during this episode, and much of central England reported <5mm. This very settled interlude is reflected in the September rainfall totals. A few isolated localities (e.g. in the northern Pennines) exceeded the monthly average but parts of eastern Scotland registered their 4th driest September in 35 years. Many catchments in the English Lowlands reported less than half the monthly average rainfall – adding to a cluster of dry Septembers in England since the mid-1990s. As in August, particularly modest rainfall was reported for those areas worst afflicted by the summer flooding. After record May-July rainfall, the Severn-Trent Region registered its 2nd lowest Aug-Sept rainfall in 16 years. Nonetheless, rainfall totals – over timespans of 4-12 months remain well above average. The Oct-Sept period was the 2nd wettest since 1929/30 for England & Wales and unprecedented for Scotland in a 94-yr series.

River Flows
September runoff patterns exhibited substantial regional differences and a strong geological influence was evident, with clear contrasts between rivers draining impermeable catchments and those sustained principally by groundwater. In the former, some moderate spates were registered around the 24th (e.g. in northern England) but lengthy recessions were more typical. Entering October, flows in the responsive Annacloy (Northern Ireland) had fallen close to the monthly minimum. By contrast, in some spring-fed rivers (including the Cohn and Lambourn) flows – although in recession – established new runoff maxima for September. Such rivers aside, September runoff was generally well within the normal range, albeit low in some sheltered eastern catchments in Scotland and Northern Ireland. The exceptional summer runoff is clearly reflected in runoff accumulations for the May-Sept period. Many new period-of-record maxima were established in a broad zone from the North-East to Devon; previous maxima for the Gt Ouse and Warwickshire Avon were eclipsed by considerable margins in records of >70 years. The widespread extension in the range of recorded summer flows is well illustrated by the River Cohn (in the Cotswolds) where flows remained above previous daily maxima for three months until the end of September. Longer term runoff totals remain outstanding in much of Scotland where new water-year (Oct-Sept) runoff maxima were established from the Naver to the Nith.

Groundwater
Soil moisture deficits, which had largely been eliminated by the summer rainfall, were re-established through September and, by early October, were within the normal range across most aquifer outcrop areas. Soil conditions are thus exercising a normal seasonal constraint on aquifer recharge. Correspondingly, infiltration in September was minimal and groundwater levels recessions have become re-established except in the slowest responding aquifer units. Nonetheless, September groundwater levels were generally above average; notably so in many outcrops of the Jurassic Limestone (where September levels were still rising at the confined New Red Lion well), and in the western and northern extremities of the Chalk. In the latter, despite recent recessions, new September maximum levels were established at Aylesby and Rockley (in a series from 1933). Levels were also seasonally very high at Wash Pit Farm in Norfolk. Levels are still increasing in many of the slow responding Permo-Triassic outcrops in the Midlands; a particularly brisk recovery has been registered at Nuttalls Farm since the early summer. Spatial variations in soil moisture conditions are considerable but, in most outcrop areas, deficits are the equivalent of 6-10 weeks autumn rainfall. It is likely therefore that the winter recharge season will commence with groundwater levels above the seasonal norm and, in the event of a wet winter, maximum groundwater levels could be notably high, particularly in parts of the Chalk.
Rainfall accumulations and return period estimates

<table>
<thead>
<tr>
<th>Area</th>
<th>Rainfall</th>
<th>Sep 2007</th>
<th>Aug 07-Sep 07</th>
<th>May 07-Sep 07</th>
<th>Jan 07-Sep 07</th>
<th>Oct 06-Sls</th>
<th>RP</th>
<th>RP</th>
<th>RP</th>
<th>RP</th>
</tr>
</thead>
<tbody>
<tr>
<td>England & Wales</td>
<td>52</td>
<td>112</td>
<td>508</td>
<td>794</td>
<td>1152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North West</td>
<td>67</td>
<td>72</td>
<td>147</td>
<td>126</td>
<td>15-25</td>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northumbrian</td>
<td>99</td>
<td>182</td>
<td>626</td>
<td>993</td>
<td>1152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yorkshire</td>
<td>57</td>
<td>109</td>
<td>465</td>
<td>707</td>
<td>1002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severn Trent</td>
<td>57</td>
<td>109</td>
<td>465</td>
<td>1026</td>
<td>1519</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yorkshire</td>
<td>77</td>
<td>69</td>
<td>134</td>
<td>136</td>
<td>15-25</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thames</td>
<td>40</td>
<td>80</td>
<td>163</td>
<td>749</td>
<td>1519</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern</td>
<td>47</td>
<td>109</td>
<td>465</td>
<td>707</td>
<td>1002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welsh</td>
<td>47</td>
<td>62</td>
<td>150</td>
<td>124</td>
<td>10-20</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scottish</td>
<td>57</td>
<td>47</td>
<td>199</td>
<td>123</td>
<td>10-20</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highland</td>
<td>33</td>
<td>86</td>
<td>412</td>
<td>578</td>
<td>1026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North East</td>
<td>48</td>
<td>81</td>
<td>161</td>
<td>132</td>
<td>20-35</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tay</td>
<td>35</td>
<td>87</td>
<td>458</td>
<td>738</td>
<td>1104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forth</td>
<td>48</td>
<td>62</td>
<td>146</td>
<td>124</td>
<td>5-15</td>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scottish</td>
<td>35</td>
<td>138</td>
<td>566</td>
<td>1013</td>
<td>1493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welsh</td>
<td>48</td>
<td>77</td>
<td>143</td>
<td>126</td>
<td>10-20</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solway</td>
<td>39</td>
<td>169</td>
<td>678</td>
<td>1130</td>
<td>1742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clyde</td>
<td>48</td>
<td>165</td>
<td>576</td>
<td>1074</td>
<td>1712</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Eastern</td>
<td>48</td>
<td>172</td>
<td>541</td>
<td>860</td>
<td>1260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solway</td>
<td>48</td>
<td>94</td>
<td>135</td>
<td>119</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scottish</td>
<td>48</td>
<td>75</td>
<td>124</td>
<td>120</td>
<td>5-15</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welsh</td>
<td>48</td>
<td>75</td>
<td>124</td>
<td>120</td>
<td>5-15</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solway</td>
<td>48</td>
<td>75</td>
<td>124</td>
<td>120</td>
<td>5-15</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clydes</td>
<td>48</td>
<td>75</td>
<td>124</td>
<td>120</td>
<td>5-15</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scottish</td>
<td>48</td>
<td>75</td>
<td>124</td>
<td>120</td>
<td>5-15</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welsh</td>
<td>48</td>
<td>75</td>
<td>124</td>
<td>120</td>
<td>5-15</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>48</td>
<td>75</td>
<td>124</td>
<td>120</td>
<td>5-15</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% = percentage of 1961-90 average</td>
<td>RP = Return period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Important note: Figures in the above table may be quoted provided that their source is acknowledged. See page 12. Where appropriate, specific reference must be made to the uncertainties associated with the return period estimates. Generally, the return period estimates are based on tables provided by the Met Office but those for Northern Ireland are based on the estimates for north-west England. The estimates relate to the specified region and span of months only (RPs may be an order of magnitude less if n-month periods beginning in any month are considered), they reflect rainfall variability over the period 1911-70 only, and assume a stable climate. (For further details see Tabony, R. C., 1977, *The variability of long duration rainfall over Great Britain*, Scientific Paper No. 37). The timespans featured do not purport to represent the critical periods for any particular water resource management zone and, normally, for hydrological or water resources assessments of drought severity, river flows and groundwater levels provide a better guide than return periods based on rainfall totals. In some cases ranking positions of accumulated rainfalls are also considered.

All monthly rainfall totals since May 2007 are provisional.
Rainfall . . . Rainfall . . .

Soil Moisture Deficit
September 2007

Difference from 1961-1990 average

-60.0 -40.0
-39.9 -20.0
-19.9 0.0
0.1 20.0
20+

Key
25% Percentage of 1961-90
Exceptionally low rainfall
Substantially below average
Below average
Normal range
Above average
Substantially above average
Very wet

Rainfall
August - September 2007

% of 1971 - 2000

130 - 150
110 - 130
90 - 110
70 - 90
60 - 70
50 - 60
35 - 50

Key
25% Percentage of 1961-90
Exceptionally low rainfall
Substantially below average
Below average
Normal range
Above average
Substantially above average
Very wet

Soil Moisture Deficit
September 2007

Rainfall
September 2007

Rainfall
October 2006 - September 2007

© Crown Copyright
River flows

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.
River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to October 2006 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.
River flow . . . River flow . . .

Notable runoff accumulations

<table>
<thead>
<tr>
<th>River</th>
<th>%lta</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Dover Beck</td>
<td>214</td>
<td>31/32</td>
</tr>
<tr>
<td>Lud</td>
<td>323</td>
<td>40/40</td>
</tr>
<tr>
<td>Stringside</td>
<td>350</td>
<td>42/42</td>
</tr>
<tr>
<td>Thames (nat)</td>
<td>218</td>
<td>122/125</td>
</tr>
<tr>
<td>Kennet</td>
<td>191</td>
<td>46/46</td>
</tr>
<tr>
<td>Lambourn</td>
<td>221</td>
<td>45/45</td>
</tr>
<tr>
<td>Coln</td>
<td>381</td>
<td>44/44</td>
</tr>
<tr>
<td>Itchen</td>
<td>139</td>
<td>49/49</td>
</tr>
<tr>
<td>Avon (Amesbury)</td>
<td>156</td>
<td>43/43</td>
</tr>
<tr>
<td>Ewe</td>
<td>181</td>
<td>36/37</td>
</tr>
</tbody>
</table>

b) Leven (Leven Br) 210 47/47
Trent 199 49/49
Otse (Bedford) 303 75/75
Blackwater 158 54/55
Taw 221 49/49
Avon (Evesham) 312 71/71
Annaclay 208 26/28

River %lta Rank

<table>
<thead>
<tr>
<th>River</th>
<th>%lta</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Leven (Leven Br)</td>
<td>210</td>
<td>47/47</td>
</tr>
<tr>
<td>Trent</td>
<td>199</td>
<td>49/49</td>
</tr>
<tr>
<td>Otse (Bedford)</td>
<td>303</td>
<td>75/75</td>
</tr>
<tr>
<td>Blackwater</td>
<td>158</td>
<td>54/55</td>
</tr>
<tr>
<td>Taw</td>
<td>221</td>
<td>49/49</td>
</tr>
<tr>
<td>Avon (Evesham)</td>
<td>312</td>
<td>71/71</td>
</tr>
<tr>
<td>Annaclay</td>
<td>208</td>
<td>26/28</td>
</tr>
<tr>
<td>Dover Beck</td>
<td>214</td>
<td>31/32</td>
</tr>
<tr>
<td>Lud</td>
<td>323</td>
<td>40/40</td>
</tr>
<tr>
<td>Stringside</td>
<td>350</td>
<td>42/42</td>
</tr>
<tr>
<td>Thames (nat)</td>
<td>218</td>
<td>122/125</td>
</tr>
<tr>
<td>Kennet</td>
<td>191</td>
<td>46/46</td>
</tr>
<tr>
<td>Lambourn</td>
<td>221</td>
<td>45/45</td>
</tr>
<tr>
<td>Coln</td>
<td>381</td>
<td>44/44</td>
</tr>
<tr>
<td>Itchen</td>
<td>139</td>
<td>49/49</td>
</tr>
<tr>
<td>Avon (Amesbury)</td>
<td>156</td>
<td>43/43</td>
</tr>
<tr>
<td>Ewe</td>
<td>181</td>
<td>36/37</td>
</tr>
</tbody>
</table>

c) Earn 135 59/59
Tweed (Boleside) 125 46/46
Dart 144 49/49
Dec (Mankly Hall) 137 70/70
Eden 139 40/40
Nith 132 50/50
Naver 151 30/30

lta = long term average
Rank 1 = lowest on record
Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the
winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal
variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the
highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that
most groundwater levels are not measured continuously – the latest recorded levels are listed overleaf.

Groundwater... Groundwater
Groundwater . . . Groundwater

Ampney Crucis
- Well No: SP00/62 Aquifer: Middle Jurassic
- Extremes & mean monthly levels (1958-2003)

Newbridge
- Well No: NX97/2 Aquifer: Permo-Triassic sandstone

Skirwith
- Well No: NY63/2 Aquifer: Permo-Triassic sandstone
- Extremes & mean monthly levels (1978-2003)

Swan House
- Well No: NZ21/29 Aquifer: Magnesian Limestone

Brick House Farm
- Well No: SE44/80 Aquifer: Magnesian Limestone
- Extremes & mean monthly levels (1979-2003)

Llanfair DC
- Well No: SJ15/13 Aquifer: Permo-Triassic sandstone
- Extremes & mean monthly levels (1972-2003)

Heathlanes
- Well No: SJ62/112 Aquifer: Permo-Triassic sandstone
- Extremes & mean monthly levels (1971-2003)

Weeford Flats
- Well No: SK10/9 Aquifer: Permo-Triassic sandstone
- Extremes & mean monthly levels (1966-2003)

Bussels No.7a
- Well No: SX99/37B Aquifer: Permo-Triassic sandstone
- Extremes & mean monthly levels (1971-2003)

Alstonfield
- Well No: SK15/16 Aquifer: Carboniferous Limestone

Groundwater levels September / October 2007

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Level</th>
<th>Date</th>
<th>Sep. av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalton Holme</td>
<td>21.14</td>
<td>07/09</td>
<td>15.42</td>
</tr>
<tr>
<td>Washburn Farm</td>
<td>46.40</td>
<td>02/10</td>
<td>43.98</td>
</tr>
<tr>
<td>Stonor Park</td>
<td>77.27</td>
<td>01/10</td>
<td>74.37</td>
</tr>
<tr>
<td>Dial Farm</td>
<td>25.49</td>
<td>07/09</td>
<td>25.55</td>
</tr>
<tr>
<td>Rockley</td>
<td>135.41</td>
<td>01/10</td>
<td>131.00</td>
</tr>
<tr>
<td>Well House</td>
<td>93.68</td>
<td>01/10</td>
<td>94.00</td>
</tr>
<tr>
<td>West Woodyates</td>
<td>81.96</td>
<td>30/09</td>
<td>72.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Level</th>
<th>Date</th>
<th>Sep. av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilgrove House</td>
<td>113.59</td>
<td>03/09</td>
<td>114.33</td>
</tr>
<tr>
<td>Killycon</td>
<td>100.69</td>
<td>01/10</td>
<td>100.07</td>
</tr>
<tr>
<td>Newbridge</td>
<td>9.44</td>
<td>05/10</td>
<td>9.51</td>
</tr>
<tr>
<td>Swan House</td>
<td>83.41</td>
<td>17/09</td>
<td>82.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Level</th>
<th>Date</th>
<th>Sep. av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick House Farm</td>
<td>13.11</td>
<td>26/09</td>
<td>12.23</td>
</tr>
<tr>
<td>Llanfair DC</td>
<td>79.93</td>
<td>15/09</td>
<td>79.55</td>
</tr>
<tr>
<td>Heathlanes</td>
<td>62.18</td>
<td>26/09</td>
<td>62.00</td>
</tr>
<tr>
<td>Weeford Flats</td>
<td>90.05</td>
<td>06/09</td>
<td>89.78</td>
</tr>
<tr>
<td>Busses No.7a</td>
<td>23.65</td>
<td>03/10</td>
<td>23.50</td>
</tr>
<tr>
<td>Alstonfield</td>
<td>184.92</td>
<td>03/09</td>
<td>177.43</td>
</tr>
</tbody>
</table>

Levels in metres above Ordnance Datum
The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.

Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.

Groundwater levels - September 2007

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.

Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
These plots are based on the England and Wales figures listed below.

Percentage live capacity of selected reservoirs at start of month

<table>
<thead>
<tr>
<th>Area</th>
<th>Reservoir</th>
<th>Capacity (ML)</th>
<th>2007</th>
<th>2006</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>North West</td>
<td>N Command Zone</td>
<td>124929</td>
<td>85</td>
<td>20</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Vyrnwy</td>
<td>55146</td>
<td>77</td>
<td>13</td>
<td>51</td>
</tr>
<tr>
<td>Northumbrian</td>
<td>Teesdale</td>
<td>87936</td>
<td>98</td>
<td>26</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>(199175)</td>
<td></td>
<td>(94)</td>
<td>(2)</td>
<td>(59)</td>
</tr>
<tr>
<td>Severn Trent</td>
<td>Clwydewog</td>
<td>44922</td>
<td>100</td>
<td>24</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Derwent Valley</td>
<td>39525</td>
<td>90</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Yorkshire</td>
<td>Washburn</td>
<td>22035</td>
<td>81</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Bradford supply</td>
<td>41407</td>
<td>87</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>Anglian</td>
<td>Graffham</td>
<td>(55490)</td>
<td>(94)</td>
<td>(3)</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Rutland</td>
<td>(116580)</td>
<td>(94)</td>
<td>(8)</td>
<td>51</td>
</tr>
<tr>
<td>Thames</td>
<td>London</td>
<td>202406</td>
<td>84</td>
<td>10</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Farmoor</td>
<td>13822</td>
<td>93</td>
<td>4</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Ardingly</td>
<td>4685</td>
<td>92</td>
<td>11</td>
<td>69</td>
</tr>
<tr>
<td>Wessex</td>
<td>Clatworthy</td>
<td>5364</td>
<td>88</td>
<td>36</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Bristol WW</td>
<td>(38666)</td>
<td>(96)</td>
<td>(28)</td>
<td>50</td>
</tr>
<tr>
<td>South West</td>
<td>Clifforth</td>
<td>28540</td>
<td>80</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Roadford</td>
<td>34500</td>
<td>91</td>
<td>24</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Wimbleball</td>
<td>21320</td>
<td>91</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Stithians</td>
<td>5205</td>
<td>83</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>Welsh</td>
<td>Celyn and Brenig</td>
<td>131155</td>
<td>96</td>
<td>19</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Brianne</td>
<td>62140</td>
<td>98</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Big Five</td>
<td>69762</td>
<td>82</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Elan Valley</td>
<td>99106</td>
<td>93</td>
<td>21</td>
<td>58</td>
</tr>
<tr>
<td>Scotland(E)</td>
<td>Edinburgh/Mid Lothian</td>
<td>97639</td>
<td>84</td>
<td>9</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>East Lothian</td>
<td>10206</td>
<td>100</td>
<td>23</td>
<td>52</td>
</tr>
<tr>
<td>Scotland(W)</td>
<td>Loch Katrine</td>
<td>111363</td>
<td>61</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Daer</td>
<td>22212</td>
<td>88</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Loch Thom</td>
<td>11840</td>
<td>68</td>
<td>11</td>
<td>56</td>
</tr>
<tr>
<td>Northern</td>
<td>Total*</td>
<td>67270</td>
<td>78</td>
<td>26</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Silent Valley</td>
<td>20634</td>
<td>82</td>
<td>21</td>
<td>72</td>
</tr>
</tbody>
</table>

*) figures in parentheses relate to gross storage
• denotes reservoir groups
*excludes Lough Neagh
†last occurrence

Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2006 period except for West of Scotland and Northern Ireland where data commence in the mid-1990’s. In some gravity-fed reservoirs (e.g. Clwydewog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.
Location map . . . Location map

- gauging station
- groundwater index well
- reservoir - individual
- reservoir - group (general location only)

Chalk
Jurassic limestones
Permo-Triassic sandstones
Magnesian Limestone

Minor aquifers (including the Carboniferous Limestone) have been omitted.
The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources
River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision). Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall
Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office’s CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre, using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national and regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available by the Met Office in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.

The monthly rainfall figures are provided by the Met Office (National Climate Information Centre) and are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.

*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX1 3PB

Tel.: 0870 900 0100
Fax: 0870 900 5050
E-mail: enquiries@metoffice.com

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription
Subscription to the Hydrological Summaries costs £48 per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX10 8BB

Tel.: 01491 838800
Fax: 01491 692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm
Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty’s Stationery Office. © Crown Copyright.

Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.

© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

10/07