nerc.ac.uk

Can ethograms be automatically generated using body acceleration data from free-ranging birds?

Sakamoto, Kentaro Q.; Sato, Katsufumi; Ishizuka, Mayumi; Watanuki, Yutaka; Takahashi, Akinori; Daunt, Francis ORCID: https://orcid.org/0000-0003-4638-3388; Wanless, Sarah ORCID: https://orcid.org/0000-0002-2788-4606. 2009 Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS One, 4 (4), e5379. https://doi.org/10.1371/journal.pone.0005379

Before downloading, please read NORA policies.
[img]
Preview
Text
SakamotoN007665JA.pdf - Published Version

Download (1MB)

Abstract/Summary

An ethogram is a catalogue of discrete behaviors typically employed by a species. Traditionally animal behavior has been recorded by observing study individuals directly. However, this approach is difficult, often impossible, in the case of behaviors which occur in remote areas and/or at great depth or altitude. The recent development of increasingly sophisticated, animal-borne data loggers, has started to overcome this problem. Accelerometers are particularly useful in this respect because they can record the dynamic motion of a body in e.g. flight, walking, or swimming. However, classifying behavior using body acceleration characteristics typically requires prior knowledge of the behavior of free-ranging animals. Here, we demonstrate an automated procedure to categorize behavior from body acceleration, together with the release of a user-friendly computer application, “Ethographer”. We evaluated its performance using longitudinal acceleration data collected from a foot-propelled diving seabird, the European shag, Phalacrocorax aristotelis. The time series data were converted into a spectrum by continuous wavelet transformation. Then, each second of the spectrum was categorized into one of 20 behavior groups by unsupervised cluster analysis, using k-means methods. The typical behaviors extracted were characterized by the periodicities of body acceleration. Each categorized behavior was assumed to correspond to when the bird was on land, in flight, on the sea surface, diving and so on. The behaviors classified by the procedures accorded well with those independently defined from depth profiles. Because our approach is performed by unsupervised computation of the data, it has the potential to detect previously unknown types of behavior and unknown sequences of some behaviors.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1371/journal.pone.0005379
Programmes: CEH Topics & Objectives 2009 - 2012 > Biodiversity > BD Topic 1 - Observations, Patterns, and Predictions for Biodiversity > BD - 1.4 - Quantify and model interactions to determine impacts ...
UKCEH and CEH Sections/Science Areas: Watt
ISSN: 1932-6203
Additional Information. Not used in RCUK Gateway to Research.: PLoS ONE (eISSN-1932-6203) is an international, peer-reviewed, open-access, online publication. The full text of this paper can be viewed on the journal website. http://www.plosone.org/home.action
NORA Subject Terms: Zoology
Ecology and Environment
Date made live: 12 Aug 2009 14:57 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/7665

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...