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Abstract

This study investigates the spread of the invasive plant Lavatera arborea
(Tree Mallow) on the Islands of the Firth of Forth and its impact on the
puffin population. We investigate the relationship between these two species
and suggest possible strategies to prevent puffin decline and extinction.

We develop a mathematical model to describe interactions between L. ar-
borea, puffins and a herbivore and investigate conditions that lead to the
control of L. arborea density and therefore the survival of the puffin popula-
tion.

Experimental genetic tests were also undertaken on samples of L. arborea
collected from four islands of the Firth of Forth. The resulting genetic data
was analysed to understand the amount of genetic variation within and be-
tween each island population and to infer possible dispersal patterns between
islands.
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1 Introduction

1.1 Motivation

An invasive plant has a predisposition to thrive outside its natural range.
Invasive plants are a threat to ecosystems with rare native species. They
alter habitats and reduce biodiversity and expose native plants and animals
to extreme environmental pressure [19]. In this project we will focus on
an invasive plant Lavatera arborea (Tree Mallow) and its establishment and
spread on the Islands of the Firth of Forth.

1.2 History and facts about Lavatera arborea

L. arborea is a Mediterranean-Atlantic herb tree. L. arborea was originally
introduced to coastal locations by humans, from where it has spread and has
established habitat in the southwest and west coast of England (see Figure
1). The presence of L. arborea has also been reported on Bass Rock, one of
the islands of the Firth of Forth, since the 17th century. Recent studies have
shown that L. arborea is now established on neighbouring islands to Bass
Rock. It has reached high abundance on the islands Craigleith and Fidra
and smaller populations are found on the islands of Inchcolm and Lamb [21]
(see Figure 2).

L. arborea grows on rocky places and does not withstand intensive graz-
ing, therefore is not found in areas with abundant livestock or rabbits. This
is highly likely the reason why L. arborea does not grow on the Isle of May
which is also located in the Firth of Forth as here rabbits are found in a high
number [21]. L. arborea prefers a nitrogen-rich soil and therefore flourishes
among sea-bird colonies which are rich in bird guano. Generally, L. arborea
can only withstand mild winters. This might be one of the reasons for the
recent success of L. arborea in the Forth Estuary, as the Edinburgh region
has experienced mild winters over the last few successive years [5]. L. arborea
is a tall plant that grows up to 3m and forms dense formations that cover
large areas. The velvety leaves are 5-7 lobed and its flower colour varies from
light pink to dark violet (see Figure 3). L. arborea lives for two years, in the
first year it forms leaves and in the second it flowers and fruits [6].
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Figure 1: Original habitat of Lavatera arborea. Picture taken from [6].

1.3 Interaction between native Puffin and invasive

L. arborea

Islands of the Firth of Forth are native habitat for large populations of sea
birds. A bird species of specific conservation importance is the puffin (see
Figure 4). In the last decade it was observed that the invasion of L. arborea on
Firth of Forth Islands has had a strong impact on the puffin population. On
Craigleith Island, where L. arborea has reached high density, puffin numbers
have halved over the last few years [5]. The explanation is that L. arborea
grows preferentially over puffin burrows, disabling access to their nests and
reducing the amount of suitable habitat for puffins to build new burrows [21].
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Figure 2: The Islands of the Firth Of Forth. The circled islands are (from the left

to the right): Inchcolm, Fidra, Craigleith and Bass Rock. Satellite image, NASA

World Wind [15].

1.4 Project Outline

In the project we wish to investigate the invasive properties of L. arborea and
to do this we will (i) develop a mathematical model to understand the inter-
action between L. arborea, puffins and a herbivore (rabbits) and (ii) produce
a DNA data set of L. arborea and statistical analysis of the data to explain
genetic differences in L. arborea on the Islands of the Firth of Forth.

(i) Mathematical Model: Observations indicate that L. arborea is detri-
mental to the abundance of puffins and that herbivores may reduce the den-
sity of L. arborea. We will develop and analyse a mathematical model to un-
derstand these interactions. This will be composed of a system of three non-
linear ordinary differential equations (ODEs). We will undertake a steady
state and stability analysis to understand when ecosystems

6



Figure 3: Lavatera arborea in blossom. Picture taken from [17].

composed of different combinations of species will occur. We will verify re-
sults using numerical simulations.

Key objective: Understand the mechanisms that tend to L. arborea estab-
lishment and puffin decline/eradication.

(ii) Genetic diversity of L. arborea on the Islands of the Firth
of Forth: When a few organisms start a new population and are isolated
from the parental population, we often see that the new population is less
genetically diverse than the original one: a genetic bottleneck [8, 9]. It is
often observed that the frequencies of alleles1 in a subpopulation differ from

1An allele is one of the possible variations of the DNA sequence found at a specific

locus/region on a DNA strand.
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Figure 4: A puffin. Picture taken from [18].

the allele frequencies in the original population. The knowledge about allele
frequencies gives us information that can be used to establish the population
structure [10]. We will examine the DNA variation between each island’s
population (Bass Rock, Fidra, Craigleith and Inchcolm) to produce informa-
tion about the spread of this species.

Key objective: To use results from the analysis of the DNA variation of
L. arborea on the Islands of the Firth of Forth to determine the dispersal
route of this invasive plant.
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2 Model of the interaction between

L. arborea, puffins and rabbits

In this section we introduce a mathematical framework that can be used to
model the interaction between L. arborea, puffins and rabbits. It is a system
of three ordinary differential equations for the density of L. arborea (T),
puffins (P) and rabbits (R). We assume all parameters are positive. The
model is represented as follows:

dP

dt
= rpP

(
1− P

kP

)
− cT PT − aP cP PR (1)

dT

dt
= rT T

(
1− T

kT

)
+ aT cT PT − cRTR (2)

dR

dt
= rRR

(
1− R

kR

)
+ aRcRTR− cP PR (3)

2.1 Model description

Equation (1) describes the dynamics of puffin population. Puffins have max-
imum growth rate rP which reduces as puffin density increases towards the
carrying capacity kP . Puffins are known to be negatively affected by compe-
tition from L. arborea and we assume this effect is proportional to the density
of L. arborea and puffins with a competition coefficient cT . We also assume
puffins and rabbits compete for territory with a competition coefficient aP cP

(where ap < 1 reflects that rabbits are inferior competitors and ap > 1 supe-
rior).

Equation (2) describes the dynamics of L. arborea population. L. arborea
has maximum growth rate rT which reduces as L. arborea density increases
towards the carrying capacity kT . L. arborea benefits from the presence of
puffins, this effect is proportional to the rate of competition exerted on puffins
by L. arborea with a conversion coefficient aT . L. arborea is consumed by
rabbits, this effect is proportional to the density of both species with the
coefficient cR.

Equation (3) represents the dynamics of the rabbit population. Rabbits
have maximum growth rate rR which reduces as rabbit density increases to-
wards the carrying capacity kR. Rabbits benefit from the consumption of
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L. arborea, which is converted into births of rabbits with a conversion coef-
ficient aR. We also assume rabbits and puffins compete for territory with a
competition coefficient cP .

2.2 Steady states

The following steady states may occur depending on parameter values. Apart
from the zero steady state, there is a set of non-zero steady states when one
population exists in isolation:

[P, T,R] = [kP , 0, 0] ; Puffins alone at their carrying capacity. (4)

[P, T,R] = [0, kT , 0] ; L. arborea alone at its carrying capacity. (5)

[P, T,R] = [0, 0, kR] ; Rabbits alone at their carrying capacity. (6)

The second group of steady states represents the coexistence of two popula-
tions in the absence of the third.

Coexistence of puffins and L. arborea:

[P, T, R] =

[
kP rT (rP − cT kT )

rP rT + aT c2
T kT kP

,
rP kT (rT + aT cT kP )

rP rT + aT c2
T kT kP

, 0

]
. (7)

This equilibrium is only biologically realistic if puffins and L. arborea have
positive densities. This requires rP > cT kT , i.e. that the growth rate of
puffins exceeds the costs due to competition from L. arborea.

Coexistence of L. arborea and rabbits:

[P, T, R] =

[
0,

kT rR(rT − cRkR)

rT rR + aRkRc2
RkT

,
rT kR(rR + aRcRkT )

rT rR + aRkRc2
RkT

]
. (8)

L. arborea and rabbit coexistence equilibrium is biologically realistic when
rT > cRkR, i.e. the growth rate of L. arborea must exceed the cost due to
consumption from rabbits.

Coexistence of puffins and rabbits:

[P, T,R] =

[
rRkP (rP − aP cP kR)

rRrP − aP kP c2
P kR

, 0 ,
kRrP (rR − cP kP )

rRrP − aP kP c2
P kR

]
. (9)

Rabbits and puffins coexistence equilibrium is biologically realistic in two
cases. Let the first case be rP > aP cP kR and rR > cP kP (in which case the
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denominator of both densities is automatically positive). This can be inter-
preted as: puffin growth rate exceeds costs due to competition from rabbits
and rabbit growth rate exceeds costs due to competition from puffins. In the
second case rP < aP cP kR and rR < cP kP (in which case the denominator
of both densities is automatically negative). These conditions suggest coex-
istence of rabbits and puffins in highly competitive environment.

The final steady state [ Ps, Ts, Rs ] is the coexistence of all three species.
We will discuss the feasibility of this steady state later. The algebraic ex-
pression for the densities at this steady state can be determined but is too
cumbersome to detail.

2.3 Linear stability analysis

Firstly, we will look at the Jacobian matrix J of the system, which is

J =

 D11 −cT P −aP cP P
aT cT T D22 −cRT
−cP R aRcRR D33


where

D11 = rP

(
1− P

kP

)
− rP P

kP

− cT T − aP cP R ,

D22 = rT

(
1− T

kT

)
− rT T

kT

+ aT cT P − cRR ,

D33 = rR

(
1− R

kR

)
− rRR

kR

+ aRcRT − cP P .

We substitute our steady states into J and find the characteristic polyno-
mials det(J−λI) = 0 in order to calculate the eigenvalues λ of the system (I
is the identity matrix). For a steady state to be stable all eigenvalues must
have negative real part Re(λ) < 0 [14].

In some situations determining the eigenvalues can be difficult and in these
situations we use the Routh-Hurtwitz (R-H) conditions [14]. The R-H con-
ditions are necessary and sufficient for the requirement Re(λ) < 0 to hold.
For the characteristic polynomial (in our case of order 3)

P (λ) = λ3 + a1λ
2 + a2λ + a3 = 0
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the R-H conditions are

a1 > 0, a3 > 0, det

(
a1 a3

1 a2

)
> 0.

Let us examine the stability of our steady states one by one:

The trivial steady state [0, 0, 0] has the stability matrix

J([0, 0, 0]) =

 rP 0 0
0 rT 0
0 0 rR

 .

The eigenvalues are rP , rT , rR all of which are positive. This equilibrium is
always unstable.

Stability of single species steady states
The steady state [kP , 0, 0] has the stability matrix

J([kP , 0, 0]) =

 −rP −cT kP −aP cP kP

0 rT + aT cT kP 0
0 0 rR − cP kP

 .

The eigenvalues can be read from the leading diagonal as −rP , rT + aT cT kP

and rR − cP kP . Because we get at least one positive eigenvalue, the equilib-
rium is always an unstable steady state.

The steady state [0, kT , 0] has the stability matrix

J([0, kT , 0]) =

 rP − kT cT 0 0
aT cT kT −rT −cRkT

0 0 rR + aRcRkT

 .

The eigenvalues are rP − kT cT , −rT and rR + aRcRkT , this steady state is
always unstable.

The stability matrix of the steady state [0, 0, kR] is

J([0, 0, kR]) =

 rP − aP cP kR 0 0
0 rT − kRcR 0

−cP kR aRcRkR −rR

 .
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The eigenvalues are rP − aP cP kR, rT − kRcR and −rR. Therefore the steady
state [0, 0, kR] is stable if and only if rP < aP cP kR and rT < cR kR, otherwise
it is unstable.

The result for the stability analysis of steady states in which one species
is present are summarized in Table 1.

Coexistence of puffins (P ) and L. arborea (T )
For [P ∗, T ∗, 0] we get the stability matrix J equal to

rP (1− P ∗

kP
)− rP P ∗

kP
− cT T ∗ −cT P ∗ −aP cP P ∗

aT cT T ∗ rT (1− T ∗

kT
)− rT T ∗

kT
+ aT cT P ∗ −cRT ∗

0 0 d33

 ,

where
d33 = rR + aRcRT ∗ − cP P ∗. (10)

Here the stability can be decomposed into whether d33 < 0 and whether 2×2
submodel - for puffins and L. arborea - has negative eigenvalues.

dP

dt
= rp P

(
1− P

kP

)
− cT PT (11)

dT

dt
= rT T

(
1− T

KT

)
+ aT cT PT (12)

Here we use the R-H conditions for the two species model. We obtain a char-
acteristic polynomial P (λ) = λ2+a1λ+a2, with stability condition a1, a2 > 0.
Here a1 = −Trace(J([P ∗, T ∗])) and a2 = Determinant(J([P ∗, T ∗]).

Det =
rP rT (rP − cT kT )(rT + aT cT kP )

rP rT + aT c2
T kT kP

which is positive if and only if rP > cT kT (note this is the condition for this
steady state to have positive density). We denote Θ = rP −cT kT and assume
that Θ > 0. Then

Trace = −rP rT (Θ + aT cT kP + rT )

rP rT + aT c2
T kT kP
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which is always < 0.

In the absence of rabbits [P ∗, T ∗] is stable provided it has a positive density.
When rabbits are included, [P ∗, T ∗, 0] is stable if it is positive (rP > cT kT )
and provided d33 < 0 which prevents rabbits from invading. We can in-
vestigate this condition further by substituting P ∗ and T ∗ into d33. Then
d33 =

rT rP (rR−cP kP )+rRaT c2T kP kT +aRcRrP kT rT +aRcRrP kP kT aT cT +cP kP rT cT kT

rP rT +aT c2T kT kP
,

and d33 is definitely positive when rR > cP kP . When [P ∗, T ∗, 0] is positive
it is unstable if rR > cP kP or d33 > 0 which represents the fact that rabbits
can invade and increase in numbers.

In the absence of rabbits, if we start with a pure puffin population and intro-
duce a small number of L. arborea then we leave the unstable steady state
[kP , 0, 0] and the puffins density will start decreasing as L. arborea increases.
Whether the coexistence steady state is stable or puffins die out depends on
parameter values: if rP > cT kT then the long-term coexistence is possible, if
rP < cT kT puffins will die out. Both cases are demonstrated by numerically
solving the ODEs (1)-(3) in Figure 5.

Coexistence of L. arborea (T ) and rabbits (R)
For [0, T ∗, R∗] we get the stability matrix J equal to


d11 0 0

aT cT T ∗ rT (1− T ∗

kT
)− rT T ∗

kT
− cRR∗ −cRT ∗

−cP R∗ aRcRR∗ rR(1− R∗

kR
)− rRR∗

kR
+ aRcRT ∗

 ,

where
d11 = rP − cT T ∗ − aP cP R∗. (13)

Here the stability can be decomposed into whether d11 < 0 and whether 2×2
submodel - for L. arborea and rabbits - has negative eigenvalues.

dT

dt
= rT T

(
1− T

KT

)
− crTR (14)

dR

dt
= rR R

(
1− R

KR

)
+ aRcRTR (15)
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Using the R-H conditions for the two species model we obtain
a1 = −Trace(J([T ∗, R∗])) and a2 = Determinant(J([T ∗, R∗]).

Det =
rT rR(rT − cRkR)(rR + aRcRkT )

rT rR + aRc2
RkRkT

which is positive if and only if rT > cRkR, (this is a breach of one of the
stability conditions for the steady state [0, 0, kR]). We denote Θ = rT − cRkR

and assume that Θ > 0. Then

Trace = −rT rR(Θ + aRcRkT + rR)

rT rR + aRc2
RkRkT

which is always < 0.

In the absence of puffins [T ∗, R∗] is stable provided it has a positive density.
When puffins are included [0, T ∗, R∗] is stable if it is positive (rT > cRkR) and
provided d11 < 0 which prevents puffins from invading. We can investigate
this condition by substituting T ∗ and R∗ into d11.
d11 =

aRkT (rP cRkR − aP cP kRrT ) + rRrT (rP − aP cP kR) + cT kT rR(cRkR − rT )

rT rR + aRkRc2
RkT

While the positive density condition holds (rT > cRkR), d11 is negative as
long as rP < aP cP kP or d11 < 0. This represents the fact that puffins cannot
invade and increase in numbers (therefore allowing [0, T ∗, R∗] to be a stable
steady state).

In the absence of puffins, if we start with a pure L. arborea population and
introduce a small number of rabbits, we leave the steady state [0, kT , 0] and
the rabbit density increases and L. arborea decreases. Will we end up at
some coexistence level or will we end up with no L. arborea left? It depends
on parameter values: If rT > cRkR the coexistence is possible, if rT < cRkR

L. arborea will disappear. Both cases are demonstrated in Figure 6.

Coexistence of puffins (P ) and rabbits (R)
For [P ∗, 0, R∗] we get the stability matrix J equal to

rP (1− P ∗

kP
)− rP P ∗

kP
− aP cP R∗ −cT P ∗ −aP cP P ∗

0 d22 0

−cP R∗ aRcRR∗ rR(1− R∗

kR
)− rRR∗

kR
− cP P ∗

 ,
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where
d22 = rT − cRR∗ + aT cT P ∗. (16)

Here the stability can be decomposed into whether d22 < 0 and whether 2×2
submodel - for puffins and rabbits - has negative eigenvalues.

dP

dt
= rP P

(
1− P

kP

)
− aP cP PR (17)

dR

dt
= rR R

(
1− R

kR

)
− cP PR (18)

Using the R-H conditions for the two species model we obtain
a1 = −Trace(J([P ∗, R∗])) and a2 = Det(J([P ∗, R∗]).

Det =
rP rR(rP − aP cP kR)(rR − cP kP )

rRrP − aP c2
P kP kR

.

In the first case, see discussion of (8), we have rP > aP cP kR (this is a
breach of one of the stability conditions for the steady state [0, 0, kR]), and
rR > cP kP . We denote Θ1 = rP − aP cP kR and Θ2 = rR − cP kP . Assume
Θ1 , Θ2 > 0, then

Trace = − rRrP (Θ1 + Θ2)

rP rR − aP c2
P kP kR

which is always < 0.

Therefore [P ∗, 0, R∗] is a stable steady state if rP > aP cP kR, rR > cP kP

and d22 < 0 which prevents L. arborea from invading. In the second
case, see discussion of (8), we have rP < aP cP kR and rR < cP kP . Here
Determinant < 0, even though Trace remains negative. Therefore [P ∗, 0, R∗]
with rP < aP cP kR, rR < cP kP is not a stable steady state.

In the absence of L. arborea, [P ∗, R∗] is stable provided it has a positive
density. When L. arborea is included, [P ∗, 0, R∗] is stable if it is positive and
d33 < 0 which prevents L. arborea from invading. We can substitute P ∗ and
R∗ into d22.
d22 =

rP r(rT − cRkR) + cP kP (cRkRrP − aP cP kRrT ) + aT cT rRkP (rP − aP cP kR)

rRrP − aP kP c2
P kR

The condition d22 < 0 prevents L. arborea from invading the puffin, rabbit
coexistence. In the absence of L. arborea, what happens when we introduce
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few rabbits to a pure puffin population? If rR < cP kP then in the long-
term nothing will change. Otherwise, if rR > cP kP , then puffin density will
decline with increasing rabbit numbers. Will these dynamics stop at some
coexistence level or will puffins die out? This depends on the inequality
rP > aP cP kR. If it holds, then coexistence of both species will occur, but if
rP < aP cP kR puffins will die out (Figure 7).

Table 1. The summary of the one-species and two species steady states:

Positive density Stability condition:
condition:

Puffins always never stable
L. arborea always never stable
Rabbits always rP < aP cP kR and rT < cRkR

Puffins and L. arborea rP > cT kT rP > cT kT

and
rR + aRcRT ∗ − cP P ∗ < 0

L. arborea and rabbits rT > cRkR rT > cRkR

and
rP − cT T ∗ − aP cP R∗ < 0

Puffins and rabbits rP > aP cP kR rP > aP cP kR

and and
rR > cP kP rR > cP kP

and
rT + aT cT P ∗ − cRR∗ < 0

............................. .........................................
rP < aP cP kR always unstable
and
rR < cP kP
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Figure 5: A: Dynamics of puffins and L. arborea: rP < cT kT . Parameter values:

rP = 6, kP = 80, cT = 1.5, rT = 1, kT = 100, aT = 1. In the absence of rabbits,

if we introduce L. arborea to a pure puffin population, puffins will die out. B:

Dynamics of puffins and L. arborea: rP > cT kT . Parameter values are the same

as in A except cT : cT = 0.05. In the absence of rabbits, if we introduce L. arborea

to a pure puffin population, a coexistence steady state will evolve.
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Figure 6: A: Dynamics of L. arborea and rabbits: rT < cRkR. Parameter values:

rT = rR = 1, kT = kR = 100, cR = 0.5, aR = 1. In the absence of puffins, if we

introduce rabbits to a pure L. arborea population, L. arborea will disappear. B:

Dynamics of L. arborea and rabbits: rT > cRkR. Parameter values are the same

as in A except cR: cR = 0.009. In the absence of puffins, if we introduce rabbits

to a pure L. arborea population, a coexistence steady state will evolve.
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Figure 7: A: Dynamics of puffins and rabbits: rR < cP kP . The parameters

rP = rR = 1 and kP = kR = 100 are common parameter values to A, B and

C. Specific parameter values: aP = 3, cP = 0.6. In the absence of L. arborea, if

we introduce rabbits to a pure puffin population, puffins will reach their carrying

capacity - in the long term. B: Dynamics of puffins and rabbits: rR > cP kP and

rP < aP cP kR. Specific parameter values: aP = 3, cP = 0.009. In the absence of L.

arborea, if we introduce rabbits to a pure puffin population, puffins will die out. C:

Dynamics of puffins and rabbits: rR > cP kP and rP > aP cP kP . Specific parameter

values: aP = 0.8, cP = 0.009. In the absence of L. arborea, if we introduce rabbits

to a pure puffin population, a coexistence steady state will evolve.
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Coexistence of puffins (P ), L. arborea (T ) and rabbits (R)
From the steady state conditions we know that at the three species equilib-
rium the following holds:

rP (1− P
kP

)− cT T − aP cP R = 0 which gives rP P
kP

= rP − cT T − aP cP R︸ ︷︷ ︸
d11

,

rT (1− T
kT

) + aT cT P − cRR = 0 which gives rT T
kT

= rT + aT cT P − cRR︸ ︷︷ ︸
d22

,

rR(1− R
kR

) + aRcRT − cP P = 0 which gives rRR
kR

= rR + aRcRT − cP P︸ ︷︷ ︸
d33

.

For [Ps, Ts, Rs] to be positive requires that d11 > 0, d22 > 0 and d33 > 0
(referring to (10), (13), (16)). Therefore the two species coexistence equilib-
riums become unstable whenever the three species coexistence has a positive
density.

For [Ps, Ts, Rs] we get the stability matrix

J =


− rP Ps

kP
−cT Ps −aP cP Ps

aT cT Ts − rT Ts

kT
−cRTs

−cP Rs aRcRRs − rRRs

kR

 ,

We will use the R-H conditions to derive stability conditions. The charac-
teristic polynomial is P (λ) = λ3 + a1λ

2 + a2λ + a3

with

a1 = −Trace(J) =
rP Ps

kP

+
rT Ts

kT

+
rRRs

kR

which is positive whenever this steady state has a positive density,

a3 =
PsTsRs

kP kT kR

(rP rT rR − aP c2
P kP kRrT + rP c2

RkT aRkR + aP cP kP aT cT kT aRcRkR+

+ aT c2
T kT kP rR + cT kT cP kP cRkR)

=
PsTsRs

kP kT kR

(rT (rP rR − aP c2
P kP kR) + rP c2

RkT aRkR + aP cP kP aT cT kT aRcRkR+

+ aT c2
T kT kP rR + cT kT cP kP cRkR) ,

which can attain positive or negative values. In the case when rP rR >
aP c2

P kP kR it is definitely a positive number (and this is true whenever the
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two species puffins, rabbits equilibrium has a positive density).

The last condition for the stability is a1a2 − a3 > 0. This condition is
difficult to analyse. When this condition holds the three species equilibrium
is stable. If it fails but a1 > 0, a3 > 0, we expect the population to exhibit
limit cycles in all three species.

Figure 8 demonstrates what happens when the third species is introduced
at low density to a two species coexistence steady state. (All parameter val-
ues were chosen so that they allow the three species equilibrium [Ps, Ts, Rs]
to have positive densities.)

Conservation of puffins
A key motivation for analysing a theoretical system for puffin, L. arborea,
rabbit interactions is to understand the conditions that prevent puffins from
becoming extinct. Since evidence [21] shows that in the absence of rabbits,
puffin densities are reduced by L. arborea, we will assume the extreme case
where L. arborea will outcompete and replace puffins (rP < cT kT ). Evidence
[21] also suggests that rabbits will totally exclude L. arborea in the absence
of puffins, so we assume rT < cRkR.

Clearly with this parameter set-up in the absence of rabbits, L. arborea will
exclude puffins and in the absence of puffins rabbits will exclude L. arborea.
It is of interest to investigate whether when all three species are introduced
this will allow coexistence and therefore prevent extinction of puffins, while
controlling L. arborea density. To examine this we conduct numerical simu-
lations. In all cases we use initial conditions P = 1

2
kP , T = 1

2
kT . We then

introduce rabbits at a low density and examine the temporal dynamics of
the system for different combinations of the interaction between rabbits and
puffins (i.e. for all the combinations of when inequalities rP > aP cP kR and
rR > cP kP hold and do not hold).

In Figure 9 we assume that rP > aP cP kR and rR < cP kP . This means
that puffins would outcompete rabbits in the absence of L. arborea. For
these criteria the three species coexistence steady state is the only equilib-
rium that can potentially be stable (Table 1). Figure 9 indicates that the
three species coexistence equilibrium is approached by a process of damped
oscillation. If the interaction parameters are altered, in particular aP , then
the three species equilibrium becomes unstable and the population exhibits
periodic oscillations.
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Oscillations arise as high initial L. arborea density benefits rabbits which
increase and drive L. arborea to a low density. High rabbit density and low
L. arborea benefit puffins which increases and drive rabbits to a low density.
High puffin density then benefits L. arborea which increase to high density
and the cycle repeats. The periodic oscillations arise since each species can
outcompete the other in the absence of the third species (an ecological paper-
scissors-stone game).

In Figure 10 we assume that rP > aP cP kR and rR > cP kP . This means
that puffins would coexist with rabbits in the absence of L. arborea. There
are now two possibilities. We can observe a stable three species equilibrium,
puffins and rabbits coexist with rabbits controlling L. arborea density which
prevents the exclusion of puffins (Fig. 10A). Alternatively, rabbits can ex-
clude L. arborea and then the rabbits and puffins coexist at a two species
steady state (Fig. 10B).

In Figure 11A we assume that rP < aP cP kR and rR < cP kP . These conditions
enable the single rabbit species to be a stable steady state, as rP < aP cP kR

and rT < cRkR (Table 1). A coexistence of puffins and rabbits under these
conditions is unstable. As L. arborea grows puffin density declines and intro-
duction of rabbits to the island will result into L. arborea numbers declining
and the puffin population will not be able to compete with abundant rabbit
population that has benefited from rich L. arborea presence.

In Figure 11B we assume that rP < aP cP kR and rR > cP kP . The same
dynamics appears. A single rabbit species stable steady state is possible, as
rP < aP cP kR and rT < cRkR. Under these conditions none of the two species
steady states is possible (we never get two species steady state densities pos-
itive at the same time).

Discussion
We constructed a system of 3 ODEs to examine the interaction of puffins,
L. arborea and a herbivore (which we assume to be rabbits). We undertook
a stability analysis to explain when the various single, two and three species
steady states were stable and how they related to each other. We then fixed
a certain parameter combination based on observations in the field. This
assumed that L. arborea exclude puffins and rabbits exclude L. arborea. We
then tested how habitats composed of L. arborea and puffins, in which puffins
would be driven to extinction would respond to the introduction of the herbi-
vore. If the herbivore was a weaker competitor than puffins then the system
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could exhibit a three species coexistence or three species periodic oscillations.
If puffins and rabbits could coexist in the absence of L. arborea then a three
species coexistence or a two species coexistence without L. arborea was ob-
served. In these cases puffins could be prevented from extinction. If the
herbivore is a superior competitor to puffin then puffins would be excluded
by rabbits and rabbits would survive in a single species equilibrium.

Although this theory has been undertaken in a simplified, general theoretical
framework, it does highlight that a possible conservation strategy to preserve
puffins would be to introduce a suitable herbivore of L. arborea onto the Is-
lands of the Firth of Forth where L. arborea is detrimentally affecting the
puffin density.

24



Figure 8: The temporal dynamics of the puffins, L. arborea, rabbits system when

a third species is introduced to a two species equilibrium. In A a small number

of rabbits was introduced to a long-term coexistence levels of puffins and L. ar-

borea [P ∗, T ∗, 0]. In B a small number of puffins was introduced to a long-term

coexistence levels of L. arborea and rabbits [0, T ∗, R∗]. In C a small number of

L. arborea was introduced to long-term coexistence levels of puffins and rabbits

[P ∗, 0, R∗]. Parameter values: rP = 7, rT = 6, rR = 5, cP = 0.04, cT = 0.06, cR =

0.05, kP = kT = kR = 100, aP = aT = aR = 1.
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Figure 9: The temporal dynamics of the puffins, L. arborea, rabbits system. It is

assumed that puffins could be totally excluded by L. arborea (rP < cT kT ) and that

L. arborea can be totally excluded by rabbits (rT < cRkR), and rP > aP cP kR and

rR < cP kP . Parameter values in A: rP = rR = 3, rT = 1, kP = kT = kR = 100,

cP = cT = cR = 0.04, aP = 0.4, aT = aR = 0.2. Referring to the R-H conditions

here a1 ≈ 2.81 > 0, a3 ≈ 3.11 > 0, a1a2 − a3 ≈ 1.29 > 0. In B: all parameters

remain the same as in the A except aP : aP = 0.7. Referring to the R-H conditions

here a1 ≈ 2.69 > 0, a3 ≈ 1.77 > 0, a1a2 − a3 ≈ −1.02 < 0.
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Figure 10: As in Figure 9 puffins could be totally excluded by L. arborea (rP <

cT kT ) and that L. arborea can be totally excluded by rabbits (rT < cRkR), and

two more conditions hold: rP > aP cP kR and rR > cP kP then possible outcomes

include an oscillatory stable steady state and coexistence of puffins and rabbits

without L. arborea. Parameter values in A: rP = 3, rT = 1, rR = 5, cP = cT =

cR = 0.04, kP = kT = kR = 100, aP = 0.5, aT = aR = 1, referring to the R-H

conditions here a1 ≈ 4.87 > 0, a3 ≈ 4.69 > 0, a1a2 − a3 ≈ 13.28 > 0. In B: all

parameters are the same as in A except aP , here aP = 0.7, referring to the R-H

conditions here a1 ≈ 4.51 > 0, a3 ≈ −1.13 < 0, a1a2 − a3 ≈ 4.03 > 0.
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Figure 11: The temporal dynamics of the puffins, L. arborea, rabbits system. In

A and B we chose parameters that again satisfy that puffins are excluded by L.

arborea (rP < cT kT ) and L. arborea is excluded by rabbits (rT < cRkR). In A:

rP < aP cP kR. In addition we assume rR < cP kP . We always end up with no

puffins. Parameter values rP = rR = 3, rT = 1, kP = kT = kP = 100, cP =

cT = cR = 0.04, aP = 0.8, aT = aR = 1. Referring to the R-H conditions here

a1 ≈ 2.80 > 0, a3 ≈ 1.15 > 0, a1a2 − a3 ≈ −1.89 < 0. In B: rR > cP kP (as

opposed to the condition in case A), but here again rP < aP cP kR. Only one

outcome is possible: puffins die out. Parameter values are the same as in A,

except rR, which was changed to rR = 5. Referring to the R-H conditions here

a1 ≈ 4.33 > 0, a3 ≈ −3.43 < 0, a1a2 − a3 ≈ 0.71 > 0.
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3 Experimental methods to examine

the genetic diversity of L. arborea

In this section we will discuss in general the techniques used to manipulate
and record genetic (DNA) data. We will then describe specific details of how
we apply these techniques to samples of L. arborea collected from 4 islands
in the Firth of Forth.

3.1 Background into experimental methods

We will briefly describe basic techniques used to manipulate DNA. They in-
clude Polymerase Chain Reaction (PCR), Amplified Fragment Length Poly-
morphism (AFLP) and gel electrophoresis.

3.1.1 Polymerase Chain Reaction

PCR is a quick, easy and cheap method to extract and amplify a specific
region on a DNA strand. To run PCR three basic ingredients are needed:
two primers2 that flank the region to be amplified, a synthesizing enzyme
that creates a complementary strand to a single DNA strand, and finally the
building blocks - nucleotides (dNTPs, namely T,A,G,C).

PCR takes place in cycles. In the first cycle, the DNA molecule is dena-
tured by heating, so that from a double-stranded DNA molecule two single-
stranded molecules are obtained. The reaction is then cooled to a specific
‘annealing temperature‘ and each primer anneals to one end of the DNA re-
gion to be amplified. In the next step the mixture is heated to 72%C and
the extension of primers takes place. This produces two double-stranded
molecules. The cycle of denaturation, annealing, extension is then repeated
approximately 30 times. The number of copies grows exponentially with each
cycle (2n−1 copies in nth cycle) [4, 10].

2Primer is a short single stranded DNA sequence that anneals to the sequence to be

amplified. Two primers fully specify the region. Primers are also used by a synthesizing

enzyme for chain elongation.
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3.1.2 Amplified Fragment Length Polymorphism

In comparison with other methods, AFLP is a fast and reliable method to
generate large number of genetic markers3 particularly where little is known
about the species in advance. AFLP technique was first published in 1995
and has been widely used since then [11]. The main feature of AFLP is its ca-
pacity for simultaneous screening of many different DNA regions distributed
randomly across the genome.

The technique involves three steps - firstly DNA digestion and ligation, sec-
ondly pre-amplification of digested DNA fragments with ligated adaptors,
and finally selective amplification of pre-amplified fragments [11, 13, 22].

Digestion and ligation: First the double stranded DNA is digested by re-
striction enzymes. A restriction enzyme can recognize a specific sequence on
the DNA strand and cut at that specific site to produce DNA fragments. If,
by introducing a restriction enzyme we do not obtain any fragments, this
indicates that the specific restriction sequence is not present on the DNA
strand. Depending on the presence or absence of the restriction sequences
along the DNA molecule, digestion with restriction enzymes can produce
different numbers of fragments for different DNA molecules. There exists
a variety of restriction enzymes, some recognize a short sequence (e.g. re-
striction enzyme MseI recognizes a sequence consisting of four nucleotides),
some recognize a longer sequence (e.g. restriction enzyme EcoR I cuts at a
sequence consisting of six nucleotides). As the first group recognises short
sequences, it cuts frequently, whilst the second group cuts more rarely, due
to a longer recognition site. The number of fragments obtained by applying a
frequent cutter is generally much higher than the number when a rare cutter
is used. This is because the short sequence occurs more often in the DNA
strand than the specific long base sequence the rare cutter requires. Most
often, fragments of interest have been cut by a rare cutter on one end and
by a frequent cutter on the other end. Subsequently, short double stranded
fragments called adaptors are ligated to the ends of restriction fragments.

Pre-amplification: The next stage is a process of PCR, usually called pre-
amplification, and uses digested - ligated DNA fragments obtained in the

3A genetic marker is a specific DNA sequence in a specific region on a DNA strand

that can vary within a population under examination. We consider genetic maker to be

a sequence at a specific DNA locus/region that enables to identify genetically distinct

individuals.
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previous stage as a template. From digested-ligated fragments a subset of
fragments is amplified using pre-amplification primers.

Selective amplification: Pre-amplification primers used in pre-amplification
are still not discriminating enough4. Pre-amplification is performed to am-
plify those fragments that represent a set from which further selection can
be done. From the pre-amplified set a subset of fragments can be obtained
by constructing selective primers. Selective primers are based on the primers
that were used in the pre-amplification stage but extended further by at-
taching additional nucteotides to them. A primer extension of one, two or
three nucleotides reduces the number of amplified fragments by factors of 4,
16 and 64, respectively [6]. PCR using selective primers is referred to as a
selective amplification.

The outcome of AFPL is often scored using gel electrophoresis. We should
mention that an amplified DNA fragment (one DNA fragment in many
copies) forms what we call a band. Therefore what we see on the gels are
bands of different lengths, each band is a multiple copy of a specific DNA
fragment.

3.1.3 Gel electrophoresis

Gel electrophoresis is a technique that is used to compare genetic differences
among individuals. Gel electrophoresis sorts fragments of DNA that differ
in length. If we obtain DNA from different individuals, apply AFLP-method
to obtain fragments, and then sort these fragments using gel electrophoresis,
we obtain different pattern for each individual5.

The technique is based on the fact that DNA fragments are negatively
charged and therefore are attracted to a positively charged anode. After
the gel is prepared we insert fragments into the gel in a lane on one end of
the cradle filled with the gel. We place a positive anode at the opposite end
of the cradle and apply electric current. Subsequently, all fragments start to
migrate across the gel towards the positive anode. Shorter fragments move
through the gel more easily than the longer fragments. Therefore, after a
while, the fragments are sorted according to their lengths, shorter fragments

4Our aim is to obtain only limited number of fragments, that will provide easily readable

pattern when scored on the gel. With too many fragments, the pattern on the gel would

become hardly readable and less useful.
5Only clones or twins would have the same pattern.
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ahead of the longer ones.

Gels can be made with different media and different concentrations, de-
pending on the resolution required. Agarose is used for low resolution elec-
trophoresis, whilst polyacrylamide is used for higher resolution analysis.

3.2 Specific techniques applied to L. arborea

General techniques for determining the presence or absence of genetic mark-
ers for samples of L. arborea was applied in the project. The sample collection
and a DNA extraction was undertaken prior to the project, but the exper-
imental procedures of PCR, AFLP and gel electrophoresis we conducted in
this project, leading to a data set for the presence or absence of 51 genetic
markers for samples of L. arborea.

3.2.1 Sample collection

Samples of plant Lavatera arborea were collected in June 2005 on the Islands
of the Firth of Forth:

1. Bass Rock (43 samples),

2. Inchcolm (41 samples),

3. Craigleith (40 samples),

4. Fidra (16 samples).

3.2.2 DNA extraction

All DNA samples were extracted from leaf tissue of Lavatera arborea. This
was conducted prior to this project and it is these samples which have been
used in this project.

3.2.3 AFLP

Digestion
Digestion of DNA fragments was performed using 5µl sample DNA, 2µl of
10× Reaction Buffer, 1µl of restriction enzyme EcoRI, 1µl of restriction en-
zyme MseI, and Distilled Water was added to a final volume of 25µl. Ingre-
dients were gently mixed and centrifuged. The mixture was then incubated
for 2 hours at 37◦C and then for another 15 min at 70◦C to inactivate the
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restriction enzymes.

Ligation
Ligation of Adaptors to DNA fragments was performed using 24µl of Adapter/
Ligation Solution (provided in the IRDye Fluorescent AFLP Template Prepa-
ration Kit for Large Plant Genome Analysis (LI-COR Biosciences)) and 1µl
of T4 DNA Ligase. These two components were added to the mixture, mixed
and briefly centrifuged, then incubated at 20◦C for 2 hours. 1:10 dilution of
the mixture was performed. Diluted ligation mixture was then used for pre-
amplification.

Pre-amplification
Pre-amplification of diluted mixture was performed using 1µl of primer com-
bination EcoRI+0 and 1µl of primer combination MseI+TC, 1µl of dNTP,
2µl of 10× Buffer, 0.5µl of Taq and 9.5µl of Distilled Water.

The PCR was performed on the ThermoHybaid MultiBlock System. The
Cycle started by denaturing the samples by heating the samples to 94◦C for
5 minutes and then 21 cycles of {94◦C for 1 minute, 54◦C for 30 seconds,
72◦C for 1 minute} were performed.

The resulting mixture was looked at using agarose gel (1g of agarose, 100ml
of 1× TBE, 50µl of Ethidium Bromide).

All samples were diluted by adding 180µl of Distilled Water.

Selective PCR

Selective PCR was performed using 5µl of DNA pre-amplified mixture, 1µl
of primer combination EcoRI+AT, 1µl of primer combination EcoRI+AC,
1µl of primer combination MseI+TCGA, 2µl of dNTP, 2.4µl of 10× Buffer,
11.1µl of Distilled Water and 0.5µl of Taq. PCR was performed using Ther-
moHybaid MultiBlock System. The cycle started by denaturing the samples
by heating the samples to 94◦C and then 36 cycles of {94◦C for 1 minute,
54◦C for 30 seconds, 72◦C for 1 minute} were performed. Obtained mixture
was diluted in ratio 1 (DNA mixture) : 9 (Distilled Water).

Prepared sample mixture was combined with a formamide loading dye, (1µl
of sample mixture and 2µl of dye), denatured at 94◦C for 5 minutes and
electrophoresed on denaturing polyacrylamide gels (8g of Urea, 2ml of 10×
TBE, 3.2ml of Long Ranger, 14.8ml of Deionised Water, 10ml of Temed and
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100µl of APS) using a LI-COR Long ReadIR 4200 DNA sequencer. Inserted
in the gel was 0.3µl of each sample mixture.

The final results are represented by photo images of gels containing frag-
ments with primer combination EcoRI+AT and MseI+TCGA and fragments
with primer combination EcoRI+AC and MseI+TCGA. An example of the
gel image with primer combination EcoRI+AT and MseI+TCGA is given in
Figure 12.

Following the same steps as described above, another AFLP was performed
but using different primer combinations: EcoRI+AA with MseI + TCGA
and EcoRI+CC with MseI + TCGA.

3.2.4 Gel scoring

Obtained fragments were sorted according to their lengths. We score a gel
by looking for the presence or absence of a marker across all samples. For
example we pick up one line on the gel, see Figure 12, and look across all
the samples (in Figure 12 there are 36 samples, i.e. 36 columns, there are
also 3 additional columns - the first, twentieth and the last - that were filled
with standard DNA fragments that serve as a measure which all real samples
can be compared to) and then make a record of presence or absence of that
band. We use the term marker for a line on the gel. Each line is equivalent
to one marker. That is because each line represents a specific region/locus
on the DNA where the cutting sequence is either present (band on the gel is
present) or absent (band on the gel is absent).

Out of four gel images only two gel images were clear enough to score: gels
with primer combinations EcoRI+AT with MseI + TCGA and EcoRI+AA
with MseI + TCGA, the former providing a much better image than the lat-
ter. In total 49 markers were scored for the primer combination EcoRI+AC
with MseI+TCGA and only 2 markers were scored for the primer combina-
tion EcoRI+AA with MseI+TCGA. Polyacrylamide gels were scored manu-
ally. Only polymorphic bands were scored, i.e. those that across all samples
contained at least one sample with a band missing, or at least one with a
band present.

From the initial number of 140 samples only 123 samples provided a read-
able pattern on the gels. Therefore 51 genetic markers (called 51 loci) were
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scored for 123 L. arborea samples. A data matrix of dimension 51× 123 was
obtained and entered on an Excel spreadsheet as a binary matrix (1 was used
for recording a band presence, 0 was used to record a band absence).

4 Analysis of genetic data for L. arborea :

Techniques and results

We choose two methods to analyse the genetic variation in our data. In
section 4.1 we outline the technique and results for conducting an Analysis
of Variance (ANOVA) test on the proportion of heterozygotes in the samples.
In section 4.2 we outline technique and results for an Analysis of Molecular
Variance (AMOVA), a method which analyses the genetic distance between
samples directly from the presence/absence data.

4.1 ANOVA test on heterozygosity

We are interested in testing the genetic variation among L. arborea popu-
lations on the different islands of the Firth of Forth. This will help us to
infer information about the spread of the population between islands. One
way to test genetic variation is to convert the presence/absence data into a
table which represents the proportions of heterozygotes6 at each loci. This is
a measure of the variation of alleles at each loci. We can then compare the
variation in the proportion of heterozygotes between the population samples
for the different islands.

4.1.1 Determining the proportion of Heterozygotes

To determine the number of heterozygotes for each island population we as-
sume that individuals reproduce according to the assumptions of the Hardy-
Weinberg equilibrium [10]. These assumptions are:

• The organism is diploid.

6Every diploid organism has two copies of DNA molecule. We are often interested

whether, at a specific region, these two copies are completely the same or whether they

differ. An individual whose DNA copies differ regarding to a specific DNA region is called a

heterozygote, whereas an individual whose both DNA copies are the same at that region is

called a homozygote (relating to that specific region). An individual can be a homozygote

for some DNA regions and a heterozygote for another DNA regions.
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Figure 12: The image of the polyacrylamide gel electrophoresis of the first 36

L. arborea samples. Black bands are DNA fragments with primer combination

EcoRI+AT and MseI + TCGA.
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• Reproduction is sexual.

• Generations are nonoverlapping.

• Each marker has two alleles.

• Mating is random.

• Mutation is ignored.

• Migration is negligible.

We will assume that L. arborea is diploid, i.e. possesses two copies of a DNA
molecule. (For the purposes of this study, we will assume that the species
behaves as a simple diploid (Cavers, personal correspondence)).

The gel image (Figure 12) reveals differences between individual samples.
Let us consider locus 1 for the Bass Rock population and calculate how
many times the band was present and how many times that band is absent.
To convert presence/absence proportions into information about alleles we
need to clarify the way AFLP method works. The band is not present on
the gel image if and only if the cutting sequence at locus 1 is not present
on either of the two DNA copies of a diploid organism. On the other hand,
the band is present on the gel image if the cutting sequence is present on
at least one of the DNA copies a diploid organism possesses. We know that
each individual is one of the following types (genotype) at locus 1:

Type 1 (homozygote) : cutting sequence present on both DNA copies
Type 2 (heterozygote): cutting sequence present on one copy but absent

on the other copy of the DNA (in any order)
Type 3 (homozygote) : cutting sequence absent on both DNA copies

We now relate the cutting sequence being present as equivalent to the indi-
vidual possessing allele A at a particular loci. Using this notation individual
types (genotypes) are:

Type 1 (homozygote) : AA
Type 2 (heterozygote): Aa or aA
Type 3 (homozygote) : aa

To enable distinction between the j = 1, .., 51 loci we add the subscripts j as
follows: Aj and aj. To distinguish k island populations k ∈ {BR, IC, F, CL},
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we add superscripts as follows: Ak
j and ak

j . The frequency of ‘cutting sequence
presence‘ (A) at locus 1 for the Bass Rock population is denoted pBR

1 . Fre-
quency of ‘cutting sequence absence‘ (a) at locus 1 across the Bass Rock
population is denoted qBR

1 . If we know the proportions of type A and type a
allele in the population we can use the Hardy-Weinberg model to determine
the proportion of heterozygotes (type Aa or aA) in the population. For locus
1 at the Bass Rock this is determined in the Table 2.

Table 2: Hardy-Weinberg model for the genotype of the next generation

mother
Allele Cutting Sequence Cutting sequence

present - locus 1 absent - locus 1
Allele Freq. ( pk

1 ) ( qk
1)

father Cutting sequence (pk
1) Ak

1A
k
1 ((pk

1)
2) Ak

1a
k
1 (pk

1q
k
1)

present - locus 1

Cutting sequence (qk
1) ak

1A
k
1 (qk

1p
k
1) ak

1a
k
1 ((qk

1)
2)

absent - locus 1

The proportion (frequency) of homozygotes of the type ‘presence, presence‘
at locus 1 (i.e. Ak

1A
k
1) in the Bass Rock population (k = BR) is equal to

(pk
1)

2, because an offspring gets randomly one DNA strand with ‘presence‘
from one parent (which occurs with frequency pk

1 in the Bass Rock popu-
lation) and independently gets one DNA strand with ‘presence‘ from the
other parent (which occurs with frequency pk

1 in the Bass Rock population).
Similarly, the proportion of homozygotes of the type ‘absence, absence‘ (i.e.
ak

1a
k
1) is equal to (qk

1)
2 (allele ak

1 occurs with frequency qk
1 in the Bass Rock

population). Finally, the proportion of heterozygotes of the type ‘presence,
absence‘ (i.e. Ak

1a
k
1) in the Bass Rock population is equal to pk

1q
k
1 , because an

offspring gets randomly one DNA strand with ‘presence‘ from one parent and
independently gets one DNA strand with ‘absence‘ from the other parent.
Heterozygotes of the type ‘absence, presence‘ (i.e. ak

1A
k
1) is equal to qk

1p
k
1.

Therefore proportion of heterozygotes (of the type Ak
1a

k
1 or ak

1A
k
1) is equal to

2pk
1q

k
1 .

The proportion of individuals with the band absent at a particular locus
is equivalent to the proportion of genotype aa in the population for that lo-
cus. The proportion of individuals with the band present is equivalent to the
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proportion of genotypes AA, Aa and aA in the population.

The frequency of the genotype ak
j a

k
j at DNA location j = 1 in a subpop-

ulation of Bass Rock (k = BR) is 4
40

= 0.1, because among 40 individuals
from Bass Rock, 4 individuals were AFLP-scored as 0. Therefore 0.9 repre-
sents the frequency of individuals with genotype Ak

1A
k
1, Ak

1a
k
1 or ak

1A
k
1.

If assumptions of Hardy-Weinberg model were all satisfied, then we could
estimate allele A frequencies and allele a frequencies by solving the trivial
system (

pk
j

)2
+ 2pk

j q
k
j = 0.9(

qk
j

)2
= 0.1

The estimated Bass Rock frequencies would therefore be pk
j = 0.684 and

qk
j = 0.316. In the L. arborea population on Bass Rock, the frequency of

individuals with genotype Ak
j A

k
j would be (pk

j )
2 = 0.468, individual with

genotype ak
j a

k
j would be (qk

j )2 = 0.1 and individual with genotype Ak
j a

k
j

would be 2pk
j q

k
j = 0.432. We define heterozygosity to be hk

j = 2pk
j q

k
j = 0.432,

for j = 1, k = BR (i.e. heterozygosity in the Bass Rock population for locus
j = 1).

By examining 51 random loci for each island population, we obtain 51 ran-
dom samples of heterozygosity in each of the 4 island population.

Remark: As we do not have the information about real genotypes, we lack
the full observation. We have observed only genotypes ajaj, from which fre-
quencies pj and qj are estimated. In our approach we can only assume that
the Hardy-Weinberg model holds and that estimated values of pj and qj are
so close to real values that we can use them as true values.

In Table 3 we calculated a mean value of heterozygosity for each island pop-
ulation and standard error of each mean. We also present the percentage of
polymorphic bands (defined earlier) within samples from each island. The
number of samples over which each band is examined has an influence on pro-
claiming the band as polymorphic, therefore (having available substantially
less samples from Fidra than from other islands) we treat that information
with caution.
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Table 3: General statistics relating to L.arborea populations

Bass Rock Craigleith Fidra Inchcolm
Population size 40 37 13 33

Mean Heterozygosity 0.408 0.364 0.335 0.251
(Standard error of the mean) (0.019) (0.024) (0.024) (0.024)

Percentage of Polymorphic Bands 98% 86% 86% 75%

4.1.2 ANOVA and hypothesis testing

The F-statistic is often used to test a hypothesis that the means of all sam-
ples are equal (H0), versus the alternative hypothesis that at least one of
them is different from the others (H1)

7. We would like to test whether the
means of heterozygosities of all four islands are equal, versus the alternative
hypothesis that at least one of them is different from the others.

The assumption underlying this analysis is that samples, hk
j with j = 1, .., 51,

k ∈ {BR, CL, F, IC}, are drawn from normal distributions which have equal
variances:

hBR
j ∼ N(µ(BR), σ), j = 1, .., 51

hCL
j ∼ N(µ(CL), σ), j = 1, .., 51

hF
j ∼ N(µ(F ), σ), j = 1, .., 51

hIC
j ∼ N(µ(IC), σ), j = 1, .., 51

If the means are not equal, the test will give us an evidence that some is-
lands have lower heterozygosity. This will indicate that there are genetic
differences between the islands. Apart from that, we may then infer that
the population with the highest heterozygosities was the original population.
Dispersal from the island has produced subpopulations on the other islands
with lower diversity.

Let us outline the idea of testing: We would like to break down the total
variance of all observations into variance due to differences between islands,
and the variance due to differences within islands.

7Note: In population genetics the F-statistics often refers to a quantity FST which

relates to the proportion of genetic structure in a subpopulation - similar to the φ-statistic

we introduce later.
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Total sum of squares = Between sum of squares + Within sum of squares

The total sum of squares, i.e. the total sum of deviations from the overall
mean, is given by ∑

k∈{BR,CL,F,IC}

51∑
j=1

(
hk

j − h
)2

,

where h is a mean over the whole L. arborea population, so called grand
average [2].
The between sum of squares is given by

∑
k∈{BR,CL,F,IC}

51∑
j=1

(
hk − h

)2

,

where each term in the sum measures deviations of the island averages from
the grand average.

The within sum of squares is given by

∑
k∈{BR,CL,F,IC}

51∑
j=1

(hk
j − hk)2,

where each term in the sum measures deviations of the observations from the
island mean and so the within sum of squares measures dispersion within the
islands.

The F-statistic is then calculated [12] as

F =
1

k−1
Between sum of squares

1
n−k

Within sum of squares
,

where k now denotes the number of categories, here k = 4 (corresponding to
4 islands) and n denotes number of all samples, here n = 51× 4.

A table for the F distribution [20] is used to look up a significance level
for F (so called p-value). A p-value is the proportion of the tail area under
the F distribution density function with degrees of freedom k − 1 and n− k
that is cut-off by the obtained F-statistic. The smaller the p-value, the more
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likely it is that the null hypothesis H0 does not hold. We say the null hy-
pothesis, H0, is rejected with (100-p)% confidence.

Alternatively, we can look up the critical value Fcrit of the F distribution
which cuts off 0.1% of the tail area. We find that Fcrit(k − 1, n− k) = 5.63.
Therefore if the obtained F-statistic> 5.63, we could conclude that the null
hypothesis H0 is rejected with 99.9% confidence.

4.1.3 Results for ANOVA

The following values can be computed for the heterozygosity data.

Total sum of squares = 6.0199
Between sum of squares = 0.6759
Within sum of squares = 5.3440

Degrees of freedom: k − 1 = 4− 1 = 3 and n− k = 204− 4 = 200.

F =
1
3
0.6759

1
200

5.3440
= 8.4317

The result provides a strong evidence against H0. We reject H0 with 99.9%
confidence.

4.1.4 Discussion of ANOVA

The ANOVA test shows that mean heterozygosities differ at an extremely
high level of significance. Therefore we assume that the island populations
of L. arborea are genetically distinct. Table 3 also indicates that Bass Rock
contains the highest diversity. Craigleith and Fidra contain less diversity.
This may indicate that Bass Rock was the source of the populations on
Fidra and Craigleith and that Inchcolm may have been populated by Fidra
or Craigleith. It may also indicate that Fidra and Craigleith have experienced
more dispersal events from Bass Rock than Inchcolm.
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4.2 AMOVA test of population diversity

The Analysis of Molecular Variance (AMOVA) method can be used to test
a hypothesis about the genetic difference in molecular data directly from
the record of the presence or absence of bands. It is based on the ‘genetic
distances‘ between individuals.

4.2.1 Calculating distances

The presence/absence data produce vectors of zeros and ones. For the sim-
plified gel as demonstrated in Figure 13 we have 3 samples (p1,p2,p3) scored
at 10 regions/loci:

p1 = [1, 1, 1, 0, 1, 1, 1, 1, 1, 1],

p2 = [1, 0, 0, 1, 1, 1, 1, 1, 1, 1],

p3 = [0, 1, 1, 0, 1, 1, 1, 1, 1, 1].

Figure 13: Demonstrative example of a gel
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Based on these vectors we can calculate the distances between each couple of
samples. The distance between two samples is defined as the number of loci
in which they differ. Therefore, the distance between p1 and p2 is 3, because
they differ at 3 loci (second, third and fourth). Distance between p1 and p3

is 1 (they differ at the first locus), and the distance between p2 and p3 is 4.

Table 4: Demonstrative distance table

sample 1 sample 2 sample 3
sample 1 0 3 1
sample 2 3 0 4
sample 3 1 4 0

We will denote the distance between samples j and l as δjl. Our genetic
distance matrix, containing δjl, j = 1, ..123, l = 1, ..123, is therefore a sym-
metric matrix with zeros on its diagonal, size 123×123 (we have 123 samples
altogether) as in the example below:

Table 5: Distance matrix for L.arborea data

BassRock1 BassRock2 . . . Craigleith1 Craigleith2 ...
BassRock1 0 23 23 22 ...
BassRock2 23 0 10 11 ...

... ...
Craigleith1 23 10 0 1 ...
Craigleith2 22 11 1 0 ...

...
...

...
...

...

We can pinpoint 4 submatrices along the main diagonal, which will contain
distances between samples only within Bass Rock, Craigleith, etc. The re-
maining values are distances between samples from different islands.

We would like to calculate the total sum of squares of the deviations of
the samples (in our demonstrative example p1,p2,p3) from the mean p =
(p1 + p2 + p3)/3. The sum of squared deviations, SS, from the mean p can
be written as a sum of distances δjl between samples, barring a given con-
stant [1, 3, 7, 23]. In the demonstrative example SS = (p1 − p)′(p1 − p) +
(p2 − p)′(p2 − p) + (p3 − p)′(p3 − p) = 2.667 which is equal to calculating
SS = (δ12 + δ13 + δ23)/3 = (3 + 1 + 4)/3 = 2.667.
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Therefore the total sum of squares, SStotal, for our L. arborea data is de-
fined as follows8: a mean distance vector is p =

∑n
j=1 pj and a sum of

squared deviations of each pj, j = 1, .., 123 from the mean distance vector p
is

SStotal =
n∑

j=1

(pj − p)′(pj − p) =
1

n

n−1∑
j=1

n∑
l>j

δjl .

Similarly we can obtain the sum of squares for each island individually and
obtain SSBR, SSCL, SSF and SSIC .
E.g.

SSBR =

nBR∑
j=1

(pBR
j − pBR)′(pBR

j − pBR) =
1

nBR

nBR−1∑
j=1

nBR∑
l>j

δBR
jl .

The sum of squares within islands, SSWI , is defined as

SSWI = SSBR + SSCL + SSF + SSIC .

The sum of squares among islands, SSAI , is defined as

SSAI = SStotal − SSWI .

The variance σ2
w for individuals within islands is estimated as [1, 3, 7, 23]:

SSWI/(n− k) (19)

and the variance σ2
a for among regions variance is estimated as [1, 3, 7, 23]:

(SSAI/(k − 1)− SSWI/(n− k)) /n∗ (20)

where n∗ is an average island sample size calculated using a formula [1, 3, 7,
23]:

n∗ =
n− n2

BR+n2
CL+n2

F +n2
IC

n

k − 1
.

The total variance σ2 in the whole population is equal to σ2 = σ2
w + σ2

a.

Next we introduce a φ-statistic which compares the variance among islands
and overall variance in the whole population. The φ-statistic is defined as

φ = σ2
a

σ2 = σ2
a

σ2
w+σ2

a
and is calculated using (19) and (20).

8Note that n = 123, nBR = 40, nCL = 37, nF = 13 and nIC = 33; here k = 4 denotes 4

island populations.
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4.2.2 Results of AMOVA

Software GenAlEX was used to calculate the AMOVA [16]. The results are
as follows:

Within sum of squares for Bass Rock = 358.950
Within sum of squares for Inchcolm = 126.757
Within sum of squares for Craigleith = 187.818
Within sum of squares for Fidra = 109.231

Altogether the within sum of squares SSWI is therefore equal to 782.756.
Total sum of squares SStotal is equal to 907.252. Using SStotal and SSWI

we can calculate SSAI = 124.496 and n∗ = 123−(402+372+332+132)/123
3

= 29.54.
Results are summarised in Table 6:

Table 6: Summary statistics from the AMOVA test on genetic distance.
Here df stands for degree of freedom, SS stands for sum of squ-
ares and MS is calculated as SS

df
.

df SS MS Estim. σ2 φ p
Among Pops. 3 124.496 41.499 1.182
Within Pops. 119 782.756 6.578 6.578 0.15 0.01

The φ-statistic indicates that 85% of the total genetic variation can be ex-
plained within island populations. This indicates that the islands are geneti-
cally similar and therefore that they have originated from a common source.
The fact that 15% of the total variation occur between populations indicates
that the dispersal of L. arborea allows differentiation between islands. It
could be that a single island is acting as the source and dispersal to other
islands is ‘rare‘ to the extent that not all variation is transmitted to these
islands.

It is important to test whether φ=0.15 is significant. To do this we em-
ploy the method of permutational analysis [7]. This is achieved by randomly
permuting components of the distance matrix. The procedure outlined above
is then used to determine the value of φ for the random data. We denote φ
obtained for random data as φrandom. We do N permutations and then deter-
mine the proportion prandom exceeding the value achieved for the initial data
φdata. We did N =100 permutations. In Table 5 we see p = 0.01 indicating
that φdata was only achieved or exceeded once in 100 permutations9. This

9In these calculations our initial data set is included as one of the conducted permuta-

tions. (Only 99 new permutations are created, as our data set is one of 100 permutations.)
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indicates that the value of φ= 0.15 is significant at a 1% significance level.

A way to test the relatedness of different island populations is to work out
the φ-statistic for subsets of the data for combinations of pairs of islands
(Table 7).

Table 7: Pairwise Genetic Distances based on φ calculations

BR IC CL F
BR 0.000
IC 0.075 0.000
CL 0.058 0.024 0.000
F 0.077 0.181 0.127 0.000

In terms of genetic distance, the data show that Bass Rock is very similar to
all islands. Craigleith and Fidra have more among populations variability.
In particular Craigleith and Fidra are more similar to Bass Rock than to
each other. When we look at the variation between Inchcolm and Fidra with
Craigleith, the data show that Inchcolm is more similar to Craigleith than
to Fidra.

This suggests that the Bass Rock population was the founder population.
It also indicates that the population on Inchcolm may have originated from
the Craigleith population.

4.2.3 Discussion of AMOVA

The AMOVA test indicates that 85% of the total genetic variation can be
explained within island populations and 15% between populations. This pro-
duces evidence that the populations were originally from a common source.
The pairwise analysis indicates that the Bass Rock population is the founder
population and was the origin of populations on Craigleith and Fidra and
that Craigleith may be the source for the population on Inchcolm.
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5 Discussion

The objective of this project was to understand the spread of an invasive
species, L. arborea, on the Islands of the Firth of Forth and its interaction
with native species on these islands. To achieve this we have used mathe-
matical modelling techniques and genetic analysis on samples of L. arborea.

The mathematical modelling framework was designed to understand the in-
teraction between L. arborea, puffins and a herbivore of L. arborea. The
key objectives were to understand the mechanisms that lead to L. arborea
establishment and puffin decline/extinction. In the absence of the herbivore,
L. arborea would force the puffin population to extinction. Introducing the
herbivore on the islands where puffins are suppressed by expanding L. ar-
borea would help to reduce L. arborea density and, providing the herbivore
itself would not outcompete puffins, would lead to species coexistence with
puffins preserved. This suggests a possible conservation strategy to preserve
the declining number of puffins on islands where L. arborea has invaded: in-
troducing a suitable herbivore to control L. arborea expansion.

The empirical work and analysis of genetic data was undertaken on samples
of L. arborea collected from Islands of the Firth of Forth. The objective was
to use the results from analysis of DNA variation to understand the dispersal
route of L. arborea. This analysis indicated that the majority of the total ge-
netic variation could be explained by variation within island populations and
that a smaller percentage (15%) resulted from difference between the popula-
tions. Results from examining the proportion of heterozygosity within island
populations also indicated that although the differences between populations
were small, they were significant. In terms of genetical distance, the fact that
different island populations are similar indicates that L. arborea must be able
to disperse sufficiently successfully. By analysing the data which highlight
the amount of variation within and between pairs of island populations it
is possible to infer that the Bass Rock population is the source population
for L. arborea dispersal. Dispersal events from Bass Rock are likely to have
established separate populations on Craigleith and Fidra, and also Craigleith
is the likely source of the Inchcolm population. This is clearly what we would
have expected from historical information which indicates population of L.
arborea on Bass Rock well in advance of populations on other islands. It also
is what would have been expected due to the geographical location of the
islands (Figure 2).

The genetic analysis allows us to speculate on the likely success of L. ar-
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borea in invading other islands of the Firth of Forth and its ability to survive
on those islands which it currently occupies. The fact that populations are
genetically similar indicates that dispersal from established populations is
not a ‘rare‘ event. If there were few dispersal events we would expect the
genetic diversity on the recently colonised islands to be low and therefore
the variation between populations to be high. Variation does diminish with
distance from the source population on Bass Rock but dispersal is sufficient
to maintain most of the diversity. This indicates that even if the populations
on certain islands were eradicated it is likely that these islands would be re-
colonised. The small (but significant) loss of diversity with distance from the
source population may however confer a fitness loss for the recently colonised
populations. A lack of genetic diversity has been linked with the inability
of an individual to survive harsh environmental conditions. This means that
the less diverse populations are more susceptible to harsh winters, which is
known to be a key factor in the survival of L. arborea. To summarise, even if
the newly established populations were eradicated or reduced by hard winter
in a particular year, it is likely that the islands will be recolonised by direct
or secondary dispersal from the source population on Bass Rock.

49



Referrences

[1] Balding D. J., Bishop M., Cannings C., (2001) Handbook of Statistical
Genetics, John Wiley & Sons, Ltd.

[2] Barrow M., (1996) Statistics for Economics, Accounting and Business
Studies, Longman Group UK Limited.

[3] Bishop G. R., (1996) Statistics Department, University of Adelaide, the
article on the website
http://www.bioss.ac.uk/smart/unix/mamova/slides/frames.htm

[4] Brown T. A., (2002) Genomes, BIOS Scientific Publishers Ltd.

[5] CEH (2005) Relationship between tree mallow (Lavatera arborea) and
Atlantic puffin (Fratercula arctica) on the island of Craigleith, Firth of
Forth (Forth Islands Special Protection Area). Scottish Natural Heritage,
Commissioned Report No. 106.

[6] CEH web site
http://www.ceh.ac.uk/treemallow/what/index.html

[7] Excoffier L., Smouse P. E., Quattro J. M., (1992) Analysis of Molecu-
lar Variance Inferred From Metric Distances Among DNA Haplotypes:
Application to Human Mitochondrial DNA Restriction Data. Genetics,
131, 479-491.

[8] Harley E. H., (2005) DNA Fingerprinting in Ecology. Encyclopedia of
Life Sciences, John Wiley & Sons, doi: 10.1038/npg.els.0005454.

[9] Harrison R. M., (2005) Variation, Within Species: Introduc-
tion. Encyclopedia of Life Sciences, John Wiley & Sons, doi:
10.1038/npg.els.0004161.

[10] Hartl D. L., Clark A. G., (1997) Principles of Population Genetics,
Sinauer Associates, Inc.

[11] Meudt H. M., Clarke A. C., (2007) Almost Forgotten or Latest Practice?
AFLP applications, analyses and advances. Trends in Plant Science, 12,
106-117.

[12] Miller I., Miller M., (2004) John E. Freud’s Mathematical Statistics with
Applications, Pearson.

50



[13] Mueller U. G., Wolfenbarger L. L., (1999) AFLP genotyping and finger-
printing. Trends in Ecology and Evolution, 14, 389-394.

[14] Murray J.D., (1989) Mathematical Biology, Spriner-Verlag Berlin.

[15] Nasa World Wind software available on the website
http://worldwind.arc.nasa.gov

[16] Peakall R., Smouse P.E., (2006) GENALEX6: genetic analysis in Excel.
Population genetic software for teaching and research. Molecular Ecology
Notes, 6, 228-295.

[17] Photo gallery of Lavatera arborea on the website
http://www.dipbot.unict.it/orto/0259-1.html

[18] Photo gallery of puffins on the website
http://puffin.gallery.sytes.org

[19] United States National Arboretum web site
http://www.usna.usda.gov/Gardens/invasives.html

[20] University of Cambridge, the F-statistic table on the website
http://thesaurus.maths.org/mmkb/entry.html?action=entryById&id
=1446

[21] Van Der Wal R., (2006) The management of tree mallow and puffin
habitat on Craigleith: a first proposal. Scottish Natural Heritage, CEH.

[22] Vos P., Hogers R., Bleeker M. et al, (1995) AFLP: a new technique for
DNA fingerprinting. Nucleic Acids Research, 23, 4407-4414.

[23] Wener P., article on the website
http://userwww.sfsu.edu/ efc/classes/biol710/amova/amova.htm

51


