Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Estimation of sewer leakage to urban groundwater using depth-specific hydrochemistry

Rueedi, J.; Cronin, A.A.; Morris, B.L.. 2009 Estimation of sewer leakage to urban groundwater using depth-specific hydrochemistry. Water and environment journal, 23 (2). 134-144. 10.1111/j.1747-6593.2008.00119.x

Abstract
The contribution of sewer leakage to urban groundwater recharge remains poorly characterised. There has been a tendency to focus on estimating leakage from pipe network characteristics rather than its impact on the receiving environment. Indeed, pipeline leakage simulation models are frequently used to analyse sewage systems and optimise maintenance efforts. Here a mass balance approach employing groundwater geochemistry is presented to estimate sewer leakage rates; this is done using depth-specific groundwater quality measurements from multilevel monitoring piezometers, specially installed in the Sherwood Sandstone aquifer underlying Doncaster (UK). The results show that leakage rates from the foul sewage system are up to 10% of flow per annum (30–40% of urban recharge) and highlight the utility of groundwater quality monitoring (in particular depth-specific sampling) as an alternative means to assess sewage ingress to urban groundwater.
Documents
8041:10926
[thumbnail of SewGrou.pdf]
Preview
SewGrou.pdf

Download (35kB) | Preview
Information
Programmes:
UNSPECIFIED
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item