

Report No. 126

Hydrology of soil types: a hydrologically based classification of the soils of the United Kingdom

Natural Environment Research Council

Report No. 126 Hydrology of soil types: a hydrologically-based classification of the soils of the United Kingdom

D.B. Boorman, J.M. Hollis[†] & A. Lilly^{*}

November 1995

Institute of Hydrology Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB UK

Tel: 01491 838800 Fax: 01491 832256 Telex: 849365 Hydrol G 'Soil Survey & Land Research Centre Silsoe Bedfordshire MK45 4DT UK

Tel: 01525 863000 Fax: 01525 62247 Telex: 826838 'Macaulay Land Use Research Institute Craigiebuckler Aberdeen AB9 2QJ UK

Tel: 01224 318611 Fax: 01224 311556 © Copyright Institute of Hydrology 1995

ISBN 0 948540 69 9

IH Report No. 126

published by the Institute of Hydrology

November 1995

Cover picture: The cover picture shows one of the ephemeral streams in Glen Nevis. The soils in the background have a predominantly peaty surface layer which either overlies coarse textured moranic drift (HOST class 15) or has developed directly on hard coherent rock (HOST class 27). The foreground shows a large expanse of bare rock with some thin mineral soils (all HOST class 22). The catchment responds rapidly to rainfall but the waterfall dries to a trickle only hours after the rain ceases.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Abstract

A hydrologically-based classification of the soils of the United Kingdom was developed based on existing data sets that describe both the soils and their distribution, and the hydrological response of catchments. The classification was based on conceptual models of the processes that occur in the soil and, where appropriate, the substrate. The resulting scheme has 29 classes, based on eleven response models. Soils are assigned to classes on the basis of their physical properties, and with reference to the hydrogeology of the substrate. Applications of the classification have been developed that improve estimates of parameters required in low flow and flood estimation procedures. The report contains sufficient detail of the methodologies so that they may be used in combination with soils information obtained from previously published maps. Since the classification is based on soil series it is independent of scale and may be used with many different soil data sets. Access on a national basis to the classification is provided by the 1:250,000 reconnaissance maps produced during the 1980s.

The classification is known by the acronym HOST, standing for Hydrology Of Soil Types.

The map on the following page shows the distribution of HOST classes on a 1 km grid. For each square only the most extensive class is shown.

is any sector following page shows the distribution of FUEL surface on A long oned. For each

Contents

Executive	Summary	i
Abbreviati	ions	ii
1	Introduction	1
2	From WRAP to HOST	2
	 2.1 The Winter Rainfall Acceptance Potential classification 2.2 Catchment-scale hydrological variables 2.3 Soil data and maps 2.4 Linking the catchment and soil data 	2 4 14 25
3	The HOST classification system	26
	 3.1 The basis of the HOST classification system 3.2 HOST response model descriptions 3.3 Sub-divisions within the framework of models 3.4 Validation of the HOST classification 3.5 HOST class distributions 	26 28 30 32 37
4	Applications of the HOST classification	38
	4.1 Low flow estimation (Q95, MAM(n))4.2 The estimation of standard percentage runoff	38 51
5	Access to the HOST System	63
	 5.1 Manual overlay 5.2 The 1:250,000 soil data set 5.3 The 1 km HOST data set 	63 64 65
6	Conclusions	67
Acknowle	dgements	67
Reference	25	68
Appendic	8	
A	A brief history of the development of the HOST classification system	69
B	Assignment of HOST classes to map units	73
С	Catchment data used in the development and calibration of HOST	86
D	Maps showing the distribution of the 29 HOST classes	108

Executive summary

It is difficult to overstate the importance of soils in influencing hydrological phenomena at both the site and catchment scale. Although much information is available to describe soils and their distribution, most of this needs considerable interpretation before it can be readily used by hydrologists. The Hydrology Of Soil Types (HOST) Project has produced a classification of the soils of the United Kingdom that can be applied via existing national maps to aid hydrological studies and analyses.

The HOST classification is based on conceptual models of the processes taking place within the soil and, where appropriate, substrate. These models have three physical settings:

- a soil on a permeable substrate in which there is a deep aquifer or groundwater (i.e. at >2 m depth),
- a soil on permeable substrate in which there is normally a shallow water table (i.e. at ≤2 m depth), and,
- a soil (or soil and substrate) which contains an impermeable or semipermeable layer within 1 m of the surface.

Within these situations are variations that allow for different soil properties (e.g. a peaty top layer), and wetness regimes (e.g. as indicated by the presence of gleying), that give rise to a total of 11 models. The 11 models are further sub-divided into 29 HOST classes, based on other properties or the geology of the substrate.

The classification was developed using databases of physical soil properties with feedback from catchment scale hydrological variables, mainly base flow index and standard percentage runoff. The distribution of the soils was taken from the national reconnaissance mapping at a scale of 1:250,000 completed for England, Wales and Scotland in the 1980s. In Northern Ireland a special HOST map was prepared prior to the completion of a 1:250,000 soil map of the province.

The HOST classification is based on the soil series so it can be used with many different soil data sets. At the 1:250,000 scale, groups of soil series are combined into map units, which may contain more than one HOST class. Other soil maps are available that show the distribution of individual series and it will be possible to use these with the HOST classification to refine hydrological parameter estimates.

The report contains complete methodologies for the estimation of low flow variables (mean annual minimum and the 95 percentile flow) and the Flood Studies Report standard percentage runoff. Existing users of these methods can use the information contained in this report with previously published maps to obtain HOSTbased estimates of model parameters.

A product of the HOST project is a computer data set based on a 1 km grid that covers the whole of the UK, although data for Northern Ireland are currently less reliable than for the rest of the UK. Using the data set will greatly speed up the process of abstracting HOST classes for catchments or sites of interest. These data may be leased from any of the collaborating organisations.

The HOST Project has been a collaborative venture between the Institute of Hydrology, Soil Survey and Land Research Centre, Macaulay Land Use Research Institute and Department of Agriculture Northern Ireland.

Abbreviations

a_	a regression coefficient
ÄMP(D)	annual D-day minimum flow having probability of exceedance P
BFI	Base flow index
CWI	Catchment wetness index
D	Duration in days
DANI	Department of Agriculture Northern Ireland
DPR	Dynamic contribution to PR from CWI
DPR	Dynamic contribution to PR from RAIN
fse	factorial standard error
FSR	Flood Studies Report
FSSR	Flood Studies Supplementary Report
GRADMAM	Gradient of duration relationship in low flow frequency
HOST	Hydrology Of Soil Types
HOST	Fraction of HOST class n
IAC Ö	Integrated air capacity
IH	Institute of Hydrology
LFHG	Low flow HOST group
MAF	Mean annual flood
MF	Mean flow
MAM(D)	Mean annual minimum of duration D days
MLURI	Macaulay Land Use Research Institute
MO	Meteorological Office
NRA	National Rivers Authority
NWA	National Water Archive
Р	Exceedance probability
PR	Percentage runoff
Q _x	Flow exceeded by x% of all flows.
$Q_{x}(D)$	Flow exceeded during x% of all periods of duration D days
r^2	Coefficient of determination
$R(Q_{10})$	Q_{10}/Q_{95}
R(Q,)	$Q_{00}^{\circ}/Q_{05}^{\circ}$
RAIŇ	Event rainfall in mm
RPB	River Purification Board
SAAR	Standard period annual average rainfall (mm)
s.e.e.	standard error of estimate
SPR	Standard percentage runoff
SSLRC	Soil Survey and Land Research Centre
SWA	Surface Water Archive
WRAP	Winter rainfall acceptance potential
WRAP	Fraction of WRAP class n
11	

.

.

· .

1 Introduction

Soils have a major influence on hydrological processes. Their physical properties govern the storage and transmission of water within the soil, and these properties combine with other characteristics of the soil to provide chemical buffers and biological filters. While these effects occur and may be observed at the very small scale, the influence of the soil properties may also be seen in the integrated response of whole catchment systems. Although these effects are recognised, they remain largely unquantified and many hydrologists struggle to interpret the wealth of soils information, in the form of maps, monographs and surveys, that is available to them.

One attempt to classify soils according to their hydrological response was the Winter Rainfall Acceptance Potential (WRAP) scheme developed for the Flood Studies Report (FSR, NERC, 1975) and described in more detail by Farquharson et al. (1978). A 1:1,000,000 scale map of the British Isles was produced showing the distribution of the five WRAP classes. This map was enlarged to 1:625,000 for inclusion in FSR Volume V. Although the WRAP system has few classes and limited resolution it has been at the core of the FSR rainfall-runoff method of design flood estimation for almost 20 years and is also engrained in other design procedures (e.g. WASSP, Department of the Environment, 1981).

An opportunity to revise the scale of the WRAP map came in the mid-1980s when the Soil Survey of England and Wales, now the Soil Survey and Land Research Centre (SSLRC) and the Soil Survey of Scotland, based at the Macaulay Land Use Research Institute (MLURI), completed the national reconnaissance mapping of soils at 1:250,000. However, rather than merely produce a WRAP map at a more detailed scale, the large hydrological databases held by the Institute of Hydrology (IH) were used to assist in the definition of classes. Thus the Hydrology Of Soil Types (HOST) project was born as a collaborative venture between these three organisations. Soil mapping at 1:250,000 has not yet been completed for Northern Ireland but the Department of Agriculture of Northern Ireland has been involved in the HOST project and in the preparation of a HOST map and data set for Northern Ireland.

Since the HOST classification is based on the physical properties of the soils and their effects on the storage and transmission of soil water, it is largely independent of scale and will have a number of applications outwith the prediction of river flows at ungauged sites e.g. the evaluation of sewage sludge acceptance potential, the estimation of pesticide residues, and improving predictions of the effects of soil acidification.

1.1 Guide to the report

It is anticipated that readers of this report will come from a wide variety of backgrounds. Many hydrologists may not have delved more deeply into the hydrological aspects of soils than that presented to them in the WRAP classification. For these readers we include information on how soil scientists approach the classification and mapping of soils. On the other hand there may be soil scientists who only consider the influence of soil physics on local hydrological processes, and not at a catchment scale. Since some of the first applications of HOST concern the estimation of parameters on catchments, a full description of these parameters and their importance in applied hydrology is presented. Chapter 2 covers these background issues and shows how the hydrological and soil data sets have been brought together.

Chapter 3 describes the resulting HOST classification, in terms of response models and processes within different soil types. The utility of the HOST classification is then demonstrated by developing a base flow index estimation equation.

Chapter 4 details two ways in which HOST has already been used. These applications describe how HOST has been integrated into procedures for the estimation of low flows and flood peaks. Chapter 5 describes how to access the HOST system using existing paper-based maps, or computer data sets.

Following the conclusions and list of references are four appendices. Appendix A gives a brief history of how the HOST classification evolved. Appendix B is the key that allows HOST classes to be derived from the 1:250,000 national soil maps. Appendix C is a complete listing of the catchment based data used in developing and calibrating HOST. Appendix D contains maps showing the distribution of each HOST class.

2 From WRAP to HOST

The Winter Rainfall Acceptance Potential (WRAP) classification makes a logical starting point in describing the development of a new classification. The deficiencies of the WRAP system were a major reason for the development of HOST and experiences in using WRAP helped define desirable properties of the replacement classification.

2.1 The Winter Rainfall Acceptance Potential classification

The Winter Rainfall Acceptance Potential classification was based on a theoretical consideration of soil hydrological processes and made use of four main soil and site properties i.e. soil water regime, depth to an impermeable layer, the permeability of the soil horizons above this layer, and the slope of the land. The classification scheme is shown in Table 2.1. The soil water regime classification was based on a system given in the Soil Survey Field Handbook (Hodgson, 1974). The three classes identified are:

- soils rarely waterlogged within 40 cm depth, and for less than 90 days within 70 cm in most years,
- soils commonly waterlogged within 40 cm, but for less than 335 days within 70 cm in most years, and
- soils waterlogged within 40 cm for more than 180 days, and for more than 335 days within 70 cm in most years.

An impermeable layer is defined as a layer with a hydraulic conductivity of less than 0.1 m day⁻¹ and should therefore be considered slowly permeable rather than impermeable. Depth to such a layer is often closely related to the water regime class but because of exceptions to this general rule both properties were included.

-		Slope Classes								
Water	Depth to		< 2"			2-8°			>8°	
regime Impermeable class horizon(cm)			Permeability class (above impermeable horizon)							
		Rapid	Medium	Slow	Rapid	Medium	Slow	Rapid	Medium	Slow
	> 80					1	2	1	2	3
1	80-40		1		2			3		4
	<40		-			-			•	
	> 80	2			3			-		
2	80-40					4				
	<40	3								
:	> 80									
3	80-40					5		•		
	<40									

Table 2.1 The WRAP classification scheme

Winter Run-off Potential

1 Verγ high 2 High

Low

Moderate

Very low

Winter Rain Acceptance Class

3

4

5

ter nun-ott Potential

2

3

4

5

- Very Low Low
- Low Moderate
- High
- Very high

These two properties were considered the most important in accounting for the variations in the response of soils to rainfall, since, taken together, they show whether saturation is likely within the soil and the depth at which vertical movement of water stops and horizontal movement begins. However, it was also seen as important to differentiate the soils with no impermeable layer, and also soils where the properties above such a layer were very different. This was achieved by using a simple classification of permeability based on soil structure and particle-size. Slope was used as the final variable since it accentuates the response from soils with a shallow water table.

The classification shown in Table 2.1 using these four variables was based on a theoretical consideration of the movement of water in the soil combined with a general knowledge of the responsiveness of streams, and a small number of catchment studies. The developers of the classification report that "although the directional effects of the four main parameters are reasonably clear, their relative magnitude is a matter of judgement" (Farquharson *et al.*, 1978). A primary consideration was to produce a system that could be applied consistently by many individual soil scientists to construct a national map depicting the classes.

Although the impetus to develop WRAP came from the UK Flood Studies project, few hydrological data were used to develop the classification. The WRAP scheme was applied to the soils of the UK and presented to users as maps at 1:1,000,000 and 1:625,000. To use the system, catchment boundaries were overlain on the WRAP map and the fraction of each class calculated. The five fractions were combined into a soil index:

 $SOIL = 0.15 WRAP_1 + 0.30 WRAP_2 + 0.40 WRAP_3 + 0.45 WRAP_4 + 0.50 WRAP_5$

where $WRAP_1$ etc. are the fractions of each WRAP class on the catchment.

The new variable SOIL was then used in multiple regression studies to estimate the mean annual flood (MAF) and standard percentage runoff (SPR). The WRAP system is therefore at the core of the Flood Studies Report methods of design flood estimation, and has been used in many design studies since the publication of the report in 1975. It has also been integrated into other design procedures (e.g. WASSP, Department of the Environment, 1981).

Problems encountered in the use of WRAP are easily illustrated by considering the estimation

of SPR, which is percentage runoff derived from event data, adjusted to standard rainfall and catchment conditions, and averaged for a catchment (see Section 2.2.2). To estimate SPR at ungauged sites, the FSR assigned the values of about 15%, 30%, 40%, 45% and 50% to the five WRAP classes (actually 0.955 of these values). Across a boundary between WRAP classes 1 and 5, SPR can change by a factor of slightly over three, and this factor will be carried forward in the flood estimate. (Note that within the statistical approach this factor is increased as the SOIL parameter is raised to the power 1.23). Where a flood estimate is being made on a small catchment in the region of such a boundary then it is easy to see how the resulting estimate may change if either the dividing line on the soil map or the catchment boundary is mislocated. Mapping at a larger scale would remove some of this uncertainty, but users have also commented on the poor discrimination and limited range of the WRAP classification scheme. Downland chalk catchments have typical responses of just a few percent and some small, upland catchments have a standard response of over 60% (Boorman, 1985).

Limitations in using WRAP to estimate SPR were recognised from the start and users were advised to refine estimates of variables obtained from the regression equations by reference to local data from gauged catchments, or by commissioning a more detailed soil survey of the study catchment. Recent research has shown that a more accurate estimate of SPR than is possible using regression equations can be obtained by transferring data from similar catchments; however, within this approach WRAP is still used to help define similarity (Burn and Boorman, 1993).

Based on hydrological feedback there have been some changes to the WRAP model within the FSR techniques: minor changes to the WRAP map were introduced in Flood Studies Supplementary Report 7 (FSSR 7, IH, 1978), new coefficients to estimate SPR were presented in FSSR 16 (IH, 1985), and fresh advice on interpreting WRAP in specific locations is contained in FSSR 17 (IH, 1985). It is also worth noting that when the WRAP map appeared in 1975 it left large urban areas unclassified which caused problems for the many flood estimation projects on the urban fringe. One of the revisions to the WRAP map presented in FSSR 7 was the classification of these urban areas mainly through correlations between geology and soil type.

While WRAP has been integrated into procedures for design flood estimation, it was

not used in the later development of a methodology for low flow estimation (Low Flow Studies, Institute of Hydrology, 1980) since it was ineffective in distinguishing between responses at the lower end of the WRAP scale. The Low Flow Studies stressed the use of geological maps to aid estimation procedures. It is perhaps because of this need to make a subjective assessment of the soils that meant that the methods of the Low Flow Studies report were not as rapidly or widely adopted as the methods of the FSR.

2.2 Catchment-scale hydrological variables

In producing a replacement for WRAP it was seen to be desirable and useful to use hydrological data during the development phase, rather than just calibrating a new classification for specific hydrological purposes. It has already been noted that the areas in which HOST was to be applied immediately were in the estimation of catchment-scale variables.

One approach is, therefore, to use the catchment-scale variables directly to aid the calibration. This has the obvious benefit of using the information of greatest relevance to the problems being addressed, but could be criticised for being an empirical rather than a physically-based approach. The alternative would be to base the classification on hydrologically relevant physical properties of the soil (e.g. hydraulic conductivity, storage capacity) and to then use these within a physically based rainfall-runoff model to estimate the response at the catchment outlet and hence the catchment-scale parameter.

While this latter course may be scientifically more rigorous it requires far more elements to be drawn together (e.g. a physically based rainfall-runoff model, detailed and widespread measurement of soil physical properties, longperiod rainfall and runoff data for validation and calibration, rainfall generator for use in simulation). Within the current project these requirements were considered too demanding and the former approach was adopted. However, in adopting the more empirical approach based on catchment-scale variables it was important to preserve a structure to the classification that had a sound physical basis.

2.2.1 The hydrological response of catchments

The data that describe the response of a catchment come from a flow gauge at the

catchment outlet and raingauges located within or close to the area draining to the outlet. The flow data are, in theory, available at a very fine data interval (typically 15 minute intervals). However, they are often archived as daily mean flows and it is this type of time-series data that are archived by the National Water Archive (NWA) located at IH. The NWA contains daily flow records for over 1000 UK catchments. Rainfall data are also available mainly on a daily basis: other raingauges can provide data at a finer resolution but the network of such gauges is sparse. Again the main rainfall archive maintained at IH is of daily data.

Daily data are most useful in describing the flow regime of the catchment i.e. the general shape of the flow hydrograph, and characteristics of the hydrograph as described by its statistical properties. An example of a daily flow hydrograph for a one-year period is shown in Figure 2.1. The hydrograph contains information about the nature of response, for example typical response times can be seen, and the seasonal variation in baseflow is apparent. For general water resource purposes a commonly used method of displaying a summary of a long record is as a flow duration curve. Figure 2.2 shows such a curve for the flow gauging station portrayed in Figure 2.1. The x-axis in the diagram is a probability scale; the flow corresponding to the 50% point is the median flow. It is easy to extract figures corresponding to other percentile flows, so for example in Figure 2.2 the daily flow exceeded 95% of the time (often written as Q_{95}) is approximately 0.8 m³s⁻¹. Note that in both of these figures the flow is conveniently plotted on a logarithmic scale.

In practice it is usual to use other parameters to look at extreme flows, at both the flood and drought ends of the scale. For low flows it is usual to look at durations longer than one day, say five or ten days. $Q_{qs}(10)$ is therefore the flow not exceeded in 95% of all 10 day periods. For looking at flood flows it is usual to look at data that are at a finer data interval as, in a UK context, daily data hide many of the true variations in the flow hydrograph. Clearly the instantaneous flow peak will usually be larger than the maximum daily mean flow peak, and the difference between the two will be greatest on quickly responding catchments. Statistical analyses of a flow record for flood purposes usually use data describing instantaneous peaks, for example the mean annual flood (MAF) is the arithmetic mean of the largest instantaneous flood peak abstracted from each water year of the station record.

Where a long flow record exists on a catchment then this can be analysed to yield the required parameter. In situations in which it is required to estimate one of these parameters at a site on a river where no data have been recorded, then it is necessary to estimate it from other information. In the Low Flow Studies the key variable used to link the required statistics to the physical properties of the catchment is the Base Flow Index (BFI). In the rainfall-runoff method of design flood estimation contained in the FSR the most difficult to estimate and single most important parameter is the standard percentage runoff (SPR).

BFI is calculated from daily data and is a dimensionless variable that expresses the volume of baseflow as a fraction of the total flow volume; it is therefore possible to calculate the BFI for many of the catchments for which data are stored in the NWA (approximately 1000 catchments). SPR is derived from a joint analysis of flood events as described by flow data at fine resolution and data describing the rainfall that caused the flood. Like BFI, SPR is a dimensionless variable, but because of its different data requirements it is only available for a set of roughly 200 catchments.

Although BFI and SPR are calculated from different data sets they are well correlated and it was decided to use these two hydrological variables to calibrate and verify the HOST classification. The following sections contain a detailed description of how SPR and BFI are calculated for a catchment with examples that illustrate how these vary between catchments.

2.2.2 Standard percentage runoff

Whereas many parameters describing catchment response can be obtained from flow data alone, such indices do not explicitly account for the rainfall that drives the hydrological response of the catchment. The calculation of SPR is based on the analysis of flood event data i.e. collated flow and rainfall data for storm events; simply put, SPR is the percentage of rainfall that causes the short-term increase in flow seen at the catchment outlet. An example of such an event is shown in Figure 2.3.

The flow data are usually at hourly intervals and are most often obtained directly from the operator of the flow gauge (normally the National Rivers Authority (NRA) in England and Wales, and the River Purification Boards (RPB) in Scotland), although not always in a computer compatible form. The event shown is ideal, the flow prior to the event is low, the flow record (hydrograph) then rises steeply to a well defined peak, after which the flow drops (recedes) to a level similar to that prior to the event. Note that this event is included in the

Figure 2.1 Daily flow hydrograph for the River Coquet at Rothbury for 1980

Figure 2.2 Flow duration curve for the River Coquet at Rothbury

annual hydrograph depicted in Figure 2.1 but, whereas the peak daily mean flow is about 49 m³s⁻¹, the peak from the instantaneous record is just over 80 m³s⁻¹.

The rainfall series shown above the flow data in Figure 2.3 is a catchment average rainfall profile which is normally derived from a number of individual raingauge records. The volume of rainfall is a weighted average of the totals recorded by the daily gauges located on or near the catchment. This volume is distributed in time according to the weighted average of profiles from recording gauges in the same area, which are shown on the right hand side of Figure 2.3. Figure 2.4 shows the location of all gauges supplying data used to estimate this average profile. The averaging process uses the percentage of the annual average fall in the event, rather than the depth in mm, and symbols are used on the map in Figure 2.4 to indicate these percentage figures. These data are not usually available from the same source; the Meteorological Office (MO) can provide all daily

Figure 2.3 An example of a flood event

data, but the recording gauge data may be from the same source or from the gauge operator (again normally the NRA or RPB).

Referring again to Figure 2.3 the catchment average rainfall may also be considered ideal because there is a single rainfall burst that starts before the rise in the flow hydrograph, and because it is perfectly believable that the depicted rise in flow was caused by this rainfall. Because the raingauge network is sparse and for many events the rainfall is spatially variable, the catchment average rainfall calculated from the gauged data does not always appear compatible with the flow data, and in such a case the event has to be rejected from further analysis.

To calculate the percentage of the rainfall that contributes to quick response runoff, it is necessary to separate the total flow hydrograph into a quick response component and an underlying baseflow. There are a great many ways of performing this separation that may be justified on the grounds of: physical interpretation, ease of analysis, or robustness in implementation. The event data available for the

HOST study had all been previously analysed using the methods of the FSR; Figure 2.5 illustrates how the FSR flow separation is performed. In this procedure the lag between total rainfall and flow peak is derived and the end point of response runoff is taken as four times this lag after the end of the rainfall. In the case of multi-peaked flow events then the centroid of flow peaks is used. The recession prior to the event is continued through the event, and this flow is subtracted from the total flow hydrograph. A straight line is then drawn from beneath the peak flow, or centroid of peaks, to the point already identified as marking the end of response runoff. The response runoff is the portion of flow above this separation. The Flood Study found this to be a robust procedure that could be reliably applied to individual events. The flow separated by this process should be thought of as quick response runoff, rather than response runoff, since the rainfall will cause an increase in baseflow that may be apparent for a considerable time after the event, but in practice the label 'quick' is often omitted. Percentage runoff (PR) is simply the volume of response runoff expressed as a percentage of total rainfall.

Figure 2.4 Raingauge data used to calculate a catchment average rainfall

To see how SPR is derived it is convenient to digress slightly and review how PR is estimated in the design situation. In making a flood estimate using the FSR rainfall-runoff method then PR has to be estimated and a two part model is used. This model divides the percentage runoff from a natural, non-urbanised (i.e. rural), catchment into two components: a standard term that is fixed for a catchment, and a dynamic component, comprising two terms, that varies between events. The precise form of these terms was revised in FSSR16, but the principle remains the same. The two dynamic terms presented in FSSR16 are given by:

 $DPR_{CM} = 0.25 (CWI - 125)$

 $DPR_{RAIN} = 0.45 (RAIN - 40)^{0.7}$ for RAIN>40.0mm

otherwise $DPR_{RAIN} = 0$

where

DPR_{CWI} is the dynamic percentage runoff term relating to catchment wetness, CWI is the Catchment Wetness Index (CWI), DPR_{RAIN} is the dynamic percentage runoff term dependent on event rainfall, and RAIN is the rainfall depth in mm. On rural catchments these dynamic terms are added to the standard percentage runoff to give the (total) percentage runoff:

 $PR_{RURAL} = SPR + DPR_{CWI} + DPR_{RAIN}$

On non-rural catchments an allowance has to be made for the increased runoff from the developed area. The amount of development is obtained from the urban area of the Ordnance Survey's 1:50,000 scale map. Using a model that assumes 30% of the depicted area to be 'impermeable', and that from this area 70% of the rainfall contributes to quick response runoff, the resulting equation is:

 $PR = PR_{RIRAL} (1.0 - 0.3 URBAN) + 21.0 URBAN$

where URBAN is the urbanised fraction taken from the 1:50,000 OS map.

When these equations are applied to an ungauged catchment then URBAN can be taken from a map, RAIN and CWI are calculated from procedures which make use of special maps provided with the FSR, and SPR has until now been derived from the WRAP map.

Figure 2.5 The FSR method of flow separation

Returning to the situation where an event has been analysed and a value of PR obtained, these same equations can be applied in reverse to obtain an SPR value. The observed event PR is adjusted to give the PR_{RURAL} from which the dynamic terms are subtracted to give SPR. It is recommended that at least five events are used to give a reliable value of the catchment SPR. By averaging SPR rather than PR, the effects of analysing events that are all drier or wetter than the normal conditions are avoided. Figure 2.6 illustrates this calculation for the Mole at Horley. This catchment average value of SPR can, and should when available, be used to replace the value obtained via the WRAP map. The catchment average SPR data derived in this way are the data used by the HOST project. The preparation of such data is laborious as the data come from many sources and require careful processing and checking before they can be used. SPR values were available from the 1910 events on 210 catchments described by Boorman (1985), and from an additional 683 events collected subsequently from the same and other catchments. However, for many of these catchments insufficient events are available to give an acceptable value of SPR and fewer could be used for HOST. The distribution of these catchments in the UK is shown in Figure 2.7; there are no such catchments in Northern

(a) Equations

$$\begin{split} & \text{PR}_{\text{OBS}} = (\text{Response runoff / total rain}) \times 100 \\ & \text{PR}_{\text{Rural}} = (\text{PR}_{\text{OBS}} - (21.0 \times \text{URBAN})) / (1-0.3 \times \text{URBAN}) \\ & \text{DPR}_{\text{CMI}} = 0.25 \text{ (CWI - 125)} \\ & \text{DPR}_{\text{RAIN}} = 0.45 (\text{RAIN}) - 40)^{o_{1}} \text{ for P>40 otherwise DPR}_{\text{RAIN}} = 0 \\ & \text{SPR} = \text{PR}_{\text{Rural}} - \text{DPR}_{\text{CWI}} - \text{DPR}_{\text{RAIN}} \end{split}$$

(b) Calculation for event of 13 November 1970

Total Rain: Reponse Runoff:	60.8 mm 27.5 mm	Urban Fraction: Pre-event CWI:	0.09 80
$PR_{OBS} = (27.5/60.8) \times 100 =$	45.2		
$PR_{Rural} = (45.2 - (21 \times 0.09))/(1 - 100) + (21 \times 0.09))/(1 - 100)$	$0.3 \ge 0.9$ = 44	4.51	
$DPR_{RAIN} = 0.45 \ (60.8 - 40)^{07} =$	3.77		
$DPR_{CWI} = 0.25 (80 - 125) = -1$	1.25		
SPR = 44.51 + 11.25 - 3.77 = 5	51.99		

(c) Average for Catchment

Event	Rainfall	Response Runoff	CWI	SPR
15.01.68 20.02.69 13.11.70 18.06.71 10.02.74 14.02.74 20.01.75	127.9 23.3 60.8 33.3 43.8 26.6 31.3	54.1 15.0 27.5 18.0 42.1 15.5 17.0	127 124 80 129 136 136 132	30.70 64.39 51.99 52.76 50.68 55.02 52.11
		Catchment Aver	age	51.09

Figure 2.6 The calculation of percentage runoff (PR) and standard percentage runoff (SPR) from event data

Ireland. Figure 2.8 gives an example event, event SPR and catchment average SPR values for a number of UK catchments that cover a range of response types. In these plots it is informative to compare the scale of the rainfall axis with the left hand flow axis, as these have the same units, mm hr⁻¹. In the top left hand diagram, for the Conwy, the peak of the rainfall is about 7 mm hr⁻¹ and the flow peak is just over 4 mm hr⁻¹. As the flow response is fast, and because the flow quickly returns to close to the pre-event value, it is no surprise that the standard percentage runoff is about 60%. Compare this with the bottom right hand diagram for the Ems catchment, in which the peak rainfall is almost 4 mm hr⁻¹ but the peak flow is less than 0.03 mm hr⁻¹. Here the response runoff continues well beyond the duration of the rainfall event, but the standard percentage runoff is less than 0.5%. The other events shown in this figure represent a variety of responses between the two described. In the data set available for HOST, catchment average SPR ranges from 3.8% to 77.5%.

2.2.3 Base flow index

Whereas the calculation of SPR requires detailed event-based data describing both flow and rainfall, BFI is derived using only daily mean flow data. BFI is the long-term average proportion of flow that occurs as baseflow, and is an index developed in the Low Flow Studies (Institute of Hydrology, 1980). Figure 2.9 illustrates the calculation of BFI for the Coquet at Rothbury which has a BFI for the year of 0.50.

Observed values are close to unity on catchments dominated by baseflow but as low as 0.15 on the catchments with the flashiest response. Figure 2.10 presents a selection of annual hydrographs with their BFI separations, and long-term BFI values for the same catchments as are shown in Figure 2.8. The top two hydrographs are for catchments dominated by the quick flow response, whereas the bottom two are almost entirely dominated by groundwater flow. These latter two hydrographs are quite unusual as the baseflow does not show

Figure 2.7 The distribution of catchments for which SPR values were available. Dots represent catchments with SPR calculated from five or more events, circles represent other catchments for which a value of SPR was available

Figure 2.8 Example flow hydrograph separations and SPR values

the expected annual variation; Waithe Beck begins at a lower level than expected but then baseflow recovers at the start of the following winter, and the Ems flow decreases through the summer, but does not recover at the start of the next winter. The two middle plots show catchments with a quick response superposed on seasonal variation.

BFI has been derived for all of the catchments for which flow data are available in the UK National Water Archive (see, for example, Institute of Hydrology, 1988). However, although values of BFI can be derived for these catchments, many with major artificial influences were rejected. The HOST project was able to draw on station assessments for low flow studies (Gustard *et al.*, 1992) which included viewing an arbitrarily chosen annual hydrograph; this revealed many problems in the data. The same assessment was used to find artificial influences from gauging authority staff and files. Two measures of suitability of catchments were therefore available based on the hydrometric quality of the flow gauge, and degree of artificial influence as summarised in Table 2.2. For the current project this scheme was modified to give a more general indication of the quality of the BFI values. Any station graded AA,AB,BA or BB was coded A for this study, catchments graded AC, CA, BC, CB or CC were coded D, and all others were graded Y. There were subsequently some modifications, and additions of catchments, and code B was used for additional good quality stations, and X for stations with poor data. It is notable that the list of quality codes that appears in this report indicates different data qualities to those found in Gustard et al.. This is most often because a subsequent examination of the data will have shown that by removing a dubious period of the record the quality of the abstracted parameters

Figure 2.9 The calculation of base flow index BFI from daily mean flow data

12

Figure 2.10 Example hydrographs and BFI values

Grade	Hydrometric Quality	Artificial Influence
A	Accurate low flow measurement.	Gauged Q_{95} /mean flow within 20% of estimated Q_{95} /mean flow.
В	Less accurate or periodic variation in quality	Gauged Q_{95} /mean flow within 50% of estimated Q_{95} /mean flow.
С	Poor accuracy of low flows (eg. through poor control, scatter of gaugings, weed growth, siltation, vandalism)	Gauged Q_{es} /mean flow not within 50% of estimated Q_{es} /mean flow.
U	Unclassified	Unclassified

can be improved. For example, many values of BFI had to be recalculated for a restricted period (e.g. only to include pre-impoundment flows at a now-reservoired site). Even after this thorough review there were many more values of BFI than SPR; the distribution of the catchments for which BFI data were available is shown in Figure 2.11.

2.2.4 Comparison of BFI and SPR

There is a good correlation between SPR and BFI (Boorman, 1985); on a set of 166 catchments the correlation coefficient was 0.75 and a regression equation was presented for the estimation of SPR from BFI. This equation is:

SPR = 72.0 - 66.5 BFI

This relationship is represented for the data available to the HOST project in Figure 2.12. What the two measures have in common is that they both involve a separation of the hydrograph, but whereas SPR compares the quick response volume to that of the rainfall, BFI compares the remaining, baseflow, volume with the total flow volume. If all of the rain falling on the catchment leaves the catchment as runoff (i.e. none is lost as evaporation or to groundwater) then the flow volume is the same as the rainfall volume and 1-BFI should be equivalent to some form of average percentage runoff.

The other difference between the two measures is the time scale of the response; SPR separates over a period of tens of hours, whereas the BFI separation is over a period of many days. SPR therefore represents a quicker response than BFI. Because of its greater availability, BFI was the main hydrological variable used in the development of the HOST classification, but limited use was made of SPR and of flow duration curve and flood peak statistics. It should be remembered that SPR and BFI are not observed data but the result of applying models to carefully vetted sets of data.

2.3 Soil data and maps

2.3.1 Introduction

The purpose of this section is to describe in simple terms what soil is and how its development and form can be used to place soils in a classification that can then be used to produce maps showing the distribution of soils. This is followed by an account of the use of soils data within the HOST project.

2.3.2 Soils, soil survey and classification

Soil, in general terms, is that part of the land surface which supports biological activity and comprises unconsolidated mineral and organic material within which there has been some degree of internal reorganisation due to soilforming processes. This unconsolidated material may have been altered through time by the addition and movement of organic matter, the redistribution of mineral material and nutrients, and by the effects of climate. These processes often result in the formation of distinct layers within the soil which are called horizons.

To examine the horizons the soil surveyor excavates a profile pit. The horizons are then identified, named according to their pedology, and are described in terms of soil colour,

. . .

Figure 2.11 The distribution of catchments for which values of BFI are available. Dots represent catchments quality graded A or B, circles represent other catchments for which a value of BFI was available

texture, structure, stoniness and a number of other features. Conventionally, surface horizons are designated by the letters **A** for mineral topsoils, **L**, **F**, **O** or **H** for organic topsoils while subsoil horizons are generally designated as **E** or **B**. The relatively unaltered parent material is known as a **C** horizon. Various subhorizons are also recognised and can be indicated by the use of lower case letters such as **p** for ploughed, **g** for gleyed and **s** (sesquioxides) for iron and aluminium enriched horizons.

The specific nature and order of these horizons not only provides a way of describing a particular soil but also provides a means of classifying soils. However, although some soil classification systems are similar to the hierarchical classifications of botany or zoology, soils do not form discrete taxonomic units, instead they vary continuously. The role of the soil surveyor is to define the allowable range in soil properties within the unit and then to assign soils to the most appropriate one. If the purpose of the classification is to enable mapping of the soils, then the soils should be grouped into spatially coherent, homogenous groups that are recognisable within the landscape. Since soils do not fall into discrete units, the form of the classification scheme used to produce a map will depend on the map scale.

At the reconnaissance scale of 1:250,000 (as will be seen later this was the scale used in developing the HOST classification) each map unit, i.e. each polygon shown on the final map, usually contains more than one type of soil which often have contrasting soil properties. At the more detailed scale of 1:25,000 there is an assumption that the soil map units will be more homogenous and that those soils which do not belong to the dominant type will have similar properties.

Figure 2.12 Comparison of BFI and SPR values

Regardless of the scale, however, the survey process is broadly similar. The surveyor digs a number of inspection pits or takes auger borings at strategic points and assigns each soil profile to a particular taxonomic unit. After making a number of observations and with reference to the topography, or some other biophysical expression of a likely change in soil types, such as vegetation, the surveyor delineates areas of similar soils. This approach relies on the skill of the surveyor and his appreciation of the relationships between soils and the environment which often vary between regions. A soil map unit then will comprise, in general, a proportionally dominant soil type with inclusions of similar or even dissimilar soils.

On any particular map, the map unit homogeneity will therefore depend partly on the scale of mapping and the number of observation pits and borings per unit area, as well as on the natural soil variability.

2.3.3 Soil classifications

It has already been noted that soil surveying for England and Wales is now the responsibility of SSLRC, while for Scotland MLURI takes on the role. Different classification schemes have been developed by these two organisations partly because of the different nature of the soil parent materials found in the different parts of the UK and partly because of a perceived need to define class limits for classification purposes.

The soil classification system used in Scotland by MLURI which is described as being typological (Soil Survey of Scotland, 1984), and the more hierarchical approach used by SSLRC in England and Wales (Avery, 1980; Clayden and Hollis, 1984) are described in the next two sections. This is followed by a comparison of the two systems.

England and Wales

In England and Wales soils are classified according to specific diagnostic properties that can either be measured, or inferred from the examination of a soil profile in the field (Table 2.3). These properties must not be transient (e.g. topsoil pH) and they should normally occur within the upper 1.2 m of the soil. They are used to define soil types at four different levels in the hierarchical classification which are; Major Soil Group, Soil Group, Soil Subgroup and Soil Series (Avery, 1980). The diagnostic properties used to differentiate soils within the first three levels are based on broad textural groups, presence or absence of certain diagnostic horizons (which are pedologically derived) and the soil water regime. The soil series are distinguished by textural classes, mineralogy and substrate lithology.

Scotland

In Scotland, the classification system also has four categorical levels (Division, Major Soil Group, Major Soil Subgroup and Series; Table 2.4) and is largely descriptive (Soil Survey of Scotland, 1984). The Division reflects the dominant soil forming processes that influence the soil (e.g. gleying or leaching) while the Major Soil Group comprises soils at a similar stage of development which have been subjected to the same soil forming processes. The Major Soil Subgroup has soils with a similar arrangement of horizons. The Soil Series comprise those soils of a specific Major Soil Subgroup which have developed on the same parent materials (which are, in this case, differentiated primarily on the basis of their stratigraphy rather than lithology) and belong to the same natural drainage class.

Comparison of classification methods

Within both classifications the soil series is the lowest class and represents the individual soil type as defined by the soil forming processes plus other characteristics which are inherited from the parent material such as soil texture or inherent soil fertility.

The differences at this level in the classification systems reflect the nature of the deposits in which the soils have developed. In Scotland the soil parent material has generally moved only short distances and the soils are comparatively young (less than 12,000 years), therefore, they still retain many of the chemical characteristics of the underlying parent rock and so there is greater emphasis put on the stratigraphic age of the parent rock. However, in England and Wales the nature and age of the drifts mean that there is a much weaker link between inherent soil characteristics and the parent rock particularly in areas where the soils have developed in thin superficial deposits with contrasting lithologies and stratigraphies and so the soil characteristics may be inherited from both. As it is often difficult to infer the stratigraphy of the parent material, the classification relies heavily on identifying different lithologies at the soil series level.

At the soil series level the differences in the classifications are sufficiently insignificant (see

	Defining characteristics	No	Examples
Major soil group	The presence or absence of major diagnostic horizons which have argronomic, hydrological, ecological or engineering significance, these characteristics are predominantly	10	3 Lithomorphic soils 6 Podzolic soils 7 Surface water gleys
Roil group	pedological.		2 t Bankara
Soli group			5.1 Rankers 6.3 Podzola
	Distinct diagnostic horizons or the	67	7 1 Stagnogleys
Soil subgroup	nature or the parent material.		3.11 Humic rankers 6.31 Typical humo-ferric podzol 7.11 Typical stagnogley soils
Soil series	Defined in terms of the substrate lithology and type, textural classes and the mineralogy of the soil which may have an effect on soil behaviour. Named after the geographical area where they were first manned	418	Bangor series (3.11) Rora series (6.31) Dalton series (7.11)

Table 2.3 The soil classification used by SSLRC in England and Wales

* These numbers refer to the classification used on the 1:250,000 soils maps and are intended only as a broad indication of the number of classes at each level in the classification.

the two examples in Tables 2.5 and 2.6) to allow the 974 soil series delineated on the 1:250,000 scale maps to be the basic soil unit used to derive the HOST classification.

It is perhaps unfortunate that, in some circumstances, the term *soil series* is applied to both a taxonomic unit and a mapping unit. As this can lead to confusion, the term *soil series* is used exclusively for taxonomic units throughout this report.

2.3.4 The 1:250,000 soil maps

Mapping at the 1:250,000 scale began in the late 1970s to provide soils information for the whole of Great Britain. The project was concluded for England, Wales and Scotland in 1982 resulting in a series of 7 maps covering Scotland, 1 map for Wales and 5 for England. These maps are the largest scale maps to give complete coverage of England, Wales and Scotland.

The data used to construct these maps comprise earlier more detailed soil maps at scales of 1:63,360 or greater, point samples made at survey pits and auger holes, and field mapping of unsurveyed ground mainly in hills and uplands in Scotland but more widespread in England and Wales. The soils databases held by the two organisations have a total of 24,000 soil profile descriptions of which approximately 9,000 were sampled at 5 km intervals allied to the National Grid and as such provide an objective sample of the properties of British soils.

The differences between the two sets of maps at the 1:250,000 scale is predominantly due to the more complex topography found in Scotland. Here the map units were largely delineated on the basis of landform, as similar landform types (e.g. hummocky morainic drifts) recur throughout the country and have a similar set of Major Soil Subgroups.

The map units are further distinguished by considering the stratigraphy of the solid geology or parent rock of the superficial drifts (the *association*). In England and Wales the map units comprise a number of *soil series* that are associated together in the landscape, usually in a predictable pattern. These map units are termed *soil associations* and this term thus has a different meaning from that in Scotland. Each soil association is named according to the name of its most frequently occurring soil series.

On the 1:250,000 scale maps a total of 580 map units are recognised in Scotland (plus a further seven miscellaneous categories) and 296 in England and Wales. Each map unit has information on the parent material, component soils, landform and vegetation or land use. In Scotland, the map units are grouped according to the *association* (i.e. parent material) and listed

	Defining characteristics	No	Examples
Division	Characterised by the dominant soil forming processes.	5	1. Immature soils 2. Leached soils 4. Gleys
Major soil group	Soil formed by similar processes and at similar stages of development.	12	1 4 Rankers 3 3 Podzols 4.1 Surface water gleys
Major soil sub- group	Soil formed by similar processes and at similar stages of development and which have horizons similar in nature and arrangement	37	1.4.4 Peaty rankers 3.3.2 Humus-iron podzols 4.1.4 Noncalcareous gley
Soil series	As above but also distinguished by parent material. Named according to the region or farm on which they were first encountered	516	Dhorain series (1.4.4) Countesswells series (3.3.2) Rowanhill series (4.1.4)

Table 2.4 The soil classification used by MLURI in Scotland

* These numbers refer to the classification used on the 1 250,000 soils maps and are intended only as a broad indication of the number of classes at each level in the classification.

Table 2.5 An example of the relationships within the soil classification system used in England and Wales

Level in classification	Example	Description
Major soil group	6	Podzolic soils: Soils with a Podzolic B horizon
Soil group	6.3	Podzols: Soils with a continuous albic E and/or a distinct Bh or Bhs horizon. The profile should not have a peaty topsoil or a gleyed horizon within at least 50cm of the soil surface.
Soil subgroup	6.31	Typical humo-ferric podzols: These soils have a Bh horizon at least 2.5 cm thick that overlies a Bs horizon and does not have a paleo-argillic horizon
Soil series	Cucurrain	Typical humo-ferric podzol developed on coarse loamy material over lithoskeletal acid crystalline rocks (generally granitic).

alphabetically after Alluvial and Organic soils. They are also ordered within each association such that dry soils precede wet soils, lowland soils precede mountain soils, and non-rocky terrain precedes rocky landscapes. The map units are then numbered consecutively (Soil Survey of Scotland, 1984), the numbers having no other significance. The colour of the map unit reflects the most extensive major soil subgroup as listed in Table 2.7. In contrast, the map unit coding used in the 1:250,000 maps for England and Wales correlates directly with the codes used to identify soil subgroups in the classification system developed by Avery (1980). On the soil maps each unit is identified by a numerical code followed by a letter. The numerical code indicates the soil subgroup of the most common series within the association, whereas the letter gives a unique identifier to each map unit. On

Level in classification	Example	Description
Division	3. Leached soils	Soils characterized by a uniformly coloured B horizon, by an absence of free lime and by an acid reaction in their A and B horizons. The lower horizons may show some gleying
Major Soil Group	3.3 Podzols	These soils have a surface organic horizon underlain by a grey bleached E horizon that often contains illuviated sequioxides of iron, aluminium and organic matter below it and has a strongly acid reaction.
Major soil subgroup	3.3.2 Humus-iron podzols	These soils have a surface aerobic organic horizon and occasionally a thin Ah horizon. There is a pale E horizon overlying a humus enriched and/or iron and aluminium enriched B horizon. The natural drainage of the soil may be free or inhibited.
Soil series	Countesswells	Freely drained humus-iron podzol developed on granitic parent material.

Table 2.6 An example of the relationships within the soil classification system used in Scotland

Table 2.7 Colours used on the 1:250,000 soils maps of Scotland

Major soil subgroup	Colour
Alluvial soils	yellow
Brown forest soils	brown
Humus-iron and peaty podzols	orange or red
Peaty gleys	green
Mineral gleys	blue
Peats	purple
Rankers, subalpine and alpine soils	grey

the map legend, units are listed alphanumerically, according to their codes and each is assigned a name according to the name of its most frequently occurring soil series. The names of the main soil series associated with it are also identified. Further distinctions between map units are made using capital or lower case letters for soil association names. Names in capital letters indicate those soil associations where the most frequently occurring soil series, together with a number of its associated and similar soil series, form extensive, often dominant, components of most delineations on the map. Lower case soil association names indicate more variable associations of soil series where a number of soils that are dissimilar to the most frequently occurring series form small but significant inclusions in most delineations. Examples of how this coding and naming of units is applied are shown in Table 2.8. The colour codings on the maps broadly agree with those used in Scotland and are shown in Table 2.9.

Although differences in soil classification and mapping concepts occurred between the two survey organisations, detailed correlation and matching of the map units ensured continuity across the Anglo-Scottish border.

On the 1:250,000 scale maps there are approximately twice as many map units in Scotland as in England and Wales, even though Scotland has only about half the land area. On average map units in Scotland cover only a quarter of the area covered by map units in England and Wales. The Scottish maps have a higher number of soil series, but as there are more map units, then, on average, there are less series per map unit, 1.8, compared with the 3.5 per map unit in England and Wales. On average a soil series occurs in more map units in England and Wales. Table 2.10 contains a summary of these data.

Table 2.8 Examples of the SSLRC map unit naming convention

Map symbol	Association name	Associated subgroups and series	Meaning
343a	ELMTON1	511 Aberford 511 Moreton 571 Shippon	First map unit (hence letter a) in subgroup 3.43, brown rendzinas. Most common soil series is Elmton, a shallow, free draining loamy soil over a brashy limestone, and this, together with similar but slightly deeper calcareous (Aberford and Moreton) and non- calcareous (Shippon) soils, dominate most map delineations.
343b	ELMTON2	541 Waltham 571 Tetbury	Second map unit in subgroup 3.43 (letter b). Elmton is again the most common series and this, together with similar but deeper non- calcareous soils (Waltham and Tetbury) dominate most map delineations.
343c	Elmton3	411 Evesham 411 Haselor 712 Denchworth 511 Moreton	Third unit in subgroup 3.43 (letter c). Elmton is again the most common series, but in most map delineations, significant areas of dissimilar slowly permeable clayey soils with either slight (Evesham and Haselor) or prolonged (Denchworth) seasonal waterlogging form significant inclusions.

Table 2.9 Colour coding on the 1:250,000 maps of England and Wales

	Major soil group	Colour
1	Terrestrial raw soils	not on any map
2	Raw gley soils	pale blue
3	Lithomorphic soils	yellow or orange
4	Pelosols	khaki
5	Brown soils	brown or orange
6	Podzotic soils	red
7	Surface water gleys	green
8	Ground water gleys	blue
9	Man made soils	grey
10	Peat soils	purple

2.3.5 Soils data for HOST

The soils data used in the development of HOST comprised i) the spatial distribution of soil types as shown by the 1:250,000 scale maps and ii) a database of soil properties derived from the national soils databases held by SSLRC for England and Wales and that held by the MLURI for Scotland. Although from the above descriptions of the existing data sets it may appear that the required data were readily available some extra data, or compromises on ideal data requirements had to be made; these are described in the following two sections.

Spatial data

The soil maps of England and Wales show the distribution of 296 map units which contain a total of 418 individual soil series. In Scotland, a total of 516 soil series were recognised. The composition of each map unit was known in a qualitative sense, however, in order to correlate soil series and the hydrology of the catchments it was necessary to estimate the proportion of soil types within each map unit. Where these proportions summed to less than unity (as inextensive series were omitted), these proportions were scaled to account for the 'missing' fraction (Table 2.11).

Within some map units, particularly in Scotland, map units were at first divided equally between two soil series that had different soil properties. In such cases a 1% adjustment was made to these assignments so that one of these would always appear as the most extensive series primarily as an aid in database management and data processing. Making this adjustment meant that when these data were used later in the project the same HOST class would consistently appear as the dominant class.

One other addition that was required to the existing soils data sets was to ascribe soil map units to the unclassified, mainly urban, areas. For HOST it was seen as important to provide a

 Table 2.10
 Summary data describing the 1:250,000 soil maps

	England & Wales	Scotland
Area	151,207km ²	77,087 km²
No. of soil map units	296	580
Approximate average extent of map unit	504 km²	133 km²
No. of soil series	418	516
Average no. of series in a map unit	3.5	1.8
Average no. of map units in which a series appears	2.5	1.9

Table 2.11 Example of the breakdown of map units by soil series

Map symbol	Association	Component series	Attributed %	Rescaled %
343a	ELMTON1	Elmton	40	44.4
0404	220110111	Aberford	30	33.3
		Shippon	10	11.1
		Moreton	10	11.1

complete soil classification since the hydrological effects of urbanisation modify rather than replace the original soils. The soils underlying the urban areas have now been assessed by considering the surrounding soils as shown on the national soil maps and by using information from geological and topographic maps. Figure 2.13 shows those areas depicted as unclassified on the 1:250,000 soil maps; they represent 5.1% of the land area of England, Scotland and Wales.

Soil properties

The most important soil properties that influence the hydrological response of a catchment are hydraulic conductivity, soil moisture retention and pathways of water movement. However, such properties are both difficult and expensive to measure. Although for England and Wales alone, density and soil moisture retention data are available for about 4,000 soil layers, describing over 1,000 soil profiles, this dataset was considered inadequate to give a systematic quantification of their spatial variation at a scale relevant to the available national soil maps. Furthermore, only a small amount of measured data relating to hydraulic conductivity was available.

To develop the HOST classification it was therefore decided to use soil properties for which there was a large volume of data and that could be used as surrogates for direct measurement of soil hydraulic properties. For this purpose, the 24,000 soil profile descriptions and associated data from the 1:250,000 scale mapping programmes were used to characterise each soil series recognised on the maps in terms of its depth to gleying, depth to a slowly permeable layer, integrated air capacity and presence of a peaty surface layer. These properties have been used by soil scientists to infer and classify the hydrology of soil (Bibby et al., 1992, Robson and Thomasson, 1977) and can be derived from soil profile descriptions by recognising soil layers with defined combinations of texture, structure and colour (Avery, 1980). Using this methodology it was possible to apply a standard rule-base to the observed profile properties in both sets of national soil profile descriptions and to derive a consistent UK set of surrogate soil hydrological properties for the development of HOST, thus overcoming the differences in soil mapping and classification between the two soil survey organisations.

2.3.6 The soil properties used in the HOST classification

As described above, the soil properties used to derive the HOST classification are depth to a gleyed layer, depth to a slowly permeable layer, integrated air capacity and presence of a peaty surface layer. These properties are described below. However, at an early stage in the project, it became apparent that it was also necessary to include a geological component in the system and a soil hydrogeological classification was therefore developed from information on soil parent materials. This soil hydrological classification is also described below.

Depth to a slowly permeable layer. These soil layers have a lateral hydraulic conductivity of <10 cm day⁻¹ and can be defined in terms of their particular soil textural and structural conditions. Such a layer impedes downward percolation of excess soil water causing periodic saturation in the overlying layer. Storage is reduced and, since there is a decreased acceptance of rainfall, there will be increased response. The impact of such a layer on the hydrology of the soil is greater where it occurs within 1 m of the soil surface.

Depth to a gleyed layer. Gleying, the presence of grey and ochreous mottles within the soil, is caused by intermittent waterlogging. The particular definition of gleying used identifies those soil layers which are saturated for at least 30 days in each year, or soils that are artificially drained. This depth is defined in terms of soil colour, particularly the hue, chroma, density and prominence of mottling (Avery, 1980; MAFF, 1988 and Hollis, 1989). The depth to a gleyed layer is only included if such a layer exists within 1 m of the surface.

Integrated air capacity. Air capacity is a measure of the soil macroporosity and is defined as the volume of pores in the soil which are greater than 60 µm, i.e. the pores that are unable to retain water against the pull of gravity. The volume of these pores in each soil horizon was integrated over the uppermost 1 m of the soil and substrate. Although the relevance of this variable to the classification is limited, it provides a useful discrimination between some soils where it acts as a surrogate for hydraulic conductivity in permeable soils (Hollis and Woods, 1989) and for storage capacity in some slowly permeable and impermeable soils. The air capacity values for 4,000 soil horizons held in the soil physical properties database by the SSLRC were used in the assessment of the air capacity values of the HOST soils, again by relating the soil structural and textural conditions

Figure 2.13 Areas shown as unclassified on the 1:250,000 soil maps

to approximate air capacity values. This approach was of particular importance to the classification of the Scottish soils as there were limited soil physical data available.

The presence of a peaty surface layer.

Peaty surface layers have more than 20% organic matter although in many cases it is much higher. They also have specific characteristics of thickness, consistency and

fibre composition (Avery, 1980). The presence of a peaty surface layer indicates soils that are, or were in the recent past, saturated to the surface for most of the year. Peaty topsoils store large volumes of water and are often slowly permeable, thus limiting infiltration and providing a lateral pathway for rapid response in the uppermost parts of the soil. Because of these characteristics, surface runoff is also prevalent.

Table 2.12 Soil-geology classes used within the HOST project

Class number	Class description
1	Soft sandstone, weakly consolidated sand
2	Weathered/fissured intrusive/metamorphic rock
3	Chalk, chalk rubble
4	Soft Magnesian, brashy or Oolitic limestone and ironstone
5	Hard fissured limestone
6	Hard coherent rocks
7	Hard but deeply shattered rocks
8	Soft shales with subordinate mudstones and siltstones
9	Very soft reddish blocky mudstones (marls)
10 ·	Very soft massive clays
11	Very soft bedded loams, clays and sands
12	Very soft bedded loam/clay/sand with subordinate sandstone
13	Hard (fissured) sandstones
14	Earthy peat
15	River alluvium
16	Marine alluvium
17	Lake marl or tufa
18	Colluvium
19	Blown sand
20	Coverloam
21	Glaciolacustrine clays and silts
22	Till, compact head .
23	Clay with flints or plateau drift
24	Gravel
25	Loamy drift
26	Chalky drift
27	Disturbed ground
34	Sand
35	Cryogenic '
36	Scree
43	Eroded Blanket Peat
44	Raw Peat
50 :	Unsurveyed
51	Lake
	Sea

slowly permeable between 0.1 and 10 cm day⁻¹, and impermeable <0.1 cm day¹. Permeable substrates were then further categorised in terms of six broad flow mechanisms (see Table 3.1). In addition, each hydrogeological class was categorised according to whether it was likely to contain an aquifer or groundwater table and, if so, at what depth it was likely to occur. This depth indicates the time taken for excess water to reach the upper surface of the water table. Three categories were recognised: > 2 m, ≤ 2 m, and no significant groundwater or aguifer present. The full categorisation of each substrate

Hydrogeological class of the soil substrate.

parent materials was specifically developed for

The hydrogeological classification of the soil

groundwater bodies and, within permeable

substrates, according to general mechanisms of vertical water movement (e.g. intergranular flow

in macroporous substrates, or fissure/by-pass

flow in microporous to non-porous substrates),

hydrogeological classes as shown in Table 2.12.

Each hydrogeological class was allocated to one

of three classes of permeability. Definitions of permeability were based on Bell (1985),

saturated hydraulic conductivity >10cm day⁻¹,

permeable substrates having a vertical

and the approximate depth to an aquifer or

groundwater body. The substrates of all soil

series were allocated to one of 32

HOST. It provides a methodology for

distinguishing between soil substrates according to their general permeability, whether they are likely to contain aquifers or hydrogeological class was based on the hydrogeological maps produced by the Institute of Geological Sciences (1977) and British Geological Survey (1988).

2.4 Linking the catchment and soil data

For each catchment a digitised boundary has been overlain on a 1 km gridded version of the national soil maps and the total percentage of each soil map unit abstracted. From this the proportion of each component soil series was derived and hence the link established between the catchment response descriptors and soil properties.

The catchment boundaries were digitised from lines drawn by hand mainly on 1:50,000 maps. The construction of the boundaries is easy in upland areas but quite difficult in low lying regions where many ditches exist at rightangles to the expected flow direction. The construction of a hydrologically sound digital elevation model at IH has shown many minor, but very few major, errors in these boundaries. Overlaying of the digitized boundaries on a 1 km raster version of the soil maps will give slightly different results from performing this task manually especially on smaller catchments. However, the benefits in terms of automating a time-consuming manual task were considered to greatly outweigh any slight loss in accuracy.

3 The HOST classification system

3.1 The basis of the HOST classification system

The HOST classification is based on a number of conceptual models that describe dominant pathways of water movement through the soil and, where appropriate, substrate. Rain falling on the surface of some soils can drain freely, under the influence of gravity, so that the dominant flow pathway is a vertical one. If the underlying substrate is also permeable this vertical pathway extends into the substrate, perhaps for some considerable depth.

Eventually the water will reach a water table and vertical movement will stop. Variations in the level of the water table will cause lateral movement of the water perhaps towards valleys and springs, and in time the water may emerge to augment streamflow. The time elapsing between rain falling and flow leaving a catchment may be long, and in such a situation the rain would be expected to have little or no influence on the short term response of the catchment, but low flows will be maintained by the slow passage of water through the ground.

The characteristics of other soils and substrates restrict the vertical drainage, so that the dominant pathway for rain falling at their surface is lateral, as surface, or sub-surface runoff. In such situations the response to rainfall at a catchment outlet will be rapid and little water will be retained within the catchment to maintain the flow between rainfall events.

These are the two extreme response models within the HOST classification. The first in which water movement in the soil is mainly vertical, and the second where the dominant pathway is lateral and at, or very close to, the surface.

In the majority of soils the situation is, of course, more complex, and a number of other response models are necessary. However in all of these models the basic consideration is the same: at what depth within the soil/substrate profile, and for what reason, does lateral water movement become a significant factor in the response of the soils? A complicating factor is that the flow pathways within soils can depend on soil wetness, for example under dry conditions some soils may have capacity to store water and hence limit response, but under wet conditions the water table may rise close to the surface limiting storage capacity and causing an increase in the short-term response to rainfall.

The models themselves fall into three physical settings.

i) The soil overlies a permeable substrate, in which a ground water table usually exists and is at a depth of greater than 2 m. (Models A-D).

 ii) Again the soil overlies a permeable substrate but there is a shallow water table generally within 2 m, either in the soil or substrate. (Models E-G).

iii) There is no significant groundwater or aquifer but usually a (shallow) impermeable substrate impedes vertical movement of water. (Models H-K).

These three situations are shown in Figure 3.1. Within the basic physical settings there are variations caused by the nature of the parent material, the organic content of the soil, and the influence of climate. These other factors are indexed by the physical properties described in Section 2.3.6, namely the presence of slowly permeable or gleyed layer within 1 m of the surface, the presence of a gleyed layer within 0.4 m of the surface and the presence of a peaty surface layer. Figure 3.2 shows the full range of models, and these are described in detail in the next section.

Figure 3.1 Physical settings underlying the HOST response models.

Raw peaty topsoil

Saturated soil flow Surface runoff likely C

Saturated soil flow Surface runoff likely A ¥

groundwater significant aquifer or No

Figure 3.2 The 11 response models used in the HOST classification

Aquifer or

normally

Aquifer or

normally present

within 2m

3.2 HOST response model descriptions

3.2.1 Models A-D

Model A describes the dominant water movement in permeable, well drained soils with permeable substrates. The dominant water movement is downwards through the vadose zone to an aquifer or groundwater table at least two metres below the surface. Lateral movement is largely confined to the saturated zone. The base flow of rivers and streams dominated by soils in this group is generally high, with the hydrological response being controlled by the flow mechanisms of the substrate. Five types of flow through the substrate have been recognised.

i) In weakly consolidated chalk and limestone substrates the dominant flow is via small pores, but with some fissure flow.

ii) In unconsolidated sandstones the water flows in large pores between the particles (i.e. is intergranular)

iii) Where the rock is more coherent but deeply weathered or fissured, the dominant flow is via the fissures as the bulk of the rock is only slightly porous at best. Aquifers or groundwater are more rarely found in this group than in the others in Model A.

iv) In unconsolidated sands and gravels the flow is largely laminar and intergranular.

v) In unconsolidated loamy drifts flow is via micropore's with some by-pass fissure flow.

Model B encompasses a wide range of soil types which are of limited geographical extent. Although, as in model A, the flow is dominantly vertical through an unsaturated zone, there is an increased likelihood of some seasonal saturated flow particularly in winter when the soils may develop a localised water table for short periods. These soils may be either weakly gleyed, perhaps due to their position in the landscape, or may have a slowly permeable horizon within the top metre. The underlying substrate may well contain groundwater or an aquifer.

Model C describes the flow regime in soils with loamy substrates and prolonged seasonal saturation and hence a dominantly horizontal flow with only some leakage through the permeable substrate to groundwater. These soils are mineral or humic gleys developed over moderately permeable substrates. They are often associated with concave hollows and springs along footslopes and as such they will have groundwater at depth.

Within **Model D** the raw peaty topsoils dominate the hydrology, although a limited amount of throughflow penetrates to groundwater (where present). The substrate is coarse and relatively permeable so the saturated conditions are largely due to climatic wetness rather than fluctuating groundwater tables, and there is likely to be a hydraulic discontinuity between surface saturation and the groundwater table.

3.2.2 Models E-G

Whilst the previous models described flow in soils largely unaffected by groundwater, but where the degree of soil wetness was increasing, models E to G describe conditions of soil response where a permanent groundwater table occurs within a short distance of the soil surface (nominally 2m). The height to which the upper surface of the water table rises will affect the speed of reponse as will the fact that these models describe conditions of flow in the riparian environment.

Model E is representative of flow through soils where the water table only penetrates the upper portions of the profile on rare occasions. The dominant flow pathways are therefore vertical and flow, which is principally unsaturated, is mainly laminar or intergranular in coarse textured sands and gravels, whereas in more structured loamy and clayey soils there will be a component of by-pass movement via fissures and macropores.

Model F illustrates conditions where the upper surface of a permanent groundwater table frequently rises to within 40 cm of the soil surface. This means that vertical unsaturated water movement is restricted to the top few centimetres and rainfall reaches the water table quickly. The response of the soil is therefore largely governed by saturated lateral or sublateral flow.

Model G describes the flow regime in soils where the upper surface of the permanent groundwater table is at the surface for much of the time. The topographic situations relate mainly to basin and valley peats, usually fens and raised mosses, but also include small, permanently saturated, localised hollows within permeable drifts, e.g. dune slacks. Because of the near-permanent saturation of the soils, flow response is dominated by surface runoff
although there is also saturated lateral or sublateral throughflow. However, for classification purposes drained cultivated earthy peats, in which the upper surface of the water table has been lowered by regional pumping schemes, are also included within this model. In these soils flow regimes are likely to be more akin to models F and E.

3.2.3 Models H-K

Model H is the first of the models which describes the flow of water through soils which are underlain by either a slowly permeable or an impermeable substrate (such as glacial lodgement till or hard coherent rock) at depths greater than 1 m. However, the soils described by the model have no inhibition to drainage within the first metre and exhibit vertical unsaturated and by-pass flow through macropores to the depth of the underlying substrates. A groundwater table or aquifer is not normally present in these substrates.

Model I describes conditions where there is some inhibition to water movement down through the soil profile. In some cases the slowly permeable material is within 1 m of the surface which can lead to the development of perched water tables for a few weeks in the year. In other cases there is solid coherent rock within one metre which induces lateral water movement along the soil/rock interface. By-pass flow may be a feature of these soils when they are not saturated. When a perched water table forms, the dominant flow regime will be largely saturated lateral flow, however at other times, or where no water table forms, the flow will be predominantly vertical, albeit within a restricted depth.

Model J, like the previous conceptual model, illustrates the likely flow regime in soils and substrates with seasonal saturation. However, in this case the soils are waterlogged for a longer time and are dominated by prolonged saturated flow controlled by the height and duration of a perched water-table. Some unsaturated and bypass flow will be apparent in the summer months.

The flow regime of the soils described by **Model K** is strongly influenced by the raw peaty topsoil as well as the underlying substrate. Surface runoff is a feature of these soils and the upper soil layers remain saturated for much of the year. There is some lateral flow above the impermeable layer which may be glacial till or hard coherent rock. The rock is often close to the surface further restricting downward percolation. Where there is deep peat, the flow is dominated by surface and

Table 3.1 Subdivisions within HOST response Model A

	Flow mechanism	Substrate hydrogeology
1	Weakly consolidated, microporous, by-pass flow uncommon (Chalk)	Chalk, chalk rubble Clay with flints or plateau drift Chalky drift
2	Weakly consolidated, microporous, by-pass flow uncommon (Limestone)	Soft Magnesian, brashy or Oolitic limestone and ironstone
3	Weakly consolidated, macroporous, by-pass flow uncommon	Soft sandstone, weakly consolidated sand.
4	Strongly consolidated, non or slightly porous. By-pass flow common	Weathered/fissured intrusive/metamorphic rock Hard fissured limestone Hard (fissured) sandstone
5	Unconsolidated, macroporous, by- pass flow very uncommon	Blown sand Gravel Sand
6	Unconsolidated, microporous, by- pass flow common	Colluvium Coverloam Loamy drift

immediate subsurface flow, with the underlying substrate having little influence on the hydrological response except where the peat is eroded.

In eroded peat the exposed mineral layers allow deeper infiltration and the large areas of exposed peat may absorb a greater proportion of the precipitation. The intensity of rainfall may also be important in controlling the response in that low intensity rainfall may be more easily absorbed by the exposed peat, but high intensity rainfall may result in the development of ephemeral streams which could extend into the gullies often associated with these soils.

3.3 Subdivisions within the framework of models

While the models identify groups of soils that can be expected to respond in the same way to rainfall, the rate of the responses will differ according to the specific nature of the soil and substrate. Indeed this might be expected from the size of some of the groups; in terms of the area covered in England, Wales and Scotland, Model A covers some 19% and Model J roughly 17%. Of course not all of the models are so widespread; Models B and C each cover less than 1% of the area.

Within each of the models there may be a subdivision according to flow rate and water storage. In theory there is an extremely large number of combinations of models and properties, but in practice not all combinations are possible. Of those that do occur, some can be expected to give a similar hydrological response and indeed cannot be distinguished using the available hydrological data; in such situations they may be combined in a single HOST class. Other model/property combinations are also indistinguishable using the hydrological data but represent different mechanisms of runoff production or situations in which some differentiation may be required for certain applications; in such cases the soils are assigned to different HOST classes. Various classification schemes were assessed by studying individual catchments and by multiple regression analysis of the response descriptors for the catchment data set.

Within Model A, six divisions have been made according to flow mechanism and substrate geology, as indexed by the soil hydrogeology coding developed for HOST and described in Section 2.3.6; the divisions are shown in Table 3.1.

A subdivision based on flow mechanism is also applied in Model E, but here only two classes are found as shown in Table 3.2.

Within model F, the response of the soils is governed by saturated hydraulic conductivity. The relationship between soil air capacity and lateral saturated hydraulic conductivity derived by Hollis and Woods (1989), suggests that an air capacity of around 12.5% equates with a saturated lateral conductivity of 1 m day⁻¹. The soils described by this model are therefore subdivided into those with a low integrated air capacity of $\leq 12.5\%$ (generally those with medium loamy, silty or clayey textures) and those where the integrated air capacity is $\geq 12.5\%$ (generally with coarser, light loamy, sandy or gravelly textures).

Table 3.2 Subdivisions with HOST response Model E

	Flow mechanism	Substrate hydrogeology
1	Unconsolidated, macroporous,	Blown sand
	by-pass flow very uncommon	Gravel
		Sand
2	Unconsolidated, microporous,	Hard but deeply shattered
	by-pass flow common	rocks
		River alluvium
		Marine alluvium
		Coverloam
		Loamy drift
		Chalky drift

PEAT SOILS					9.93			ined Undrained	0.55 12 2.94		2.49	0.83		0.58	5.73
					15			Dra	1		26	27 (28 (29
	/er within 40cm							iAC'≥12.5 [≥1m day']	10 2.21						
	Gleyed lay			¹⁴ 0.66				IAC'<12.5 [<1m day ¹]	⁹ 3.68		²⁴ 13.85	·· . ·	²⁵ 3.64		,
S710S 71	within 100cm or at 40-100cm								IAC*≤7.5	²¹ 4.02	22 1.10	²³ 1.31		r _1 -*	
MINERA	Impermeable laye gleyed layer		13 0.87					7 1.01	⁸ 1.62	IAC'>7.5	¹⁸ 5.40	19 2.16	²⁰ 0.69		
	No impermeable or gleyed layer within 100cm	1 4.31	2 2.12	³ 1.58	4 3.33	5 5.07	s 2.61				¹⁶ 0.43	17 9.28			
	Groundwater or aquifer	Normally	present and at >2m					Normally present and at ≤2m				No significant	groundwater	or aquifer	
SUBSTRATE HYDROGEOLOGY		Weakly consolidated, microporous, by-pass flow uncommon (Chalk)	Weakly consolidated, microporous, by-pass flow uncommon (Limestone)	Weakly consolidated, macroporous,by-pass flow uncommon	Strongly consolidated, non or slightly porous. By-pass flow common	Unconsolidated, macroporous, by-pass flow very uncommon	Unconsolidated, microporous, by-pass flow common	Unconsolidated, macroporous, by-pass flow very uncommon	Uncarsolidated, microporous,by-pass flow common		Slowly permeable	Impermeable (hard)	Impermeable (soft)	Eroded Peat	Raw Peat

Smail numbers are HOST class number. Large numbers are percentage land cover in England, Wales and Scotland. Also unclassified (urban) areas (5.15%) and lakes (0.74%). No extensive UK soil types exist outside the table or within the shaded portions of the diagram. • IAC used to index lateral saturated hydraulic conductivity # IAC used to index soil water storage capacity

I

I I

Figure 3.3 The HOST classification

Table 3.3 Substrate hydrogeology subdivision within Models H to K

	Substrate hydrogeology	Soil hydrogeology class
1	Slowly permeable	Soft shales with subordinate mudstones and siltstones Very soft reddish blocky mudstones (marls) Very soft bedded loams, clays and sands Very soft bedded loam/clay/sand with subordinate sandstone Glaciolacustrine clays and silts Till, compact head Clay with flints or plateau drift
2	Impermeable (hard)	Hard coherent rocks
3	Impermeable (soft)	Very soft massive clays
4	Eroded peat	Eroded blanket peat
5	Raw Peat	Raw peat

Model G is divided according to whether the peat is drained or undrained.

Models H, I, J and K all apply to soils with impermeable or slowly permeable substrates in which there is no significant groundwater or aquifer; soils are further divided according to the specific substrate geology, as shown in Table 3.3. In practice not all of the substrates occur in each of the model groups.

One further subdivision exists within Model I. Here integrated air capacity (IAC) acts as an index of soil water storage capacity and a split is made into those soils with IAC>7.5% and those with IAC \leq 7.5%.

The HOST classification is obtained by applying these subdivisions to the response models and results in the 29 class system shown in Figure 3.3.

3.4 Validation of the HOST classification

The utility of the HOST classification was verified by using the classification to develop a BFI estimation equation. This analysis took the form of a multiple regression exercise in which BFI is the dependent variable and the independent variables are the fractions of the various classes occurring within the topographic catchment boundary. The relationship sought was of the form $BFI = a_1 HOST_1 + a_2 HOST_2 + \dots + a_{29} HOST_{29}$

where $HOST_1...HOST_{29}$ are the proportions of each of the HOST classes, and $a_1...a_{29}$ are the unknown regression coefficients.

Table 3.4 shows the result of such a regression on a set of 575 catchments which were all quality graded A or B, and have an unclassified area of less than 50% on the 1:250,000 soil maps (remember that in the data set used all soils were classified; this was a method of eliminating those most likely to show a strong urban effect).

The values of the coefficient of determination, 0.79, and the standard error of estimate, 0.089, indicate that a useful regression was obtained. The table shows that some of the coefficients (classes 1, 2, 5 and 13) are slightly greater than the maximum allowable value for BFI (i.e. 1.0), and that one (class 12) is lower than the minimum expected value of BFI (minimum value in data set 0.14). It is easier to assess the BFI coefficients if they are tabulated in a form corresponding to Figure 3.3; this has been done and is shown as Table 3.5.

From this table the general trends of decreasing BFI from top to bottom and left to right are quite clear. Within the impermeable or slowly permeable group at the bottom of the table the decrease in BFI from left to right is very well defined. From this part of the diagram only two coefficients stand out as being different from expected. The coefficient for class 20 is higher than for classes 23 and 25 which have the same **Table 3.4** BFI coefficients from multiple regression analysis

HOST class	BFI coefficient	s.e. of coefficient	HOST class	BFI coefficient	s.e. of coefficient
1	1.034	0.022	16	0.778	0.195
2	1.011	0.039	17	0.613	0.027
3	0.835	0.052	18	0.506	0.039
4	0.790	0.042	19	0.498	0.104
5	1.016	0.065	20	0.526	0.207
6	0.586	0.065	21	0.330	0.025
7	0.725	0.177	22	0.294	0.111
8	0.533	0.216	23	0.198 '	0.118
9	0.789	0.254	24	0.311	0.019
10	0.437	0.142	25	0.178	0.042
11	0.838	0.213	26	0.247	0.043
12	0.092	0.075	27	0.229	0.193
13	1.005	0.231	28	0.552	0.156
14	0.219	0.225	29	0.232	0.034
15	0.387	0.028			
Standard e Approximat	rror of estimate te equivalent r ²	0.089 0.79			

substrate, but the coefficient is consistent with those for the other classes with the same physical properties but different geologies (i.e. HOST classes 18 and 19). The other outstanding coefficient is for class 28, which is higher than for other peat soils.

The coefficients for classes 7 to 12 are consistent with their response models, although as already noted the coefficient for class 12 is lower than any observed BFI in the dataset.

Within the top part of the table there are also two anomalies. Firstly, it is surprising that the coefficient for class 5 is higher than for class 3. A reducing sequence of BFI coefficients would be expected for the three classes in which macroporous flow dominates (i.e. classes 3, 5 and 7). Secondly, the physical models imply that class 14 should have a higher BFI coefficient than class 15, but from the regression the reverse is true.

Table 3.4 also shows the standard errors of the coefficients. Some of these are relatively large, and the coefficients are therefore unreliable. This is particularly true for classes 12, 14, 20

and 27 for which none of the coefficients is significantly different from zero at the 5% level. It is hardly surprising that some of the coefficients were badly estimated since they have very little areal extent and are therefore very poorly represented in the data set. Table 3.6 shows the way in which HOST classes are represented within the 575 catchment set and, for comparison, the equivalent figure for the whole of the UK. These latter figures differ slightly from those in Table 3.3, since those in Table 3.3 relate to the printed maps of England, Wales and Scotland and have unclassified, mainly urban, areas, but the numbers in Table 3.6 come from the UK HOST data set in which these areas have been infilled with the underlying soil. There is some correspondence between the classes for which coefficients are not significant and classes with very low coverage but this is not always the case.

Overall, the results of the regression are encouraging and indicate that the form of the HOST classification, which is based on conceptual models of response, is very useful in the estimation of a catchment-scale hydrological variable, BFI.

Table 3.5 BFI regression coefficients according to HOST framework

¹ 1.034	¹³ 1.005	,,	14 0.219		15 0 297	<u></u>
² 1.011					0.387	
³ 0.835						
⁴ 0.790						
⁵ 1.016						
° 0.586						
⁷ 0.725			° 0.789	10 0.437	¹¹ 0.838	¹² 0.092
⁸ 0.533]_			
¹⁸ 0.778	¹⁸ 0.506	²¹ 0.330	²⁴ 0.311		²⁸ 0.247	
¹⁷ 0.613	¹⁹ 0.498	²² 0.294			²⁷ 0.229	
	²⁰ 0.526	²³ 0.198	²⁵ 0.178			
					²⁸ 0.552	
					²⁹ 0.232	

Table 3.6 Representation of HOST classes in the BFI catchment data set

HOST class	% in UK	Average % on BFI catchment set	Equivalent number of catchments
1	4.17	5.85	33.6
2	2.07	3.17	18.2
3	1.64	1.99	11.4
4	3.22	3.95	22.7
5	5.61	4.07	23.4
6	2 52	2.64	15.2
7	1 04	0.81	4.7
8	1 74	0.88	5.1
9	3.86	0.98	5.6
10	2.14	1.74	10.0
11	0.53	0.30	1.7
12	2.75	1.37	7.9
13	0.85	0.64	3.7
14	0.62	0.55	3.2
15	9.30	10.14	58.3
16	0 61	0 62	2.6
17	8 72	10.02	57.6
18	6.74	5.72	32.9
19	1.94	1.44	8.3
20	0.64	0.97	5.6
21	5.96	6.22	35.8
22	1.01	1.28	7.4
23	1.27	1.46	8.4
24	15.23	15.30	88.0
25	3.82	4.57	26.3
26	3.20	4.88	28.1
27	0.77	0.55	3.2
28	0.57	0.33	1.9
29	6.16	7.19	41.3

In order to fully develop a way of estimating BFI from HOST the regression was repeated with bounds applied to the coefficients so that unacceptably large or small values were excluded. The range of allowable values was specified as from 0.170, the minimum reliable BFI coefficient from the unbounded regression, to 1.000, the maximum possible BFI value. Table 3.7 shows the coefficients resulting from this regression, which has an s.e.e. of 0.089.

Imposing these bounds has had little effect on the coefficients, other than for HOST class 12, and no increase in the standard error of the estimate has resulted.

Because the same inconsistencies between the derived coefficients and the conceptual response models remain, a third regression with additional bounds was performed. In this case the extra constraints set a lower limit on class 3 of 0.9, an upper limit on class 5 of 0.9 (0.9 being between the coefficients derived for these two classes previously and these bounds would ensure the coefficient for class 5 must be less than or equal to that of class 3) and a lower

Table 3.7 BFI Coefficients from bounded multiple regression analysis

¹ 1.000	13 1 000		14 0 221			
² 1.000	1.000		0.231		¹⁵ 0.380	
³ 0.833						
4 0,791						
⁵ 1.000						
⁶ 0.615						
⁷ 0.740			90.014	10 0 4 9 2		12 0 170
[®] 0.509			0.014	0.462	11 0.862	01/0
¹⁶ 0.825	¹⁰ 0.511	²¹ 0.332	²⁴ 0.308		²⁶ 0.246	
¹⁷ 0.613	¹⁹ 0.483	²² 0.304			²⁷ 0.226	
	²⁰ 0.528	²³ 0.215	²⁵ 0.178			94. V. 11. 34.V.
			non (* 17. a. 1990) 1990 - Alexandro (* 19. a. 1990) 1990 - Alexandro (* 19. a. 1990)		²⁸ 0.549	
					²⁹ 0.229	

Table 3.8 BFI Coefficients from second bounded multiple regression analysis

¹ 1.000	13 1 000		14 0 000		15 0 000	
² 1.000	1000		0.380		~0.380	
³ 0.900						
4 0.791						
⁵ 0.900						
⁸ 0.645						
7 0.792			80.704	10 0 500	110.007	12 0 170
⁸ 0.560			- 0.734	0.520	0.927	~ 0.170
¹⁶ 0,778	¹⁸ 0.518	²¹ 0.340	²⁴ 0.312		²⁶ 0 244	
¹⁷ 0.609	¹⁹ 0.469	²² 0.315			²⁷ 0.259	
	²⁰ 0.524	²³ 0.218	²⁵ 0.170			
					²⁸ 0.581	
		yy y diana ang Nataona ang			²⁹ 0.226	

Figure 3.4 Estimated values of BFI against observed BFI

Figure 3.5 BFI residuals (observed-estimated) against estimated values of BFI

limit on class 14 of 0.38 (the value derived for class 15). Table 3.8 shows the coefficients from this second bounded regression.

The s.e.e. for this regression has increased slightly from 0.089 for the unbounded case to 0.090, but the coefficients are now in line with the observed range of BFI values, and consistent with the response models.

The quality of this regression is depicted in Figures 3.4 and 3.5 which show the observed and estimated BFI values, and the residuals (observed-estimated) plotted against the estimates. These figures show the values for all 786 catchments (i.e. including the poorer quality catchments and those with high urban fractions). Figure 3.6 shows the residuals plotted at catchment centroids for the same catchments. The map shows some clustering of positive and negative residuals, and therefore indicates where BFI estimation using the equation represented by Table 3.8 is likely to be in error. The reasons for these regional clusters are not known at present, but it is hoped they will be explored fully in future work.

3.5 HOST class distributions

Whilst for some classes it is easy to visualise the distribution of the class in the UK, for others this is more difficult. Appendix D contains a map for each class showing where the soils are found. For many classes it is possible to relate the features seen in the maps to physical settings.

Figure 3.6 The distribution of BFI residuals (observed-estimated)

4 Applications of the HOST classification

4.1 Low flow estimation

This section describes how the HOST classification can assist in the estimation of low flow indices. The methods described have already been published in Gustard *et al.* (1992), and much of the following has been drawn from that report. These methods were developed before the HOST project was complete using a provisional classification system and data set. Users of the methods should be aware of the following difference between the provisional and final products.

i) In the provisional HOST data set, areas remained unclassified (mainly because they were urban). These areas were placed in HOST class 97, which is treated in this section as a separate class.

ii) The HOST classes have been renumbered. In Gustard *et al.* (1992) HOST class 2 was numbered class 29, with all class numbers between reducing by one. In the following section this renumbering has been applied and this section is consistent with the remainder of the report. There are, therefore, differences between this report and Gustard *et al.*

iii) Some soil series have been reassigned to different HOST classes; the changes affect HOST classes 5, 6, 7, 8, 9, 10, 12, 16, 17, and 29 but are generally small. For small catchments, users should consider referring to the revised assignment of HOST classes to map units presented in this report (Appendix B) and calculating new average low flow parameters values for HOST map units. The effect on larger catchments is likely to be insignificant.

iv) The provisional HOST data set was based on a single map unit for each 1 km square, to which the HOST classes were ascribed. In the new dataset, all map units within each 1 km square were used to calculate the HOST classes. The revised data will most affect the percentage coverage on small catchments. It was for this reason that catchments of less than 5 km² were omitted in calibrating the low flow methods, but were considered acceptable for other analyses described in the report.

4.1.1 Introduction

A number of studies have identified the key role of catchment hydrogeology in controlling the low flow response of a catchment (Institute of Hydrology, 1980; Pirt and Douglas, 1980; Gustard et al., 1989). Problems of numerically quantifying this role have contributed to the difficulty in estimating low flows at ungauged sites and to the practical utility of applying a consistent method nationally. The Low Flow Studies (1980) report sought to overcome these problems by using the Base Flow Index as a key variable to index hydrological response from which other flow statistics could be derived. Examples were given of how the index could be estimated at an ungauged site from catchment geology and it was anticipated that hydrologists would develop these procedures based on their detailed knowledge of hydrogeology and low flow response. Although some regional relationships were derived between the Base Flow Index and local geology in Southern England (Southern Water Authority, 1979), and Scotland (Gustard, Marshall and Sutcliffe, 1987) the lack of a national low flow response map was a major constraint to the practical application of estimation techniques in the UK.

4.1.2 Estimating flow duration curve: 95 percentile and mean annual seven day minimum

A total of 865 stations have been identified as suitable for inclusion in the Low Flow Study data base. The selected stations have an average record length of 18.6 years of daily mean flow data, and over 16,000 station years of daily data were analysed.

The percentage coverage of the 29 HOST classes and URBAN (97) and LAKE (98) for each of the 865 low flow catchments were derived using the digitised catchment boundary and HOST data bases, (Gustard *et al.*, 1992). Linear least squares multiple regression analysis was used to relate $Q_{95}(1)$ and MAM(7) to the percent coverage of HOST classes. Only a draft HOST data base was available for Northern Ireland so data from Northern Ireland were not used in the analysis. Because different missing data criteria were used, different data sets were available for the $Q_{95}(1)$ calibration (694 stations) compared with the MAM(7) analysis (660 stations). Gauging stations with catchment areas of less than 5 km² were omitted because of the possibility of introducing errors in small catchments by using the dominant HOST class within 1 km² grids. The estimated $Q_{95}(1)$ parameters for the HOST classes are presented in Table 4.1. The poor representation of certain HOST classes was reflected in the results of the regression analysis with very high standard errors in parameter estimates of Q_{g5}(1) and MAM(7). For example, the highest standard errors of the $Q_{95}(1)$ parameters are associated with HOST classes 8 and 11, both of which are very limited in extent. Negative parameters are estimated for HOST classes 22, 23, 25 and 27 for both $Q_{95}(1)$ and MAM(7), and additionally for HOST class 9 for Q₉₅(1).

The regression analysis also identified that HOST classes with similar soil and hydrogeological characteristics with respect to their low flow response possess similar parameter estimates. It was decided to group the HOST classes into a smaller number of low flow response units. These units were combinations of HOST classes with similar physical characteristics and in some cases these were supported by the results of the regression analysis. Different strategies of groupings were investigated and the final assignment of 29 HOST classes to ten Low Flow HOST Groups (LFHG) is shown in Table 4.2. The final assignment of HOST classes to groups is based mainly, but not exclusively, on hydrogeological class. The URBAN (HOST 97) and LAKE (HOST 98) fractions are assigned to individual Low Flow HOST Groups 11 and 12 respectively. Figure 4.1 displays the general distribution of Low Flow HOST Groups in Great Britain based on the dominant HOST class within grid squares of l km².

Table 4.3 presents proportions of the Low Flow HOST Groupings within gauged catchments in the United Kingdom, and the maximum proportion within those gauged catchments.

Table 4.1 $Q_{as}(1)$ estimates for HOST classes

HOST class	Q ₉₅ (1) Parameter	s e. of Parameter	HOST class	Q ₉₅ (1) Parameter	s.e. of Parameter
1	37.7	1.8	17	12.3	2.3
2	32.7	2.9	18	14 5	2.8
3	68.8	4.4	19	24.6	9.4
4	26.4	3.2	20	31.4	20.1
5	56.4	4 9	21	12.3	2.2
6	31.6	86	22	-3.0	15.2
7	4.8	14 3	23	-12.9	9.1
8	30.0	32.7	24	7.7	1.5
9	-4.3	23.7	25	-2.5	4.3
10	13.2	12.4	26	9.8	3.4
11	44.3	41.0	27	-8.5	11.0
12	16.6	19.2	28	24.7	12.5
13	95.8	15.7	29	5.8	2.7
14	5.4	19.9	97	29.9	2.3
15	12.7	2.6	98	78,3	28.9
16	26.8	13.5			

 $r^2 = 0.565$ Standard error of estimate = 7.633

Table 4.2 Assignment of HOST classes to Low Flow HOST Groups

Low flow HOST group	Constituent HOST Classes
LFHG1	HOST 1
LFHG2	HOST 2
LFHG3	HOST 3, HOST 5
LFHG4	HOST 4
LFHG5	HOST 6, HOST 13
LFHG6	HOST 7, HOST 8, HOST 9, HOST 10, HOST 11
LFHG7	HOST 14, HOST 16, HOST 17, HOST 18,
	HOST 19, HOST 21, HOST 22, HOST 24
LFHG8	HOST 20, HOST 23, HOST 25
LFHG9	HOST 15
LFHG10	HOST 12, HOST 26, HOST 27, HOST 28,
	HOST 29
LFHG11	HOST 97
LFHG12	HOST 98

Table 4.3 Percentages of Low Flow HOST Groupings in Great Britain and within gauged catchments

Low Flow HOST Group	Mean percentage in Great Britain	Mean percentage in AB graded catchments	Maximum percentage in AB graded catchments
LFHG1	4.53	6.18	100.00
LFHG2	2.24	3.22	90.69
LFHG3	7.01	5.86	98.68
LFHG4	3.50	4.10	77.24
LFHG5	2.69	2.39	45.83
LFHG6	9.67	3.87	37.76
LFHG7	39.75	40.19	100.00
LFHG8	5 92	6.37	95.00
LFHG9	10.44	9.74	86.67
LFHG10	13.10	13.91	100.00
LFHG11	0.57	3.86	97.22
LFHG12	0.57	0.34	10.00

Using linear least squares multiple regression, $Q_{95}(1)$ and MAM(7) were regressed against the proportional extent of the 12 Low Flow HOST Groupings. Standard errors of parameters are significantly reduced compared with the analysis based on 29 individual HOST classes, no negative parameters are calculated and parameter estimates differ significantly from each other in broad terms.

An analysis of residuals using these relationships identified that there are major differences between the observed and predicted low flow statistics for catchments 26004 and 26005. Both gauging stations are on the Gypsey Race, a bourne stream draining the Yorkshire Wolds, they are controlled by fluctuating groundwater levels and cease to flow each summer when levels fall below that of the channel bed. In the final analyses, these two catchments were omitted from the regional calibration of the Low Flow HOST Groups resulting in minor changes in the parameter estimates and a significant reduction in the overall error of the estimation procedure. The final parameter estimates for $Q_{\rm gs}(1)$ and MAM(7) are presented in Tables 4.4 and 4.5. These enable $Q_{\rm gs}(1)$ and MAM(7) to be estimated for each soil association in England, Wales and Scotland, calculated from the percentage area of soil series, and then HOST and Low Flow HOST Group within each association. For Northern Ireland values of low flow parameters are shown for each of the HOST classes for use with the provisional HOST map of the province. Figure 4.2 displays the general distribution of the estimated $Q_{95}(1)$ and MAM(7) statistics for 1 km² grid squares throughout Great Britain. These maps are based on the fractions of soil series within grid squares, which have been assigned to HOST classes and then Low Flow HOST Groups for which $Q_{95}(1)$ and MAM(7) estimates are made.

Low flow	Q ₉₅ (1)	s.e. of
HOST grouping	Parameter	Parameter
LFHG1	40.8	1.7
LFHG2	31.9	2.6
LFHG3	65.7	2.9
LFHG4	25.0	3.0
LFHG5	49 0	6.8
LFHG6	6.5	5.6
LFHG7	10.7	0.8
LFHG8	1.1	2.0
LFHG9	15.0	2.2
LFHG10	6.8	1.5
LFHG11	29.4	2.1
LFHG12	65.1	25.8
r ² = 0.573		
Standard error of estimate =	7.427	

Table 4.4 Final Q_{ss}(1) estimates for Low Flow HOST Groups

Table 4.5 Final MAM(7) estimates for Low Flow HOST Groups

Low flow HOST Grouping	MAM(7) Parameter	s.e. of Parameter
LFHG1	50.8	1.9
LFHG2	40.3	2.8
LFHG3	71.3	3.3
LFHG4	27.5	3.3
LFHG5	53.4	7.5
LFHG6	1.4	6.2
LFHG7	12.4	0.9
LFHG8	0.1	2.3
LFHG9	14.4	2.4
LFHG10	5.9	1.7
LFHG11	33 8	2.4
LFHG12	49.6	28.7

Figure 4.1 General distribution of dominant Low Flow HOST Group in Great Britain based on the HOST classes in each 1 km² derived by the HOST project

Figure 4.2(i) General distribution of estimated $Q_{gs}(1)$ in Great Britain based on the proportion of HOST class in each 1 km² derived by the HOST project group

Figure 4.2(ii) General distribution of estimated MAM(7) in Great Britain based on the proportion of HOST class in each 1 km² derived by the HOST project group

4.1.3 Estimation of the flow duration curve at ungauged sites

The initial approach to developing a procedure for estimating the flow duration curve at an ungauged site was to establish which variables controlled the slope of the line. This was investigated by calculating values of Q_{95} , Q_{10} and Q_{99} for each of the 845 time series of daily mean flows having Q_{95} greater than zero. The following ratios were then derived from each flow duration curve:

$$R(Q_{10}) = Q_{10}/Q_{gg}$$
$$R(Q_{gg}) = Q_{gg}/Q_{gg}$$

Values of the two ratios were then related to Q_{ps}(1), AREA and SAAR. This analysis showed that $Q_{95}(1)$ was the only significant variable in controlling the slope of the flow duration curve, that is there was no significant difference between the gradients of the curve that could be attributed to catchment area or average annual rainfall. Inspection of a number of curves indicated that they did not plot exactly as straight lines using a log normal transformation. It was therefore not possible to use simple relationships based on gradients alone. The procedure adopted was to maintain the shape of the predicted curves by pooling groups of flow duration curves. This was achieved by deriving the 845 curves and pooling them according to their $Q_{as}(1)$ value into one of 15 groups shown in Table 4.6.

A computer program was used to derive the mean curve for each group of stations by finding the mean discharge (expressed as a percentage of the mean flow, MF) for each of 40 class intervals of x, the plotting position on the frequency axis.

A family of 20 type curves were then interpolated between the pooled curves such that the logarithm of $Q_{95}(1)$ was equally spaced. Thus type curve 0 had a $Q_{95}(1)$ of 1% MF and type curve 19 had a $Q_{95}(1)$ of 79.43% MF. The shape of the curve is therefore entirely dependent on the value of $Q_{95}(1)$. The derived type curves are shown in Figure 4.3 and Table 4.7. In design studies individual curves can be interpolated between the values shown.

4.1.4 Estimation of the flow frequency curve at an ungauged site

Duration relationship

To enable mean annual minimum flow frequency curves of other than the seven day duration to be estimated a study was carried out of the relationship between the mean annual minimum of different durations. Figure 4.4 shows the relationship between minima of different durations for two contrasting catchments. Station 85003 (Falloch at Glen Falloch) has impermeable substrate and has a low value of MAM(7), a high value of MAM(180) and thus a high value of GRADMAM, the gradient of the duration relationship. In contrast station 39019 (Lambourn at Shaw) has permeable substrate and has a higher value of MAM(7) and a lower gradient.

Table 4.6	Number	of flow	duration	curves in	each	class	interval	of $Q_{\alpha\beta}$	(l)
-----------	--------	---------	----------	-----------	------	-------	----------	----------------------	-----

Q ₉₅ (1) % MF	Number of flow duration curves
< 2.5	14
2.5 - 7.5	132
7.5 - 12.5	197
12.5 - 17.5	177
17.5 - 22.5	103
22.5 - 27.5	83
27.5 - 32.5	53
32.5 - 37.5	30
37.5 - 42.5	22
42.5 - 47.5	17
47.5 - 52.5	5
52.5 - 57.5	3
57.5 - 62.5	4
62.5 - 67.5	4
67.5 - 72.5	1

Figure 4.3 Type curves for flow duration curve

Table 4.7 Flow duration type curves (percentage of mean flow)

Q ₉₅ (1)		1.00	1.26	1.58	2.00	2.51	3.16	3.98	5.01	6.30	7.94
Type curve		0	1	2	3	4	5	6	7	8	9
Percentile	2 5 50 80 90 95 99	975.70 577.26 20.49 3.70 1.73 1.00 0.38	904.17 1534.08 22.69 4.42 2.13 1.26 0.51	838.77 511.37 25.10 5.27 2.62 1.58 0 67	776.04 480.48 27.86 6.33 3.25 2.00 0.88	719.91 452.42 30.82 7.54 3.99 2.51 1.16	667.48 425.82 34.11 9.00 4.92 3.16 1 53	618.22 400.44 37.81 10.77 6.07 3.98 2.02	572.53 376.64 41.82 12.86 7.47 5.01 2.65	520.00 350.65 45.10 15.20 9.16 6.30 3.46	472.29 326.46 48.64 17.98 11.22 7.94 4.52
Q ₉₅ (1)		10.00	12.57	15.83	19.93	25.13	31.64	39.81	50.13	• 63.12	79.43
Type curve		10	11	12	13	14	15	16	17	18	19
Percentile	2 50 80 90 95 99	428.96 303.93 52.46 21.25 13.75 10.00 5.89	389.60 282.96 56.57 25.13 16.86 12.57 7.69	353.86 263.44 61.01 29.71 20.66 15.83 10 03	321.39 245.26 65.79 35.12 25.32 19.93 13.08	291.65 228.19 71.00 41 58 31.09 25.13 17.11	264.89 212.45 76.57 49.16 38.10 31.64 22.32	240.09 197.49 82.60 58.08 46.67 39.81 29.13	206.89 176.99 89.91 67.82 56.95 50.13 39.00	178.28 158.62 97.86 79.21 69.50 63.12 52.22	153.69 142.20 106.49 92.46 84.77 79.43 69.85

Figure 4.4 Relationship between annual minima of different durations

Table 4.8 Number of low flow frequency curves in each class interval of MAM(7)

	MAM(7) % MF		Number of low flow frequency curves
	<	2.5	16
2.5	-	7.5	87
7.5	-	10.0	69
10.0	-	12.5	59
12.5	-	15.0	83
15.0	-	17.5	64
17.5	-	22.5	90
22.5	-	27.5	66
27.5	-	32.5	50
32.5	-	37.5	35
37.5	-	42.5	13
42.5	-	47.5	16
47.5	-	52.5	12
52.5	-	62.5	11
	>	62.5	9

For each station, values of GRADMAM were derived and related to flow and catchment characteristics. MAM(7) and SAAR were found to be the most significant variables enabling the gradient of the duration relationship to be estimated from

$$GRADMAM = 2.12 \cdot 10^{-3} MAM(7)^{-1.02} SAAR^{0.629}$$
(1)
 $r^2 = 0.916$ fse = 1.29

where fse is the factorial standard error from a

regression of log(GRADMAN) on log (MAM(7)) and log(SAAR).

From the linear relationship between MAM(D) and D we obtain

MAM(D) = MAM(7) (1+(D-7) GRADMAM) (2)

This enables the mean annual minimum of any ; duration up to 180 days (the maximum value used in the analysis) to be estimated.

Figure 4.5 Example low flow frequency curves for two contrasting flow records and for four durations

Figure 4.6 Low flow frequency curves standardised by MAM(D)

 Table 4.9 Type curves for low flow frequency

Plotting position						Туре	Curve			- •		
w	1	2	З	4	5	6	7	8	9	10	11	12
0.5	0.85	0.86	0.87	0.89	0.90	0.91	0.92	0.93	0.94	0.96	0.96	0.96
1.0	0.66	0.69	0.70	0.72	0.75	0.76	0.79	0.80	0.82	0.84	0.86	0.87
1.5	0.50	0.53	0.55	0.58	0.61	0.62	0.66	0.68	0.71	0.73	0.76	0.79
2.0	0.34	0.38	0.40	0.44	0.48	0.50	0.54	0.57	0.61	0.64	0.68	0.71
2.5	0.20	0.24	0.27	0.32	0.36	0.39	0.44	0.48	0.52	0.56	0.60	0.65
3.0	0.07	0.12	0.16	0.21	0.25	0.30	0.35	0.40	0.44	0.49	0.53	0.59

: .

Figure 4.7 Type curves for low flow frequency curves

н**ь** .

Table 4.10 Assignment of low flow frequency type curves by MAM(7) and duration

	Duration days						
MAM(7) as % MF	1	7	60	180			
5	2	2	1	1			
10	5	5	4	5			
15	6	6	5	6			
20	7	7	7	7			
25	7	7	7	7			
30	7	7	7	7			
35	7	7	7	8			
40	7	7	7	8			
45	8	8	8	9			
50	7	8	9	10			
55	11	11	12	12			

Frequency relationship

To estimate discharges other than the mean of the annual minima, relationships were derived based on pooled flow frequency curves following a similar procedure to the flow duration curve analysis. Flow frequency curves were derived for annual minima of durations (D) of 1, 7, 30, 60, 90 and 180 days for 680 stations with more than five years of data. A missing year criteria was adopted such that if a year contained more than seven missing days it was rejected. Figure 4.5 illustrates annual minimum plots for two contrasting flow records and for four durations. The curve for the seven day minimum is very much lower for station 85003, the impermeable catchment, than for station 39019 which is a chalk catchment. Differences between durations are greater for the more impermeable catchment. This analysis was repeated on all the flow records, producing 3960 individual flow frequency curves.

Standardisation of individual minima by MAM(D) reduced the variability between minima of different durations and between different stations. Figure 4.6 shows the same data plotted on Figure 4.5 with the annual minima standardised by MAM(D). All stations were then allocated to one of 15 class intervals of MAM(7), Table 4.8 shows the number of stations in each group. For each group of stations, and for each duration, a pooled annual minimum curve was derived resulting in 90 curves. The pooling procedure was carried out by calculating the mean discharge (standardised by MAM(D)) and mean Weibull reduced variate for class intervals of reduced variate. It was found that the range of pooled curves could be described by the family of twelve type curves shown in Figure 4.7 and Table 4.9. These were then overlain on each of

the 90 curves to assign a type curve for a given value of MAM(7) and duration (Table 4.10). The type curves enable the annual minimum (AM) of any probability (P) for any duration (D), AMP(D), to be estimated from the mean annual minimum MAM(D). This is achieved by multiplying the value of MAM(D) by the appropriate type curve factor shown on Table 4.9.

4.2 The estimation of standard percentage runoff

4.2.1 Introduction

The importance of percentage runoff in the FSR method of design flood estimation, and the form of the FSSR16 percentage runoff model, have already been discussed.

A number of options to enhance the estimation of PR using HOST were considered. The most radical of these was to replace the PR estimation method completely but this would create discontinuity with previous methods. The concept of standard and dynamic component models, with each dependent on different factors is attractive and allows flexibility in application, e.g. locally derived data could be used. It was decided to retain this form of model. Within this framework it would be possible to modify both components. This would allow the introduction of dynamic terms that differed between soil types, and as with the calibration of WRAP, it would enable integrated development of the standard and dynamic component models. These two ideas require expansion.

Very different responses to rainfall would be expected from soils in the different HOST classes. As an approximate guide, the BFI values can be translated to SPRs using the equation presented in Section 2.2.4, a two part PR model adds to this variation in SPR between soil types, with dynamic terms based on wetness and the total event rainfall. In a HOST context it is expected that these dynamic terms would differ markedly between the various HOST classes. For example in classes 13 to 15, in which seasonal variations in the depth to the water table are expected, then a large increase in response with catchment wetness is expected. In contrast the effect of wetness on freely draining soils over permeable substrates is likely to be small. Indeed on some of these soils, dry, baked surface conditions may give rise to a greater response than under normal wetness conditions. The change in response as rainfall increases is also likely to be modest on these soils until very intense rainfall rates are encountered, when overland flow will result. Such soils therefore have a strongly non-linear response to rainfall. This can be contrasted with soils that give a high response to modest rainfall and where when rainfall amounts increase response is likely to increase, possibly to nearly 100%, and thereafter there can be little increase in response even in the most extreme conditions.

Although the introduction of such dynamic terms is an exciting prospect, there are insufficient data available to calibrate and verify the increased number of sub-models required. It is hoped that this situation can be rectified in future studies.

It was therefore decided that, in this first use of HOST to enhance design flood estimation, only the SPR component of the existing model would be modified, i.e. it would be assumed that the dynamic terms and urban adjustment were correct. While this provides a straightforward way to integrate HOST with existing methods it imposes dynamic terms that were developed in tandem with the old WRAP classification, which might therefore, be biassed.

The following sections describe the development of a model of the form:

$$SPR = a_{i}HOST_{i} + a_{g}HOST_{g} + a_{g}HOST_{g} + \dots + a_{gg}HOST_{gg}$$

Section 4.2.3 describes an approach based on the BFI model derived in Section 3.4, then in Section 4.2.4 a model is calibrated directly against SPR data.

4.2.2 The SPR catchment data set

The data needed to develop the SPR estimation equation are catchment average values of SPR calculated as described in Section 2.2.2; only the 170 catchment average values coming from at least five events were used in the fitting process, although all 205 catchments were used to assess goodness of fit. The catchments and their SPR values are listed in Appendix C.

4.2.3 Estimating SPR via BFI

In Section 2.4 there is a set of BFI coefficients derived from an analysis of data from 575 catchments, and in Section 2.2.4 there is an equation relating BFI to SPR reproduced from a previous study on a set of 210 catchments. Combining these allows SPR to be estimated using the SPR coefficients given in Table 4.11.

The range of SPR coefficients is from 5.5% (corresponding to BFI of 1.0) to 60.7% (BFI of 0.17), which is greater than with the existing WRAP based method with a range of 10% to 53%, but not as great as for the observed data with a range from 3.8% to 77.5%. Figures 4.8 and 4.9 show plots of the estimated against observed values, and residuals against estimated values, respectively for the 205 catchment set. Figure 4.10 shows the distribution of residuals. The s.e.e. using this estimation procedure is 11.7%.

No equivalent value is available from FSSR16 for comparison and so the WRAP based estimate has been calculated for the same data set; it has an s.e.e of 11.9%, only fractionally worse than from HOST using BFI. Figures 4.11 to 4.13 show the same three plots as above for the estimates obtained from WRAP. Using this method of estimating SPR gives only a very small improvement over WRAP and to see if this can be improved a direct calibration against HOST was performed. This is described in the next section.

4.2.4 Direct estimation from HOST

A multiple linear regression of the same type as used to derive BFI coefficients was performed on the 170 catchment SPR data set. The resulting coefficients are shown in Table 4.12. As expected in a multiple regression with only 170 observations and 29 unknowns, the results are not very useful. No HOST class 28 soils are present on any of the 170 catchments, and many others occur in very small percentages, on a limited number of catchments, as shown in Table 4.13. 15 coefficients have t-statistics of less than 1.97, suggesting that they are not significantly different from zero at the 5% level. Several have coefficients that are negative or greater than 100%. The resulting model is clearly of no practical use, but its s.e.e. is 9.4% suggesting that even using a more reasonable, and hence less accurate, model some improvement of the estimation of SPR via BFI may be possible.

Two modifications to the analysis were made to obtain a usable regression model. First of all, as with BFI, the coefficients had bounds imposed on them so that they could only take on reasonable values. In percentage runoff terms these bounds could be set at 0% and 100%, but SPR, which represents standard and not extreme runoff, can reasonably be resticted to a smaller range. At the lower end of the scale a value of 2% was chosen on the pragmatic basis that in an application this would ensure some response was produced (perhaps rain falling on the channel itself). The upper bound was set at 60%, this being a rounded upper limit from the well defined coefficients from the unbounded regression (i.e. mainly classes 26 and 29, but also class 19).

Figure 4.8 Estimated SPR from HOST via BFI against observed values of SPR

Figure 4.9 Residuals against estimated values of SPR

¹ 5.5						
² 5.5	'* 5.5		* 46.7		^{1°} 46.7	
³ 12.2	1					
4 19.4	1					
⁵ 12.2	1					
° 29.1	1					
⁷ 19.3			P 23 2	10 51 3	11 10 4	12 60 7
⁸ 34.8			23.2	51,5	. 10.4	00.7
¹⁶ 20.3	18 37.6	²¹ 49.4	²⁴ 51.3	•	²⁶ 55.8	
¹⁷ 31.5	¹⁹ 40.8	²² 51.1			²⁷ 54.8	
	20 37.2	²³ 57.5	²⁵ 60.7			
					28 33.4	<u></u>
					29 54 3	

Table 4.11 SPR coefficients derived via BFI

Figure 4.10 Map showing SPR residuals from estimation from HOST via BFI

Secondly, some classes were combined where they came from the same underlying response model, in a similar fashion to the way low flow HOST groups were defined in Section 4.1.2. Thus the following classes were combined: 7 and 8 (both response model E), 9 and 10 (model F), 16 and 17 (model H), 18 and 21 (slowly permeable substrate, model I), 19 and 22 (impermeable [soft] substrate, model I), 20 and 23 (impermeable [hard] substrate, model I). This reduced the number of coefficients to be determined from 29 to 22; remember that the coefficient for HOST class 28 could not be determined analytically either. The resulting derived coefficients are shown in Table 4.14. The s.e.e. from this model is 10.0%.

The coefficients now show a good deal of consistency with the response models. However, whereas with the BFI coefficients there was a reduction from the left to the right of the diagram (i.e. as the soil becomes increasingly waterlogged close to the surface), a slightly different picture emerges with the same general trend but with the soils with a gleyed layer within 40 cm giving a lower response.

One explanation for this is that SPR represents a much faster response to rainfall than BFI. In the imperfectly drained soils they may give an increased response over a longer time period of a few days, than they do in the very short term. In such soils the presence of artificial drainage is likely to increase the volume of quick response runoff.

One concern about the coefficients shown in Table 4.14 is the value of 2% for class 14. The response model of this class (model C) suggests a rapid response mechanism more like models E or F which have SPR coefficients of 25.7% and 48.5%, respectively. For this reason it was decided to link the HOST class 14 coefficient with coefficient for classes 9 and 10. For practical applications class 28 requires a value of SPR and a value of 60% was ascribed,

Figure 4.11 Estimated SPR from WRAP against observed values of SPR

in line with the high response from the other peat soils. The final set of coefficients is shown in Table 4.15; there has been no significant change in the s.e.e associated with this set of coefficients (i.e. it remains at 10%).

For these coefficients estimated SPR values are plotted against observed values in Figure 4.14,

Figure 4.12 Residuals against estimated values of SPR from WRAP

and the residuals against the estimates in Figure 4.15. It is clear that there is considerable scatter in these figures, and, as should be expected, the extremes are poorly estimated. Figure 4.16 shows a map of the SPR residuals; two regions show consistent underestimation, the Weald and Cumbria, and in the coastal region of north-west England and North Wales there is a confused picture of poor estimation.

¹ -8.7	¹³ -04 5		14-25.0			-
² -2.7	-04.0		-23.0		^{1°} 51.1	
³ 16.3						
4-4.5						
⁵ 15.4						
^e 52.0						
⁷ 46.5			9436	10 24 6	11-55 Q	12 70 5
⁸ 25.3			430	34.0	-55.9	12.5
¹⁶ 81.8	¹⁸ 47.5	²¹ 44.7	²⁴ 40 2		²⁶ 56.9	<u> </u>
¹⁷ 32.1	¹⁹ 54.6	²² 7.4		· · · · · · · · · · · · · · · · · · ·	²⁷ 102.8	
	²⁰ 127.5	²³ 43.4	²⁵ 43.1			
					²⁸ None	
					²⁹ 58.1	

Table 4.12 SPR coefficients for HOST classes from multiple regression.

Figure 4.13 Map showing SPR residuals from estimation from WRAP

Table 4.13 Occurrence of HOST classes in the SPR data set: values represent equivalent number of catchments

¹ 6.4	¹³ 04		14 0 1		15 4 9 9	
² 4.0	0.4		0.1		16.8	
³ 5.7						
⁴ 9.0						
⁵ 5.3						
° 3.2						
⁷ 1.0			•20	¹⁰ 4 5	1106	12 1 0
⁸ 1.4			2.~	4.0	0.0	1.0
¹⁶ 1.2	¹⁸ 10.8	²¹ 8.2	²⁴ 25.5		²⁶ 13.4	
¹⁷ 13.0	¹⁹ 1.0	²² 1.5			27 1.2	
	²⁰ 2.3	²³ 3.1	²⁵ 15.3			
				n na 1900 a sa 1900 a	²⁸ 0.0	
					²⁹ 11.7	,

4.2.5 Comparison of SPR estimation methods

Three ways of estimating SPR have been presented: the method of FSSR16 based on WRAP, a method based on HOST using BFI as an intermediate step, and direct estimation from HOST. The s.e.e. gives an objective method of comparing the goodness of fit: from WRAP s.e.e. is 11.9%, from HOST using BFI s.e.e. is 11.7%, and directly estimating SPR using HOST s.e.e. is 10.0%.

The second of these (i.e. estimation via BFI) appears to have no real advantage over using WRAP, since the estimate is likely to be only very slightly more accurate but obtained with far greater effort. However, it may be appropriate, in particular circumstances, to use aspects of this procedure in combination with local data.

In terms of the s.e.e., estimating SPR from HOST offers a small but worthwhile improvement over using WRAP. Part of the explanation for this can be seen by comparing Figures 4.11 and 4.14. In the former, the banding of estimates in the top two WRAP classes is obvious, many catchments have the maximum 53% estimated SPR. In Figure 4.14 a number of catchments have estimated SPR above 53%, but only one with the maximum 60%; at the bottom end of the scale

the minimum estimated SPR is about 10%, although a value as low as 2% is possible. Figures 4.13 and 4.16 in which the distributions of residuals are plotted show similar regional trends. When the two estimates are plotted against each other as in Figure 4.17 it becomes clear that the two methods will produce significantly different estimates on some catchments.

Two more qualitative benefits accrue from the use of HOST. Firstly the better resolution of both the maps and the classification system mean that, even on small catchments, several HOST classes are likely to be found. In only 13 of the 170 catchments with at least five events was the observed SPR outside the range of the HOST coefficients for classes found on the catchment. Looking at the percentage runoff from all classes may therefore give an indication of the possible range of SPR.

Secondly, HOST provides a means of selecting a suitable catchment from which data may be transferred. It must be remembered that while HOST gives a better estimate than WRAP, it is still a fairly uncertain estimate which should be refined by looking at local data. A comparison of the HOST classes on the study catchment and various neighbouring catchments will indicate the most suitable analogue for the transfer of SPR.

¹ 2.0	13 2 0		1420		15	
² 2.0	2.0		2.0		'* 48.5	
³ 14.4						
⁴ 2.0						
⁵ 14.4						
° 33.8						
⁷ 44.1			¥ 25.7	10 25 7	1120	¹² 60 0
⁸ 44.1				20.7	2.0	00.0
¹⁶ 29.2	¹⁸ 47.2	²¹ 47.2	²⁴ 39.7		²⁶ 58.6	
17 29.2	¹⁹ 60.0	²² 60.0			²⁷ 60.0	
i den meninen en	²⁰ 60.0	²³ 60.0	²⁵ 49.6	· · · · · · · · · · · · · · · · · · ·		
	ğıra yalışı ile	n i i i i i i i i i i i i i i i i i i i			²⁸ None	
				ning of solid States of States	²⁹ 60.0	

Table 4.14 SPR coefficient for HOST classes from bounded multiple regression, with some combined classes

¹ 2.0 ¹³ 2.0 14 25.3 ¹⁵ 48.4 ² 2.0 ³ 14.5 4 2.0 ⁵ 14.5 ° 33.8 7 44.3 ¹² 60.0 ° 25.3 10 25.3 11 2.0 ⁸ 44.3 ²¹ 47.2 ²⁴ 39.7 ²⁶ 58.7 16 29.2 ¹⁸ 47.2 17 29.2 ¹⁹ 60.0 ²² 60.0 ²⁷ 60.0 8.37 (*** se se se ²⁵ 49.6 ²⁰ 60.0 ²³ 60.0 ²⁸ 60.0 S:S: ²⁹ 60.0

Figure 4.14 Estimated SPR from HOST against observed SPR

Figure 4.15 Residual against estimated values of SPR form HOST

50 60 70

60

90 100

Figure 4.16 Map showing distribution of SPR residuals from estimation from HOST

4.2.6 Conclusion and recommendation

The HOST classification provides a step forward towards more accurate estimation of SPR. The recommended coefficients, equivalent to SPR values, for each of the HOST classes are shown again, in class number order, in Table 4.16. Estimates made using these coefficients had a s.e.e. of 10% on the data available for this study. These coefficients have been derived by a mixture of regression analysis and reference to the physical response models at the core of HOST. As well as being useful for direct estimation of SPR, the HOST classification provides a way of selecting analogue catchments for the transfer of local data, and envelope values for the estimate of SPR.

As a very broad indication, Figure 4.18 shows an outline map of SPR for the United Kingdom.

4.2.7 An example of the calculation of SPR from HOST

The estimation of SPR via HOST is illustrated for the St. Neot at Craigshill Wood catchment (NWA number 48009) which has an area of 22.7km². The first stage in making the estimate is to abstract the HOST classes found within the catchment boundary. This can be done either by overlaying the boundary on the soil map manually, or by performing this operation on digital HOST or soil map data sets. These processes are described fully in Section 5. Table 4.17 shows the HOST classes found on the catchment and illustrates how the SPR estimate is made.

Table 4.16 Recommended SPR values for HOST classes

HOST class	SPR value (%)	HOST class	SPR value (%)	
1	2.0	16	29.2	
2	2.0	17	29.2	
3	14.5	18	47.2	
4	2.0	19	60.0	
5	14.5	20	60.0	
6	33.8	21	47.2	
7	44.3	22	60.0	
8	44.3	23	60.0	
9	25.3	24	39.7	
10	25.3	25	49.6	
11	2.0	26	58.7	
12	60.0	27	60.0	
13	2.0	28	60.0	
14	25.3	29	60.0	
15	48.4			

1

Table 4.17 HOST classes for 48009 and the calculation of SPR

HOST class	Fraction	SPR for class	SPR × Fraction
4	.13	2.0	0.26
9	.01	25.3	0.25
15	.47	48.4	22.75
17	.21	29.2	6.13
18	.01	47.2	0.47
22	.03	60.0	1.8
29	.14	60.0	8.4
stimated SPR =	ΣSPR×Fractior	ı	40.06

Figure 4.17 SPR estimates from HOST plotted against SPR estimates from WRAP

It will be seen from Table 4.17 that this is a catchment on which the estimated SPR from the component HOST classes ranges from 2% to 60% (i.e. the two extreme values). A user should be aware that a different mapping of the soils, or a variation from the nationally assigned proportions of soil series within the map units may give very different flood estimates. The user should be aware that the estimate may be unreliable.

It is interesting to compare this HOST based estimate with the one from WRAP. Table 4.18 is the WRAP equivalent of Table 4.17 and again shows a mixture of soil types with very different, but less extreme, SPR values.

This catchment is in fact one of those used in the development of the HOST classification and is one for which SPR has been calculated; from 7 events observed SPR is 37.2%. Although in this case the HOST estimate is a good one, and better than from WRAP, this will not always be the case. Figure 4.16 shows that on many catchments there will be a substantial error in the HOST estimate, and Figure 4.17 implies that in some cases estimates from WRAP will be better than those derived from HOST.

Table 4.18 WRAP classes for 48009 and the calculation of SPR

WRAP class	Fraction	SPR for class	SPR × Fraction	
2 5	.2 .8	30. 53.	6.0 42.4	
Estimated SPR =ΣSPR×Fraction			48.4	

Figure 4.18 General distribution of SPR calculated from HOST

5 Access to the HOST system

To develop the HOST classification system catchment boundaries were overlain on the soil maps. This process was performed automatically by computer. To use HOST to estimate hydrological parameters users will have to do this overlaying. This section describes three ways in which this can be achieved: one manual method, and two computer-based overlay procedures using the HOST digital data set and the digitised 1:250,000 soils data set.

5.1 Manual overlay

Information provided in this report can be used with the published 1:250,000 national soil maps to help estimate hydrological parameters. Figure 5.1 shows the boundary for the St Neot catchment at Craigshill Wood overlain on the national soil map (England and Wales Sheet 5, Soils of South West England). Table 5.1 shows the areas of the various map units located within the boundary that can be abstracted either using a planimeter or by counting squares on millimetre graph paper. In the example the latter method has been used and the number of squares in each map unit is shown. Two units each occur twice and these are added together to obtain the total coverage. To check that the areas have been abstracted correctly, the total number of squares can be converted to an area in square km by dividing by 16 (1 km = 4 mm at 1:250,000 and the calculations were done on 1 mm graph paper). Thus $383/16 = 23.9 \text{ km}^2$

which is larger than the published area of 22.7 km² but within an acceptable margin of disagreement. It will also be noted that on the catchment is a small lake, but this is within an area marked as map unit 1013b and is therefore counted as being part of that unit.

The table shows that on this relatively small catchment there are seven different soil map units. The component HOST classes for each of these map units are listed in Appendix B and below as Table 5.2. The breakdown of these seven map units by class shows that some map units comprise a single HOST class whereas others can be divided into four classes. If this is related back to the description in Sections 2.3.2 and 2.3.3 of how soils are mapped, then soil map unit 651b (Hexworthy), for example, is seen as one that contains soil series that have similar hydrological properties, whereas in map unit 541j (DENBIGH1) the opposite is true. To calculate the overall cover of each HOST class on the catchment the information contained in Tables 5.1 and 5.2 must be combined; this calculation is contained in Table 5.3. Summing the HOST class fractions provides a check that no errors have crept into the arithmetic. Once fractions have been rounded the total is slightly less than one and a simple way of adjusting for this, in this instance, would be to add 0.01 to the largest fraction.

These HOST class fractions can now be used for any of the applications described in Section 4. If the overlay is performed on the paper

Table 5.1	Fractions	of soil	map units	on catchment	from manual	overlay
-----------	-----------	---------	-----------	--------------	-------------	---------

Map unit	Squares on mm paper	Coverage (%)
541j	13 + 8 = 21	5.5
611b	44	11.5
611c	73	19,1
651b	162	42.3
713b	10	2.6
721a	9	2.3
1013b	32 + 32 = 64	16.7
TOTAL	383	100

version of the map then 'unsurveyed' or 'builtup areas' and 'lakes' may be found. In the estimation of the low flow variables as described in Section 4.1 these should be calculated and used in the same way as any other map unit. When estimating SPR they should be ignored; this will lead to a total of the HOST class fractions that is less than unity, and the various fractions must be scaled so the correct total of 1.0 is achieved. In the above example is was possible to include the lake as part of one of the mapped units and no scaling was necessary.

The calculation of the HOST class fractions has only needed this report and the published maps (exactly the same process could have been applied to a Scottish catchment). However, if the exercise had to be undertaken on a large catchment, or repeated on a great many catchments then considerable effort would be expended. The digital versions of the HOST and soil maps can provide relief from this drudgery by handing the task to a computer. Sections 5.2 and 5.3 describe these two digital data sets.

5.2 The 1:250,000 soil data set

Both SSLRC and MLURI have digitised their 1:250,000 soil maps and have them stored on computer databases. The data sets have been constructed by digitising the lines on the maps, forming these into polygons and labelling them with the appropriate map unit. From this vector version of the data set, rastered versions have been produced, in which the map units within 1 km or 100 m cells have been identified.

To use HOST to estimate catchment parameters, it is possible to overlay the catchment boundary on the digitised map, abstract the map units, and convert these to HOST using a key. For users who are interested in other properties of soils beyond those offered by HOST, then this may be an attractive route into HOST. Such users should contact SSLRC and MLURI to discuss leasing of the soil map data and HOST key.

For users who only require the HOST data then a derived data set has been prepared and this is described in the next section.

Map unit	Component HOST classes HOST class number (percentage in map unit)
541j	4(13.33), 17(60.00), 18(13.33), 22 (13.33)
611b	4(100)
611c	17(87.5), 22(12.5)
651b	15(100)
713b	9(43.75), 15(18.75), 21(18.75), 24 (18.75)
721a	15(100)
1013b	29(100)

Table 5.3 Calculation of HOST class fractions on catchment 48009

HOST class	Components (percentage HOST class in map unit x percentage map unit in catchment)	Total (sum of components)	Fraction (total adjusted to a fraction)
4	13.33x5.5=73.315 100x11.5=1150.	1223.315 ^{- /}	.12
9	43.75x2.6=113 75	113.75	.01
15	100x42.3=4230. 18.75x2.6=48.75 100x2.3=230.	4508 75	.45 (adjust to 0.46 to compensate for rounding errors)
17	60.00x5.5=330. 87.5x19.1=1671.25	2001.25	.20
18	13.33x5.5=73.315	73.315	.01
21	18.75x2.6=48.75	48.75	.00
22	12.5x19.1=238.75 13.33x5.5≖73.315	312.065	.03
24	18.75x2.6=48.75	48.75	.00
29	100x16.7=1670.	1670.	.17
TOTAL		9999.945	.99

5.3 The 1 km HOST data set

The HOST data set is the result of applying the HOST classification to the soils of the national maps as represented on a 1 km grid. The process was therefore a two stage one; firstly the soil map units in each 1 km square were identified, and then the HOST classification was applied as the sum of the percentages across all map units.

Since there can be several map units within each 1 km^2 (up to 7 were found), and several

HOST classes represented within a map unit (maximum found was 5), it might be expected that in some 1 km squares a great many HOST classes were present. In fact, because many neighbouring map units have some soils in common, this does not happen, and very few 1 km squares have more than seven classes. Seven was taken as the maximum number of classes to be stored in the HOST data set, and where more existed, the smallest were ignored and the percentages of the others rounded up to compensate. A further adjustment of the percentages was made to round them all to the nearest integer, and then to adjust them so the sum of the percentages is 100. These adjustments were considered worthwhile to reduce the storage space of the derived data set. Although there may appear to be some loss of information in this process this is minor compared with the uncertainty introduced from other sources such as: the accuracy of the underlying soils maps, the use of constant fractions for the series break down of the map units, and neglecting small component series within the map unit.

When a catchment boundary is overlain on this data set then the 1 km squares that are completely within the boundary contribute directly to the sum of the HOST classes for the catchment. Where the boundary crosses a square then the proportion of the square within the catchment is found, and all classes within the square are assumed to occur in this portion in the same distribution as in the whole square. This overlay will therefore give different HOST fractions from those obtained from a manual overlay, but only on very small catchments is the difference likely to be great. As with any other catchment characteristic derived from a map, care is always needed on small **Table 5.4** Fractions of HOST classes on catchment

 48009 derived from HOST data set

HOST class	Fraction
4	.13
9	.01
15	.47
17	.21
18	.01
22	.03
29	.14

catchments both in abstracting the data and in using that information to estimate another parameter.

Table 5.4 contains the HOST fractions obtained from the overlay on the 1 km data set and should be compared with Table 5.3 which has the corresponding values from a manual overlay. The differences between the two sets of values are relatively minor.

6 Conclusions

A new soil classification that uses physical property data to define soil classes has been developed for hydrological purposes. The classification, which is known by the acronym HOST (Hydrology Of Soil Types), is based on conceptual models of the processes taking place within the soil and, where appropriate, substrate. Catchment-scale hydrological indices (mainly BFI and SPR) were used in the development of the HOST classification.

The classification is based on soil series and is therefore not limited to application at any one scale. However, applicability throughout the UK is assured by the accessibility to HOST via the national reconnaissance mapping of soils at a scale of 1:250,000 (only a provisional map of Northern Ireland is currently available). For some applications it may be appropriate to access the HOST system through a computerbased data set; a 1 km HOST data set has been created for this purpose.

The efficacy of the HOST classification has been demonstrated in estimating important parameters needed for flood and low flow studies. In these catchment-based studies, HOST has so far only been used by abstracting the coverage within the topographic catchment boundary. An alternative strategy for use in design flood estimation, would be to weight the soils within the boundary according to, say, their distance from a river channel, since flood response is thought to be generated predominantly from a riparian zone. It is also hoped to use the HOST classification of soils directly within distributed catchment models.

Acknowledgements

Work on the HOST project has been funded by the Ministry of Agriculture, Fisheries and Food, the Scottish Office Agriculture and Fisheries Department, and the Department of Agriculture for Northern Ireland (DANI). Data sets have been made available by IH, SSLRC, MLURI and DANI.

The following present and former Institute of Hydrology staff are thanked for their support to the HOST project and in the production of this report: Nick Bonvoisin, Andy Bullock, Margaret Clayton, Beate Gannon, and Alan Gustard. The editorial production and management of the final report was undertaken by Charlotte Allen.

i

References

- Avery, B.W. 1980. Soil classification for England and Wales (Higher Categories). *Soil Survey Technical Monograph No.14*. Soil Survey of England and Wales, Lawes Agricultural Trust, Harpenden.
- Bell, F.G. 1985. Engineering properties of soils and rocks, Butterworths, London.

Bibby, J.S., Douglas, H.A., Thomasson, A.J., and Robertson, J.S. 1982. *Land Capability Classification for Agriculture*, Soil Survey of Scotland Monograph, Macaulay Institute for Soil Research, Aberdeen.

- Boorman, D.B. 1985. A review of the Flood Studies Report rainfall-runoff model parameter estimation equations. Institute of Hydrology Report No. 94.
- British Geological Survey. 1988. Hydrogeological map of Scotland.
- Burn, D.H. and Boorman, D.B. 1993. Estimation of hydrological parameters at ungauged catchments, *J. Hydrol.* **143**, 429-454.
- Department of Environment/National Water Council. 1981. Design and analysis of urban storm drainage - the Wallingford Procedure. National Water Council (Water Authorities Association).

Farquharson, F.A.K., Mackney, D., Newson, M.D. and Thomasson, A.J. 1978. Estimation of run-off potential of river catchments from soil surveys. Special Survey No.11. Soil Survey of England and Wales. Lawes Agricultural Trust. Harpenden.

Gustard A., Roald, L.A., Demuth, S., Lumadjeng, H.S. and Gross, R. 1989. Flow Regimes from Experimental and Network Data (FREND), Institute of Hydrology.

Gustard, A., Bullock, A. and Dixon, J.M. 1992. Low Flow Estimation in the United Kingdom. Institute of Hydrology Report No. 108.

Gustard, A., Marshall, D.C.W. & Sutcliffe, M.F. 1987. Low flow estimation in Scotland. *IH Report No. 101*, Wallingford, UK.

Hodgson, J.M. (Ed.) 1974. Soil Survey Field Handbook, Soil Survey Technical Monograph No. 5. Hollis, J.M. 1989. A methodology for predicting Soil Wetness Class from soil and site properties, SSLRC report to MAFF.

Hollis, J.M. and Woods, S.M. 1989. The measurement and estimation of saturated soil hydraulic conductivity, SSLRC report to MAFF.

Institute of Geological Sciences (now British Geological Survey). 1977. Hydrogeological map of England and Wales.

Institute of Hydrology. 1978. A revised version of the Winter Rain Acceptance Potential (SOIL) map, *Flood Studies Supplementary Report No. 7.*

Institute of Hydrology. 1985. The FSR rainfallrunoff model parameter estimation equations updated, *Flood Studies Supplementary Report No. 16.*

Institute of Hydrology. 1985. A localised reinterpretation of the WRAP (Soil) map, *Flood Studies Supplemenatary Report No.17.*

Institute of Hydrology. 1980. Low Flow Studies.

Institute of Hydrology. 1988. Hydrological Data UK: Hydrometric Register and Statistics 1981-5.

MAFF. 1988. Agricultural land classification of England and Wales: revised guidelines and criteria for grading the quality of agricultural land. Ministry of Agriculture, Fisheries and Food (Publications), Alnwick, UK.

Natural Environment Research Council. 1975. Flood Studies Report.

Pirt, J. and Douglas, R. 1980. A study of low flows in the Severn and Trent catchments. Severn Trent Water Authority.

Robson, J.D. and Thomasson, A.J. 1977. Soil water regimes. Soil Survey Technical Monograph No. 11, Rothampstead Experimental Station, Harpenden.

Soil Survey of Scotland. 1984. Organistion and Methods of the 1:250,000 Soil Survey of Scotland. Macaulay Institute for Soil Research, Aberdeen.

Southern Water Authority. 1979. Report on low flow studies for the Southern Water Authority area.

Appendix A

A brief history of the development of the HOST classification system

The result of the HOST project is a classification scheme that is defined in terms of physical models with subdivisions based on soil properties or substrate hydrogeology. This appendix describes the evolution of the classification during the HOST Project.

As described in Section 2, the WRAP classification and map were seen as a logical starting point. The first idea to improve upon WRAP was simply to code the new 1:250,000 soil maps with the appropriate WRAP classes, since this would solve one of the main problems with WRAP, that is that the scale was not adequate to represent the spatial variability of the soils. A modification to this approach was to use a revised WRAP scheme that subdivided the WRAP types 1, 2 and 5 as shown in Table A.1.

While the notion of bolting-on additions to WRAP to give it greater resolution had appeal as an evolutionary approach, it was seen as limiting the possibilities within a revised scheme. The first scheme considered that departed from WRAP considered a broad division into four major groups, and 10 classes as shown in Table A.2. The geology of the substrate was seen as being a key differentiating characteristic in one of the groups. In two groups IAC was proposed as a surrogate for permeability. IAC could be calculated for all soils, but in some cases this would be through aggregating air capacities from similar horizons in different soils. These early classification schemes were examined initially by referring to 'benchmark' catchments. If catchments were dominated by soils of a particular class and had similar hydrological characteristics this supported the classification scheme, but where these catchments had very different hydrological properties it was clear that the classification was inadequate.

The use of these benchmark catchments quickly showed that classes D and F contained soils with very different response characteristics. In class D it seemed necessary to divide deep peat soils from thin peat soils over a variety of substrates. Class F appeared to need further division on the basis of substrate geology.

In retrospect it is difficult to be certain at what stage it became clear that it was impractical to place map units in these classes. In the scheme represented by Table A.1 this was certainly the intention. However, as soon as more physical properties were introduced it became clear that the new classification had to be series-based, since the properties can only be defined in a

WRAP class	New class	Description
1	1	Soils over chalk
	2	Soils over sand
	3	Soils over hard limestone
2	4	Brown earths, moist areas over shale or rock
	5	Groundwater gleys and lowland peat
	6	Argillic brown earths and Paleo-argillics (excluding chalks)
3	7	No change
4	8	No change
5	9	Hill Peat
	10	Humic Rankers

Table A. l	An early	proposal	for a	divided	WRAP	classification
------------	----------	----------	-------	---------	------	----------------

Table A.2	The first	proposal t	o depart .	from	WRAF
-----------	-----------	------------	------------	------	------

Major differentiating characteristics	Class	Class differentiating properties
Soils with a ground water table within 2m	Α	IAC <u>≥</u> 175
depin	в	175>IAC <u>></u> 125
	С	125>IAC
Soils with evidence of wetness below a peaty or humose surface horizon and no groundwater within 2m depth	D	None
Soils, excluding A,B,C and D that overlay	E	Chalk or soft sandstone substrates
hard or shattered rock or gravelly substrates within 80cm of the soil surface	F	Shattered rock, gravel or fissured limestone
	G	Hard coherent rock substrates
Deep soils, excluding A, B, C and D on	н	IAC ≥175
very soft or unconsolidated substrates	1	175>IAC ≥125
	J	125>IAC <u>≥</u> 75
	к	75>IAC

meaningful sense for soil series. It therefore became important to have figures for the percentages of the different soil series within the map units. While it was clearly a simplification to assume that soil series were represented in the same proportions in all occurrences of a map unit, it was necessary to make such an assumption.

At this stage the classes were allocated to soil series by inspection and it was therefore very laborious to try a different form of classification. If the various soil parameters could be specified for each soil series then the classification could be altered simply be changing a set of class definitions. In the first data set of properties, three soil parameters were included: depth to a gleyed layer (evidence of seasonal waterlogging), depth to an impermeable layer (indicating the vertical movement in the soil prior to a lateral flow) and IAC (useful both as a measure of storage capacity and permeability). Three other properties were seen as important; slope, drainage and climate. At that time overland slope data were not readily available and although some work was done using channel slopes this was not productive and slope was not considered further in the HOST project. Some information was available on drainage and although it was used in the earlier stages of the project it was later disregarded; the possible future use of drainage in some of the final HOST classes is seen as a likely further development of HOST. Climate is one of the important factors influencing the formation of soils, and is clearly important in influencing the hydrological response of basins. There were long discussions about whether the climate should be used to help define the new

classification, or whether it should be another input used in applications of the new system. It was agreed to use the annual average rainfall in some studies to ascertain its value when used with the soil data to discriminate between benchmark catchments. Eventually this parameter was also disregarded in the definition of the HOST classification. It should be noted that soil forms in response to both climate and topography (i.e. slope) and so these parameters were already indirectly incorporated into the classification.

A data base of properties was established that contained average proportions of the soil series in each map unit, and the three soil physical properties. Although some analysis work was done using these properties alone it became clear at a very early stage that other information was required. From the above tables it can be seen that important properties in the two schemes are the substrate geology, the soil depth, the presence and, if appropriate, depth to an aquifer or groundwater, and the presence of a peaty top layer to the soil. It was decided to add these to the data held for each series. The geological classification, as described in Section 4, was based on the hydrogeological classification used by BGS, but many other classes were added. Table A.3 shows the nature of the data available to describe all of the soil properties.

It is perhaps worth dwelling slightly longer on the hydrogeological classification of the substrate. It was hoped that the new classification could be based as far as possible on physical properties of the soils. While some other properties may appear more appropriate

Table A.3 Description of data available for each soil series

Property	Nature of data
IAC	Value in cm.
Depth to a slowly permeable layer	Value in cm (if >1m then set to -100)
Depth to a gleyed layer	Value in cm (if >1m then set to -100)
Soil depth	Options: DEEP, SHALLOW
Peaty top layer	Options: YES, NO
Depth to groundwater or aquifer	Options: >2m, <2m, NO
Substrate hydrogeology	See Table 2.12

than those in Table A.3, hydraulic conductivity for example, such data were not available. It was hoped that the data that were available would act as surrogates for these more desirable properties. Although substrate geology appeared to be important, it was hoped that some simple properties might be sufficient to represent what geology was thought to be contributing to the classification. Again physical properties relating to the substrate would be most appropriate but all that was available were the inferred properties soil depth, and depth to a water table. It quickly became clear that this was not the case and the descriptive substrate geology classification became an essential element of the project.

Once this data set had been established it become possible to test classifications more easily. One of the first experiments was to partition the continuous variables to form discrete variables and examine all possible combinations of the parameters. Even when this was done using a highly simplified substrate hydrogeology scheme a great many classes result, although very many of these contain no recognised soil series. Using this type of approach in combination with the benchmark catchments, there were some aspects of the scheme where distinctions seemed necessary, and others where they did not. In this way it was possible to group soils into roughly 130 classes. This was clearly too many classes to form a

Substrate hydro-geology	Subdivision	Further differentiation	Cases		
Permeable	Intergranular flow (deep water table)	For each subdivision the following cases are distinguished	3		
	Intergranular flow (shallow water table)	 No gleyed or slowly permeable layer within 1m Not 1. and IAC>125 Not 1. and IAC≤125 	3		
	Fissure flow		3		
	Clay with flints				
	Any permeable geology with no gleyed or impermeable layer within the top 1m and a peaty top soil				
Peat	Earthy		_ 1		
	Eroded Blanket		1		
·	Raw				
Impermeable	Hard	For each subdivision these cases are distinguished	4		
	Clay	1. Not gleyed within 40cm, IAC >125 2. Not gleyed within 40cm, 125≥IAC>75 3. Not gleyed within 40cm, 75>IAC	3		
	Others	4. Gleyed within 40cm, no peaty top 5. Gleyed within 40cm, peaty top	5		

Table A.4	An example of	a classification based	l on the soil series p	properties
-----------	---------------	------------------------	------------------------	------------

practical tool for hydrologists, and it was difficult to define a rationale as to why some distinctions were necessary but others not. To take the development further it was necessary to go back and consider the processes occurring in the soil and substrate. By considering these simple physical models it became possible to group the 100 plus classes into a more manageable number. This approach did not, however, lead directly to a unique set of classes; one scheme resulting from this approach is shown in Table A.4. With this type of classification, that has only 26 classes, it is possible to perform multiple regression analyses using BFI as the dependent variable and the fractions of the classes as the independent variables.

Using both the multiple regression studies, and the benchmark catchments, many different classifications were examined to see which variables appeared useful in differentiating catchment-scale parameters, and which were not. For example in the above scheme the 3 classes based on IAC in the impermeable substrate section appeared to contribute little to the resolution of the catchment-scale parameters. In other models a greater division of permeable substrate geology yielded benefits.

While the process of combining or separating classes referred to the hydrological data, it also considered the physical processes at work in the soil. Classes were never merged simply because they did not help the hydrological estimation process but only when the classes represented similar physical models.

Using this approach a classification with about 30 classes seemed inevitable. This was certainly more than had been envisaged at the start of the project when it was thought that a system with around 10 classes would be appropriate. This earlier estimate was based on the expected accuracy in estimating hydrological parameters. While combining then 30 classes into 10 would result in no loss in accuracy in estimating BFI or SPR, it would probably compromise the use of the classification for other purposes. This idea is easily understood by referring back to the table defining the WRAP classification (Table 2.1) which shows that WRAP class 5 covers 2 water regime categories, 3 depth to impermeable layer categories, 3 slope categories, and 3 permeability categories. It is hard to imagine that the same physical processes are dominant within such a diverse collection of soils.

The resulting HOST classification is shown in Figure 3.3. It contains 29 classes and aspects of the different classifications described in this appendix can be seen in the final form. The classification inevitably represents a compromise between the estimation of catchment-scale hydrological variables and the preservation of the physical models. The resulting conflicts are described in Sections 3 and 4, and it is hoped that further work, and subsequent applications of the HOST classification will show whether the classification should evolve so that it is easier to use or better represents reality.

It is worth recording that the data describing the spatial distribution of soils also changed during the course of the HOST project. Much of the early analysis was performed using only data from England and Wales. This data set was based on just the dominant map unit on a 1 km grid, and contained many unclassified areas. As the project progressed the data set went through the following stages:

- 1. Data from Scotland added, again as dominant map unit on a 1 km grid. Adjustments required to make accurate fit at border.
- 2. Scottish data had unclassified (urban) areas removed.
- 3. Data from England and Wales replaced with set that removed unclassified areas, and contained information on all map units in 1 km square.
- 4. Data from Scotland modified to contain all map units in each cell.
- 5. Combined data set for England, Wales and Scotland created containing HOST classes on a 1 km grid.
- 6. The production of a provisional soil map for Northern Ireland is added allowing application of HOST-based methods throughout the UK.

Appendix B Assignment of HOST classes to map units

The following lists give the typical percentages of HOST classes found in map units. The list of England and Wales map units starts overleaf, Scotland follows starting starting on page 79.

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
				431	WORCESTER	21	100.00
0C	CHINA CLAY WORKS	17	100.00	511a	ABERFORD	2	89.47
0L	LAKE	98	100.00			6	10.53
0S	SEA	99	100.00	511b	Moreton	2	65.96
00	UNSURVEYED	97	100.00			23	34.04
22	UNRIPENED GLEY SOILS	9	100.00	511c	PANHOLES	1	90.00
92a	DISTURBED SOILSI	21	100.00			6	10.00
920	DISTURBED SOILS2	21	100.00	511d	Blewbury	1	68.75
92C	DISTORBED SOILS3	24	100.00			13	31.25
311a	REVIDGE	12	42.80	511e	SWAF FHAM PRIOR	1	100.00
311h	WEDDAW	29	27.14	2111	COOMBET	1	17.78
5110	Diribbin	27	53.33	5110	COOMBE?	1	100 00
		29	13.33	511h	BADSEVI	<u>+</u>	77.78
311c	WETTON1	4	41.86	v		7	11.11
		15	58.14			8	11.11
311d	WETTON2	4	23.08	511i	BADSEY2	5	78.95
		15	76.92			7	10.53
311e	BANGOR	27	57.14			10	10.53
		29	42.86	511j	STRETHAM	18	50.62
313a	DUNWELL	19	38.89			21	49.38
		22	44.44	512a	ASWARBY	2	17.65
		27	16.67			13	47.06
313b	POWYS	17	33.33			23	17.65
		22	66.67			· 25	17.65
313c	CRWBIN	4	100.00	512b	LANDBEACH	5	13.79
341	ICKNIELD	1	94.74			7	70.11
3425	UPTON1	D 1	5.26	F12-	DUCKTNOTON	81	6.09
342a	UPTONI	1	100.00	512C 512d	RUSKINGTON	/	100.00
3420	WANTAGE1	1	88 89	5120	GRUVE	10	41.10
J420	MANIAGEI	- 6	11 11			20	23.55
342d	WANTAGE2	1	69.23			20	11 76
		9	30.77	512e	BLOCK	23	29.07
343a	ELMTON1	2	100.00		22001	8	30.23
343b	ELMTON2	2	90.00			9	11.63
		4	10.00			10	29.07
343c	Elmton3	2	56.25	512£	Milton	5	20.00
		23	25.00			8	80.00
		25	18.75	513	CANNAMORE	18	70.00
343d	SHERBORNE	2	77.78			21	15.00
		23	22.22			24	15.00
343e	MARCHAM	2	100.00	521	METHWOLD	1	100.00
343t	NEWMARKET1	1	100.00	532a	BLACKTOFT	8	89.47
343g	Newmarket2	Ţ	84.21	5 2 0 1		9	10.53
2425		5	15.79	532b	ROMNEY	8	100.00
3430	ANDOVERI	L C	90.00	541A	BEARSTED1	3	84.21
2426	ANDOVED 2	0 1	10.00	E 41 D	0000000	8	15.79
7471	ANDOVERZ	5	15 00	241B	BEARSTEDZ	10	22.94
346	Reach	0 0	100 00			10	49.41
361	Sandwich	5	89.47	5410	NEWDICCIN	19	65 00
301	Bundwitch	10	10 53	3410	NEWBIGGIN	19	35 00
372	Willingham	10	85.00	541n	OCLETHORPE	±0 5	77 78
		11	15.00	5415	OGEL THORE	5	22 22
4 11a	Eveshaml	2	29.41	541a	MTLEORD	6	10 53
		23	70.59	5.14		17	78.95
411b	EVESHAM2	23	52.94			21	10.53
		25	47.06	541b	BROMSGROVE	3	71.43
411c	EVESHAM3	20	23.08			4	14.29
•		23	61.54			18	14.29
		25	15.38	541c	EARDISTON1	3	14.93
411d	HANSLOPE	21	100.00			4	67.16
421a	STOW	16	16.67			18	17.91
		20	55.56	541d	EARDISTON2	4	100.00
		21	16.67	541e	CREDITON	2	22.22
		24	11.11			3	77.78
421b	HALSTOW	17	10.99	541f	RIVINGTON1	4	66.67
		21	45.05			13	33.33
		24	43.96				

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
541g	RIVINGTON2	4 21	83.33	552a	KEXBY	5 7	33,33 66,67
541h	NEATH	17	25.00	552b	Ollerton	7	40.59
		18	25.00	2012	01101000	13	19,80
		21	50.00			18	39.60
541i	MUNSLOW	4	100.00	554a	FRILFORD	3	89.47
541j	DENBIGH1	4	13.33			13	10.53
		17	60.00	554b	WORLINGTON	1	50.00
		18	13,33			5	30.00
5416	DENRICH?	6	13.33	555	Downham	10	20.00
7417	DENDIGIE	8	17.44		Dowiniam	10	42.11
		9	17.44			13	36.84
		17	46.51	561a	WHARFE	8	88.89
5411	BARTON	4	83.33			10	11.11
		18	16.67	561b	TEME	8	80.00
541m	SOUTH PETHERTON	3	80.00			9	20.00
		16	20.00	561c	ALUN	8	81.25
541n	Trusham	4	68,00			10	18.75
		17	20.00	561d	LUGWARDINE	8	88.89
5410	WAT HAND	22	12.00	5713		9	11.11
5410	MALHAMI	4 15	15.00	D/IA	ROWLON	19	22.23
541p	мат.нам2	13	100 00			24	12 33
541g	WALTHAM	4	55.56	571a	STON FASTON	2	66.67
+	······································	6	44.44			4	16.67
541r	WICK1	5	75.00			23	16.67
		7	25.00	571b	BROMYARD	4	15.58
5 4 1s	WICK2	5	37.50			18	84.42
		6	15.63	571c	MALLING	1	11.11
		8	10.42			2	16.67
5415	NTOY2	13	36.46			3	16.67
2410	WICKS	5	27 78			18	16 67
541u	ELLERBECK	5	100.00	571d	FYFIELD1	3	66.67
541v	RHEIDOL	5	88.89			16	22.22
		8	11.11			18	11.11
541w	Newnham	5	71.43	571e	FYFIELD2	3	100.00
		8	28.57	571f	FYFIELD3	3	77.78
541×	EAST KESWICK1	6	52.94			15	22.22
		7	11.76	571g	FYFIELD4	3	70.00
E 41.4	DAGE VEONTOVA	21	35.29			· 18	20.00
541Y	EAST RESWICK2	5	15.00			24	5.00
		17	20 00	571b	ARDINGTÓN	25	23.53
541z	EAST KESWICK3	4	37.50	57111	In Dingron	16	64.71
		6	62.50			24	11.76
542	NERCWYS	21	62.50	571i	HARWELL	4	10.00
		24	37.50			16	55.00
543	ARROW	7	75.00			24	35.00
		10	25.00	571j	FRILSHAM	1	100.00
544	BANBURY	2	83.33	571k	MOULTON	1	80.00
		20	16.67			5	20.00
551a	BRIDGNORTH	3 F	89.47	5711	CHARITYI		40.00
551b	CUCKNEY1	3	55 00	571m	<u><u><u></u></u> <u></u> <u></u></u>	1	59 82
2210	COCANETI	5	45 00	571m	CHARIII2	6	41 18
551c	CUCKNEY2	3	52.94	571n	TATHWELL	1	89.47
0020		10	23.53	5,111		18	10,53
		16	23.53	571o	MELFORD	1	100.00
551d	NEWPORT1	5	75.00	571p	ESCRICK1	6	62.50
		10	12.50			18	21.88
		18	12.50			24	15.63
551e	NEWPORT2	3	26.67	571q	ESCRICK2	5	20,00
		5	73.33			6	60.00
551I	Newport3	5	60.00	C	1111100110001	18	20.00
651~		10	40.00	5/1r	NUNSTANTON	T	00.42
2210	NEWPORT4	~	100.00			5	15.79

CODE	DE MAP_UNIT CLASS PERC		CODE	MAP_UNIT	CLASS	PERC		
		_					CA 71	
571s	EFFORD1	5	39.60	572g	ASHLEY	18	64.71 00 50	
		6	40.59			21	23.53	
		8	14.85	E70	Detabaseush	24 10	27 60	
C 0 1 4		9	4.95	5/21	katsborougn	18	37.50	
571t	EIIord2	5	36.05			24	35.71	
, ·		10	11.03	5720	Diabamaton 1	23 5	20.75	
		18	34.88	5/45	Bisnamptoni	5	21.05	
C 7 1	CTIMMON1	20 F	17.44			19	20.34	
5/1u	SUTIONI	5	100.00			24	15 79	
2110	SUTIONZ	2	77.70	5736	DT CUM NOTION 2	49 19	13.75	
571	thuck loop rook	5	44.44	5720	BISHAMPIONZ	20	17 11	
271W	AUCKIESDIOOK		10.00			20	27 78	
571~	Ludford	, 5	73 33			25	16.67	
3,17	Baarora	5	26.67	573a	WATERSTOCK	5	11.76	
571.	HAMRI F1	1	12 23	5754	MATERIO TOCK	6	17.65	
2.11	10.00001	6	40 00			7	23.53	
		8	26 67			8	35.29	
• •		18	20.00			9	11.76	
5712	HAMBLE2	6	53.33	573b	Wix	- 5	23.53	
		8	46.67	0.00		7	64.71	
572a	YELD	2	22.22			25	11.76	
		4	16.67	581a	NORDRACH	4	100.00	
		18	61.11	581b	SONNING1	5	88.89	
572b	MIDDLETON	18	85.88	581b	SONNING1	18	11.11	
		24	14.12	581c	SONNING2	5	62.50	
572c	HODNET	3	11.76			18	12.50	
*		13	11.76			25	25.00	
	•	18	64.71	581d	CARSTENS	1	88.89	
		21	11.76			6	11.11	
572d	Whimplel	5	34.07	581e	MARLOW	1	73.33	
	-	б	29.67			18	26.67	
		21	36.26	581f	BARROW	1	55.00	
572e	WHIMPLE2	3	23.53			5	45.00	
•	•	21	76.47	581g	STONE STREET	1	27. 7 8	
572£	WHIMPLE3	21	82.35			3	38.89	
		24	17.65			5	33.33	
572g	DUNNINGTON HEATH	18	71.43	582a	BATCOMBE	1	18.75	
		21	28.57			18	81.25	
572h	OXPASTURE	20	52,50	582b	Hornbeam1	1	26.67	
•		23	12,50			5	40.00	
		25	35.00			18	33.33	
572i	CURTISDEN	3	9.46	582c	HORNBEAM2	1	37.50	
		16	9.46			18	62.50	
		18	54.05	582d	HORNBEAM3	18	70.59	
		24	27.03			21	17.65	
[572j	Bursledon	10	17.24			24	11.76	
	·	13	17.24	582e	TENDRING	5	32.61	
		18	34.48			8	45.65	
		25	31.03			24	21.74	
572k	BIGNOR	4	11.24	611a	MALVERN	4	28.57	
		16	33.71			19	71.43	
		18	32.58	611b	MORETONHAMPSTEAD	4	100.00	
		24	22.47	611c	MANOD	17	87.50	
5721	FLINT	18	87.50		_	22	12.50	
		24	12.50	611d	WITHNELL1	4	55.56	
572m	SALWICK	5	25.00			17	33.33	
		8	20.00	۱.	_	21	11.11	
e = -		18	55.00	611e	WITHNELL2	4	83.33	
572n	BURLINGHAM1	5	37.50	 -		19	16.67	
	·	18	62.50	612a	PARC	15	11.76	
5720	· BURLINGHAM2	6	15.79	,		17	70.59	
		18	63.16			26	17.65	
.		24	21.05	612b	MOOR GATE	4	87.50	
572p	BURLINGHAM3	1	30.00			15	12.50	
		5	30.00	631a	ANGLEZARKE	4	60.00	
		18	40.00.			15	40.00	
				631b	DELAMERE	3	100.00	

Gilc BURRRELL HEATHI 3 44.44 711k VENNOLDS 9 21.43 10 22.22 18 31.43 18 32.43 13 16.67 711k CAVERLEY 19 25.00 6316 GOLDETONE 3 70.57 711s CAVERLEY 19 25.00 6316 GOLDETONE 3 70.57 711s CAVERLEY 19 25.50 6311 CRANDADOR 4 21.43 711s CLIFTON 14 61.52 6311 LARKMAROM 14 50.55 711s CLIFTON 10 45.40 6314 SOUPHAMEYON 24 70.71 Z4.50 24 50.00 6414 SOLLOX1 5 15.57 711s PENCLES1 24 77.78 6411 SOLLOX1 5 15.67 711s BECCLES3 18 25.00 6414 HOLME MOOR 7 26.67 711s BECLES3 <	CODE	MAP_UNIT	CLASS	C, PERC	CODE	MAP_UNIT	CLASS ·	PERC	·
6310 SHLRBELL HEATHI 3 44.44 7114 VENNUES 9 9 21.43 10 22.22 13 16.67 24 27.14 10 6016 6016 7111 CLAVERLEY 24 57.14 10						•. •		· · · · · · · ·	
10 22.22 1 18 18.4.31 13 16.67 7111 CLAVERLY 19 25.00 131 0.00 71.00 24 75.00 25.00 131 0.0105YONE 1 71.00 24 75.00 24 75.00 10 1.7.02 71.00 71.00 24 63.1.2 63.1.2 11 CLANYMOOR 5 7.2.94 71.10 CLEPTON 10 10.5.2 12 AKRABRON 15 43.45 71.10 CLEPTON 10 45.00 6411 SOLLAMI 5 31.5 71.10 CLEPTON 10 45.00 6411 SOLLAMI 5 31.2 71.11 BEXCLESI 4 50.00 6414 SOLLAMI 5 31.2 71.11 BEXCLESI 4 60.00 6414 MOLME 5 71.10 SOLESINCK 24 60.10 6415 SOLLOMI 5 </td <td>631c</td> <td>SHIRRELL HEATH1</td> <td>3</td> <td>44:44 .</td> <td>711k</td> <td>VERNOLDS .</td> <td>9</td> <td>21.4</td> <td>3</td>	631c	SHIRRELL HEATH1	3	44:44 .	711k	VERNOLDS .	9	21.4	3
13 16.67 7111 CLAVERLEY 24 37.14 631d SHIFAELL HEATH2 3 100.00 24 75.00 631d GOLDSTONE 3 7.16 SALOP 24 75.00 6311 CARADYMON 4 27.06 7.110 CLETFON 20 31.05 631 LARKHARDON 14 49.45 7110 CLETFON 24 31.05 631 SOLDANI 5 67.01 24 32.05 710 44 50.00 641 SOLLONI 5 57.01 24 32.02 24 77.73 641b SOLLONI 5 31.59 7110 BECCLES1 24 77.73 641b SOLLONI 5 32.22 711 BECCLES3 16 16.00 641b SOLLONI 10 21.25 7110 KOEDSHIK 18 32.61 641c HOLME MOOR 5 10.20 10.00 15.00		11	10	22.22		.e 1	18,	21.4	3 • •
Bit 16.67 711 CLARREY 19 28.00 6310 GOLDBTONE 3 78.57 711 SALOP 14 75.00 6311 GOLDBTONE 3 78.57 711 SALOP 14 75.00 6311 GEADNYMEON 4 27.01 711 CLIPTON 10 16.75 6331 LARKAREON 4 71.01 CLIPTON 10 45.00 634 SOUTHAMPTON 2 4 71.01 EUEFORD 10 45.00 6414 SOLICHI 5 31.58 71.01 EUEFORD 24 10.00 6414 SOLICHI 5 31.11 71.18 BECCLES1 24 10.00 6416 HOLME MOOR 7 16.57 111 BECCLES1 24 46.00 6418 HOLME MOOR 7 16.57 71.18 BECLES1 24 46.00 64316 HOLME MOOR 7 16.57 71.20<			13	16.67	·		24	,57.1	4
3-10 SHITKELD HEATHY 3 100.00 44 75.00 3-10 GELEXPONE 3 711m CLIFTON 10 113.51 3-11 CLIFTON 10 113.51 10 10 113.51 3-31 LARKBARCON 10 10 10 10 10 10 6-34 SOUTHAMPTON 5 87.01 711n CLIFTON 10 65.42 6-41 SOUTHAMPTON 5 87.01 711n CLIFTON 10 66.42 6-41 SOLLONI 10 66.42 BCCLES1 24 100 10 6-41 SOLION2 10 50.100 24 10.57.9 11 10 10.57.9 6418 SOLION2 10 50.100 24 60.00 10 10.57.9 10 10.00 10 10.57.9 10 10.00 10 10.57.9 10 10.00 10 10.57.9 10 10.00 10 10.57.9 10 10.00 10.00 10.00 10.00 10.00 10.00		, 	18	16.67	7111	CLAVERLEY ·	19	. 25.0	0
5/16 GOLDSTORE 1 <th1< th=""> 1 <th1< th=""> 1 <th1< td=""><td>631d</td><td>SHIRRELL HEATH2</td><td>3</td><td>100.00</td><td></td><td></td><td>24</td><td>75.0</td><td>0</td></th1<></th1<></th1<>	631d	SHIRRELL HEATH2	3	100.00			24	75.0	0
G31f Crannymoor 3 212 34 Tile CLIFTON 10 10 10 G33 LARKBARROM 14 70.05 Tile CLIFTON 18 31.05, 34 G34 SOUTHAMPTON 5 87.01 10 RUFFOND 24 10.07, 35.00, 34 G41 SOLLOMI 5 87.01 10 RUFFOND 24 10.07, 35.00, 34 22.92 G41 SOLLOMI 5 11.11 711s ENCCLESI 24 71.00, 34 22.22 G41 SOLLOMI 5 11.11 711s ENCCLESI 24 77.78 G41b SOLLOMI 5 12.50 21 82.61 22 23.53 21 82.61 82.26 10 15.79 G41b SOLMGRE 28 23.53 711w KODERNESS 13 22.63 13 22.63 13 22.63 13 22.00 24 63.33 13 24 63.33 <th2< td=""><td>631e</td><td>GOLDSTONE</td><td>3</td><td>1,78.57,1</td><td>/11m</td><td>· SALOP</td><td>18</td><td>•• √ 18.7 01 ⊃</td><td>⊃</td></th2<>	631e	GOLDSTONE	3	1,78.57,1	/11m	· SALOP	18	•• √ 18.7 01 ⊃	⊃
0.11 10 17.05 7110 CLIPTON 18 21.05 0.31 LAKKBARGOM 4 50.55 7110 RUFFORD 10 45.00 0.34 SOUTHAMPTON 5 9.055 7110 RUFFORD 10 45.00 0.34 SOUTHAMPTON 5 9.701 110 PUNRESWICK 24 100.00 641a SOLLONI 5 11.11 711a BECLESI 24 4.22.22 641b SOLLONI 5 11.11 711a BECLESI 24 84.21 641b SOLLONI 10 22.22 10 50.00 24 84.21 641b SOLLONI 10 21.25 711a BECLESI 24 84.21 641b MOLME MOOR 5 12.50 21 15.100 10 12.75 11 10 15.79 13 10 15.79 13 10 15.79 13 10 15.79 13 <t< td=""><td>631 F</td><td>·. Craddimoor</td><td>4</td><td>21.43</td><td>711n</td><td>CLIETON</td><td>44 10</td><td>01.2</td><td><u>э</u></td></t<>	631 F	·. Craddimoor	4	21.43	711n	CLIETON	44 10	01.2	<u>э</u>
G33 LARKBARGON 1 50, 45 7110 RUFFORD 24 66, 45 634 SOUTHAMPTON 15 69, 45 7110 DURGENUCK 24 100, 00 641a SOLLONI 5 31, 58 7117 DURGENUCK 24 100, 00 641b SOLLONI 5 31, 58 7117 BECCLES1, 24 40, 100, 00 641b SOLLONI 10 66, 42 7117 BECCLES1, 24 40, 100, 00 641c KOLME MOOR 5 12, 50 21 10, 5, 79 24 66, 00 24 80, 00 76 66, 25 24 66, 00 24 80, 00 76 66, 24 50, 00 24 67, 39 24 67, 39 24 67, 39 24 67, 39 24 67, 39 25 23, 53 9 20, 00 24 64, 71 13 20, 00 24 64, 71 13 20, 00 24 100, 00 24 100, 00 24 100, 00 </td <td>0211</td> <td>Craimymoor</td> <td>10 -</td> <td>2.54</td> <td>711n</td> <td>CLIFTON</td> <td>10</td> <td>21 0</td> <td>5</td>	0211	Craimymoor	10 -	2.54	711n	CLIFTON	10	21 0	5
5 49 7 10 RUFFORD 10	633	LARKBARROW	μ. Δ.·	50 55	,	Chillion	24	68.4	2
634 SOUTHAMPTON 5 97.01 711p DUNKESWICK 24 55.00 641a SOLLONI 5 31.58 711q PINDER 34 3.22.22 641b Sollon2 3 22.22 711r BECCLES1 24 3.7.78 641b Sollon2 10 50.00 24 84.21 3.7.78 641b Sollon2 10 50.00 24 84.21 3.6.67 641c HOLME MOOR 5 12.50 21 15.00 24 86.00 643a Holidays Hill 3 23.53 711w HOLDERNESS 18 32.61 643a Bolderwood 5 16.67 712a DALE 24 21.08 643a Bolderwood 5 16.67 712a DALE 24 21.03 643a Bolderwood 5 16.67 712a DALE 24 20.00 643b Bolderwood 5 1	055	LARREDAKKOW	15	49.45	7110	RUFFORD	10	45.0	<u>.</u>
24 12.99 711p DUNKESWICK 24 10.00 641a SOLOMI 5. 31.58 711g PINDER 16 22.22 641b Sollon2 3 22.22 711r BECCLES1 24 77.78 641b Sollon2 10 50.00 24 84.21 10.00 641c The BECCLES3 18 25.00 24 84.21 641c HOLME MOOR 5 12.50 24 60.00 10 21.25 711u HOLDERNESS 18 25.61 643a Holidays Hill 3 23.53 24 67.39 13 11.76 711v GRESHAM 10 10.00 643b Foundgate 18 23.53 711v CROFT PASCOE 4 10.00 643d Felthorpe 7 26.67 23 10.00 24 80.00 643d Felthorpe 7 26.67 23 10.00	634	SOUTHAMPTON		87.01	1110	·	24	55.0	0
641a SOLLONI 5 31.58 711q PINDER 18 22.22 641b Sollon2 3 22.22 711r BECCLES2 10 15.79 641b Sollon2 10 50.00 24 84.21 641c MOLME MOOR 5 12.50 14 55.00 641c MOLME MOOR 5 12.50 24 60.00 643a Holidays Hill 3 23.53 24 67.39 643a Holidays Hill 3 23.53 711w CROFT PASCOE 4 20.00 643b Foundgate 18 23.53 711w CROFT PASCOE 4 20.00 643c Bolderwood 5 16.67 712a DALE 24 10.00 643c Bolderwood 5 16.67 712a DALE 24 10.00 643c Beldwort 4 16.75 712c WINDEOR 25 .90.00 6			24	12.99	711p	DUNKESWICK	24	100.0	0
10 68.42 711F BECCLES1 24 77.76 641b Sollon2 3 22.22 711F BECCLES2 10 15.79 641b Sollon2 10 50.00 24 84.21 641c HOLME MOOR 5 12.50 24 64.21 641c HOLME MOOR 5 12.50 24 60.00 643a Holidays Hill 3 23.53 24 67.39 13 11.76 711v GRESHAM 10 10.57.9 643b Poundgate 18 23.53 9 20.00 24 64.71 13 20.00 13 20.00 643b Poundgate 18 7.12b DENCHWORTH 20 10.00 643b Felthorpe 7 26.67 23 14.29 10.00 643a Felthorpe 7 26.67 23 10.00 14 129 651a BELMONT	641a	SOLLOM1	5.	: 31.58 ·	711g	PINDER	18		2
641b Sollom2 -3 22.22 711r BECCLES1 10 10.00 641b Sollom2 10 50.00 24 84.11 641c HOLME MOOR 5 12.50 24 84.12 641c HOLME MOOR 5 12.50 24 86.13 641c HOLME MOOR 5 12.57 711u HECCLES3 18 32.51 643a Holidsye Hill 3 23.53 24 67.39 13 10 .11.76 711v GRESHAM 10 15.79 24 643b Poundgate 18 23.53 712w CRF PASCOE 24 21.05 643c Bolderwood 5 16.67 712a 14 50.00 643c Bolderwood 5 16.67 712a MALESWORTH 20 14.29 643d Felthorpe 7 26.67 712a MALESWORTH 25 .90.00 651b H		-	10	68.42			24	77.7	8
5 11.11 711s BECLES2 10 15.79 641b Sollom2 18 16.67 7111 BECLES3 18 25.00 641c HOLME MOOR 5 12.50 24 60.100 643a HOLIGAY HILL 3 23.53 24 67.39 643a HOLIGAY HILL 3 23.53 711u HOLDERNESS 48 63.16 643b Foundgate 18 23.53 711w GRESHAM 14 63.16 643b Foundgate 18 23.53 711w CROFT PASCOE 4 10.00 643b Foundgate 18 23.53 711w CROFT PASCOE 4 10.00 643b Foundgate 18 23.53 712w DALE 24 10.3 643b Foundgate 18 23.53 712w DALE 24 10.00 643b Foundgate 18 23.57 712a DALE 124	641b	Sollom2	, ~ .3 ,	. 22.22	711r	BECCLES1	24 .	100.0	0
641b Soliom2 10 50.00 711t BECLEB3 18 825.00 641c HOLME MOOR 5 12.50 24 60.00 21 15.00 641c HOLME MOOR 5 12.55 711u HOLDERNESS 24 60.00 24 643a Holidays Hill 3 23.53 711v GRESHAM 10 15.79 13 10 .11.76 711v GRESHAM 10 15.79 24 21.05 643b Poundgate 18 23.53 711w CROFT PASCOE 4 20.00 24 64.71 14 20.00 24 61.76 14 20.00 24 10.73 .712b DALE 24 100.00 14.29 643c Bolderwood 5 16.67 712a DALE 23 10.00 643d Felthorpe 7 26.67 23 14.29 .71.43 651b BRLMONT			5	11.11	711s	BECCLES2	10	15.7	9
18 16 7 7111 ECCLES3 18 25.00 641c HOLKE MOOR 5 12.50 24 60.00 7 66.25 18 32.61 24 60.00 643a Holidays Hill 3 23.53 24 67.33 24 67.33 24 67.33 24 67.35 24 63.16 18 22.53 711w CROFT PASCOE 4 10.00 63.16 18 23.53 711w CROFT PASCOE 4 10.00 64.31 3 20.00 26 11.76 14 50.00 64.31 3 20.00 26 11.76 24 64.71 23 14.29 24 64.71 23 14.29 23 10.00 14.29 23 10.00 14.29 23 10.00 14.29 23 10.00 14.29 23 10.00 14.29 24 100.00 14.29 24 100.00 14.29 24 100.00 14.29 <td>641b</td> <td>Sollom2</td> <td>10</td> <td>50.00</td> <td></td> <td></td> <td>24</td> <td>84.2</td> <td>1,</td>	641b	Sollom2	10	50.00			24	84.2	1,
641c HOLME MOOR 5 12.50 21 15.00 643a Holidays Hill 3 21.25 711u HOLDERNESS 18 32.61 10 21.25 711u GRESHAM 10 15.79 14 63.16 10 11.76 711v GRESHAM 10 15.79 24 21.05 643b Poundgate 18 32.33 711w CROFT FASCOE 4 10.00 643c Bolderwood 5 16.67 712a DALE 24 10.00 643c Bolderwood 5 16.67 712a DALE 24 10.00 643c Bolderwood 5 16.67 712a DALE 23 14.29 643d Feithorpe 7 26.67 23 10.00 14.29 651a BELMONT 4 18.75 712c MINDSOR 25 .90.00 651b BALE 15 68.75 712d		× .	18 .	. 16.67	711t	BECCLES3	18	25.0	0
10 21 25 711u NOLDERNESS 24 60.00 643a Holidays Hill 3 23.53 24 67.39 10 11.76 711v GRESHAM 10 15.79 13 11.76 711v GRESHAM 14 63.16 25 23.53 711w CROFT PASCOE 4 10.00 643b Poundgate 16 26.31.76 13 20.00 26 11.76 712a DALE 24 10.00 643c Bolderwood 5 16.67 712a DALE 24 100.00 643d Felthorpe 7 26.67 23 10.00 14.29 651a BELMONT 4 18.75 712c WINDSOR 23 10.00 651b Hexworthy 15 100.00 712d HALLSWORTH1 24 100.00 651b Hexworthy 15 100.00 712d HALSWORTH2 24 <td>641c</td> <td>HOLME MOOR</td> <td>5</td> <td>12.50</td> <td></td> <td>• • • •</td> <td>21</td> <td>15.0</td> <td>0</td>	641c	HOLME MOOR	5	12.50		• • • •	21	15.0	0
43a Holidays Hill 3 21.25 711u HOLDERNESS 13 32.61 643a Holidays Hill 3 21.25 711v GRESHAM 10 15.79 13 11.76 TIV GRESHAM 10 15.79 14 63.16 14 52.53 711v GROFT PASCOE 4 10.00 26 11.76 14 50.00 14 50.00 26 11.76 14 50.00 14.29 14.29 643d Felthorpe 7 26.67 123 14.29 643d Felthorpe 7 26.67 23 14.29 643d Felthorpe 7 26.67 23 10.00 651a BELMONT 4 18.75 712c MINDSOR 23 10.00 651b Hexworthy 15 100.00 712d HALSWORTH1 24 100.00 652 MAW 15 100.00 712d			. 7	66.25		,	24	.60.0	/O ∿ ⊶
643a Holicays Hill 3 23.53 10 15.79 13 11.76 711v GRESHAM 10 15.79 643b Poundgate 25 23.53 711v CROFT PASCOE 4 10.00 643b Foundgate 18 23.53 9 20.00 26 64.71 13 20.00 26 11.76 14 50.00 643c Bolderwood 5 16.67 712a DALE 24 100.00 643d Felthorpe 7 26.67 23 14.29 14.29 643d Felthorpe 7 26.67 23 10.00 14.29 651a BELMONT 4 18.75 712c WINDSOR 23 10.00 651b Heworthy 15 100.00 712d HALLSMORTH1 24 100.00 652 MAW 15 100.00 712d RAGDALE 21 22.22 4 100.00 654 13.33 712h FOGATHORPE1 24 100.00 12 24 77.			10	21.25	711u	HOLDERNESS	18	32.6	1
10	643a	Holidays Hill	3	23.53			24	. 67.3	.9
13 11.76 14 51.6 13 11.76 12 24.10 10.00 25 23.53 711w CROFT PASCOE 4 10.00 24 64.71 13 20.00 26 11.76 14 50.00 643c Bolderwood 5 16.67 712a DALE 24 100.00 643d Felthorpe 7 26.67 23 14.29 643d Felthorpe 7 26.67 23 14.29 651a BELMONT 4 18.75 712c WINDSOR 23 10.00 651b Hexworthy 15 100.00 712d HALLSWORTH1 24 100.00 652 MAW 15 100.00 712g RAGDALE 21 22,22 654a HAFREN 15 86.67 712a RAGDALE 24 20.00 655b LYDCOTT 15 88.69 7112b FOGGATHORPE1 24			10	11.76	711V	GRESHAM	10	15.7	9
18 29.41 CROFT PASCOE 4 10.00 643b Poundgate 18 23.53 711w CROFT PASCOE 4 10.00 26 11.76 13 20.00 13 20.00 26 11.76 14 55.00 24 60.00 14.29 643d Feithorpe 7 26.67 12 DALE 23 14.29 643d Feithorpe 7 26.67 712c WINDSOR 23 10.00 651b Hexworthy 15 10.00 712d HALLSWORTH 24 100.00 651c EALE 15 66.77 712c HALSWORTH 24 100.00 652 MAW 15 100.00 712g RAGDALE 21 22.22 654a HAPFEN 15 66.67 712e POGOATHORPE1 24 100.00 654b LYDCOTT 15 86.67 713b SPORTSMANS 9 3.43.75<			13	11./0		•	14	21.0	.10 ·
643b Poundgate 18 23.53 11.W CKOT PROCL 9 20.00 643c Bolderwood 5 16.67 712a DALE 24 60.00 643c Bolderwood 5 16.67 712a DALE 24 100.00 643d Felthorpe 7 26.67 23 14.29 643d Felthorpe 7 26.67 23 10.00 651b BELMONT 4 18.75 712c WINDSOR 23 10.00 651b Hexworthy 15 100.00 712d HALLSWORTH1 24 100.00 651c EARLE 15 68.75 712e HALLSWORTH2 24 100.00 652 MAW 15 100.00 712d RAGDALE 21 22.22 654a HAFREN 15 66.67 24 .77.78 24 .77.78 654c Gelligaer 15 100.00 713a BARDSEZ 24 100.00 654c Gelligaer 15 100.00			18.	, 29,41	711		24	10 0	10 10
0430 Pollingare 13 23.33 13 20.00 643c Bolderwood 26 11.76 14 50.00 643d Felthorpe 7 26.67 23 14.39 643d Felthorpe 7 26.67 23 14.39 651a BELMONT 4 18.75 712c WINDSOR 23 10.00 651b Hexworthy 15 100.00 712d HALLSWORTH1 24 100.00 651c EARLE 15 66.67 712c RAGDARCH 21 22.22 654 HAPREN 15 100.00 712d RAGDARC 24 100.00 654 HAPREN 15 66.67 24 77.78 24 100.00 654 HAPREN 15 100.00 712d PGGATHORPE1 24 100.00 654 HAPREN 15 100.00 21 11.76 24 100.00 711a	6425	Poundanto	25	23.55	/11W	CROFT PASCOE	¥ Q	20.0	10 10
26 11.76 14 50.00 643c Bolderwood 5 16.67 712a DALE 24 100.00 643d Felthorpe 7 26.67 23 14.29 651a BELMONT 4 18.75 71.26 MINDSOR 23 10.00 651b Hexworthy 15 100.00 712d HALLSWORTH1 24 100.00 651c EARLE 15 68.75 712e HALLSWORTH2 24 100.00 652a MAW 15 100.00 712d RAGDALE 21 22.22 654a HAFREN 15 66.67 24 77.78 26 13.33 712h FOGGATHORPE2 24 100.00 654b LYDCOTT 15 88.69 712i FOGGATHORPE2 24 100.00 24 111 713a BARDSEY 4 29.41 114.75 711a STAWMAY 18 20.00 <td>0430</td> <td>Foundgale ,</td> <td>24</td> <td>64 71</td> <td></td> <td></td> <td>13</td> <td>20.0</td> <td>10</td>	0430	Foundgale ,	24	64 71			13	20.0	10
643c Bolderwood 5 16.67 712a DALE 24 100.00 643d Felthorpe 7 26.67 23 14.29 10 73.33 25 71.43 651a BELMONT 4 18.75 712c WINDSOR 23 10.00 651b Hexworthy 15 10.00 712d HALSWORTH1 24 100.00 651c EARLE 15 68.75 712c WINDSOR 21 100.00 652 MAW 15 100.00 712d HALLSWORTH2 24 100.00 654b LYDCOTT 15 86.67 24 .77.78 .77.78 654c Gelligaer 15 100.00 712b FOCGATHORPE1 24 100.00 654c Gelligaer 15 100.00 713b BARDEY 4 29.41 711a STANWAY 18 .20.00 24 58.82 . 711b BROCKHURST1 21 20.00 15 18.75 711c			26	11 76			14	50.0)Õ
24 83.3 712b DENCHWORTH 20 14.29 643d Felthorpe 7 26.67 23 14.29 651a BELMONT 4 18.75 712c WINDSOR 23 10.00 651b Hexworthy 15 81.25	643c	Bolderwood		16.67	712a	DALE	24	100.0	0
643d Felthorpe 7 26.67 23 14.29 10 73.33 25 71.43 651a BELMONT 4 18.75 712c WINDSOR 25 .90.00 651b Hexworthy 15 100.00 712d HALLSWORTHI 24 100.00 651c EARLE 15 68.75 712e HALLSWORTH2 24 100.00 652 MAW 15 100.00 712d RAGDALE 21 22.22 654a HAFREN 15 86.67 712e FOGGATHORPE1 24 100.00 654c Gelligaer 15 100.00 713b SPORTSMANS 9 .9 43.75 711b BROCKHURST1 21 20.00 24 58.82 .1 11.76 711c BROCKHURST1 21 20.00 15 18.75 18 18.75 711b BROCKHURST1 21 20.00 15 18.75 14 10.53 711c BROCKHURST2 9 13.33 24			24	. 83.33	712b	DENCHWORTH	20	14.2	9 -
10 73.33 25 71.43 651a BELMONT 4 19.75 712c WINDSOR 23 10.00 651b Hexworthy 15 100.00 712d HALSWORTHI 24 100.00 651c EARLE 15 68.75 712e HALSWORTHI 24 100.00 652 MAW 15 100.00 712e HALSWORTHI 24 100.00 652 MAW 15 100.00 712e RAGDALE 21 22.22 654a HAFREN 15 86.67 712i FOGGATHORPEI 24 100.00 654b LYDCOTT 15 88.89 712i FOGGATHORPEI 24 100.00 654c Gelligaer 15 100.00 21 11.76 24 80.00 713b SPORTSMANS 9 .43.75 711a STAMMAY 18 20.00 21 18.75 11 10.53 711c BR	643d	Felthorpe	7	26.67			23	14.2	:9
651a BELMONT 4 18,75 712c WINDSOR 23 10.00 651b Hexworthy 15 81,25 24 100.00 651c EARLE 15 68,75 712e HALLSWORTH1 24 100.00 651c EARLE 15 68,75 712e HALLSWORTH2 24 100.00 652 MAW 15 100.00 712g RAGDALE 21 22.22 654a HAFREN 15 86,67 712c FOGGATHORPE1 24 100.00 654c Gelligaer 15 100.00 713b BRDSEY 4 29.41 654c Gelligaer 15 100.00 713b SPORTSMANS 9 .43.75 711b BROCKHURST1 21 20.00 24 58.62 . . 711b BROCKHURST1 21 20.00 24 18.75 . . 711c BROCKHURST1 21 20.00 24 18.75 		- /	10	73.33			25,	···; 71.4	3
15 81.25 25 .90.00 651b Hexworthy 15 100.00 7124 HALLSWORTH1 24 100.00 651c ERLE 27 31.25 712f CRSWE 24 100.00 652 MAN 15 100.00 712g RAGDALE 21 22.22 654 HAPREN 15 86.67 24 .77.78 24 100.00 654b LYDCOTT 15 88.89 712i FOGGATHORPE1 24 100.00 654c Gelligaer 15 100.00 - 24 26.82 11.11 713a BARDSEY 4 29.41 654c Gelligaer 15 100.00 - 24 80.82 11.76 11.875 11.875 11.875 11.8.75 11.8.75 11.8.75 11.8.75 12.1 10.53 11.51 18.75 11.11 10.53 11.51 18.75 11.51 18.75 11.51 18.75 11.51 18.75 11.51 18.75 11.51 18.75 11.51 18.75 <td< td=""><td>651a</td><td>BELMONT</td><td>4</td><td>18.75</td><td>712c</td><td>, WINDSOR</td><td>23</td><td>10.0</td><td>0</td></td<>	651a	BELMONT	4	18.75	712c	, WINDSOR	23	10.0	0
651b Hexworthy 15 100.00 712d HALLSWORTH1 24 100.00 651c EARLE 15 68.75 712e HALLSWORTH2 24 100.00 652 MAW 15 100.00 712g RAGDALE 21 22.22 654a HAPREN 15 96.67 24 .77.78		· . ·	15	81.25			25	, 90.0	10 4
651c EARLE 15 68.75 712e HALLSWORTH2 24 100.00 652 MAW 15 100.00 712g RAGDALE 21 22.22 654a HAFFEN 15 86.67 24 .77.78	651b	Hexworthy	15	p 100.00 .	712d	HALLSWORTH1	24	100.0	0
27 31.25 712f CREWE 24 100.00 652 MAW 15 100.00 712g RAGDALE 21 22,22 654 HAFREN 15 86.67 24 100.00 0 26 13.33 712h FOGGATHORPE1 24 100.00 0 654b LYDCOTT 15 88.89 712i FOGGATHORPE2 24 100.00 654c Gelligaer 15 100.00 21 11.76 11.76 711a STANWAY 24 80.00 713b SPORTSMANS 9 43.75 711b BROCKHURST1 21 20.00 15 18.75 711c BROCKHURST2 9 13.33 24 18.75 711c BROCKHURST2 9 13.33 24 18.75 711d MARTOCK 24 100.00 24 78.95 711d WARTOCK 24 10.76. 24 76.47 711f WICKHAM1 20 11.76. 24 76.47 <	651c	EARLE	15	68.75	712e	HALLSWORTH2	24	100.0	10
652 MAW 15 100.00 712g REAL 21 22.22 654a HAFREN 15 86.67 24 7.78 26 13.33 712h FOGGATHORPE1 24 100.00 654b LYDCOTT 15 88.89 712i FOGGATHORPE2 24 100.00 654c Gelligaer 15 100:00 21 11.76 11.76 711a STANWAY 18 20:00 24 58.82 100.10 24 58.82 101.75 711b BROCKHURST1 21 20:00 15 18.75 18.75 711c BROCKHURST2 9 13.33 24 18.75 11.10.53 711d MARTOCK 24 100.00 24 78.95 11.10.53 711d MARTOCK 24 100.00 24 78.95 11.10.53 711d MARTOCK 24 10.67 11.10.76 24 76.47 711f WICKHAM1 20 11.76 24 68.75 12 26.67			27	31.25	712£	CREWE	24	100.0	10
5548 HAFKEN 13 56.07 1 14 17.76 26 13.33 712h FOGGATHORPE1 24 100.00 654b LYDCOTT 15 88.89 712i FOGGATHORPE2 24 100.00 654c Gelligaer 15 100.00 24 58.82 11.76 711a STANWAY 18 20.00 24 58.82 11.76 711b BROCKHURST1 21 20.00 21 18.75 711c BROCKHURST2 9 13.33 24 18.75 711c BROCKHURST2 9 13.33 24 18.75 711c BROCKHURST2 9 13.33 24 18.75 711c MARTOCK 24 100.00 24 78.95 711d MARTOCK 24 100.00 24 78.95 711e WICKHAM1 20 11.76 24 76.47 25 70.59 18 11.76 24 76.47 711g WICKHAM2 20 16.67	652	MAW	15	· 100.00	/12g	RAGDALE	21	22.2	:2 70
654b LYDCOTT 15 88.89 7121 FOGGATHORPE1 24 100.00 654c Gelligaer 15 100.00 21 11.76 711a STANNAY 18 20.00 24 58.82 711b BROCKHURST1 21 20.00 15 18.75 711c BROCKHURST1 21 20.00 15 18.75 711c BROCKHURST2 9 13.33 24 18.75 711c BROCKHURST2 9 13.33 24 10.53 711c BROCKHURST2 9 13.33 24 10.53 711d MARTOCK 24 100.00 24 78.95 711e WICKHAM1 20 11.76 26 10.53 711f WICKHAM2 20 11.76 24 76.47 711f WICKHAM3 10 15.79 713d CEGIN 11 11.76 711g WICKHAM3 10 15.79 713f BRICKFIELD1 24 68.20 00.00 711g </td <td>654a</td> <td>HAFREN</td> <td>15</td> <td>86.67</td> <td>7124</td> <td>FOCOMPUONDE1</td> <td>24</td> <td>100 0</td> <td></td>	654a	HAFREN	15	86.67	7124	FOCOMPUONDE1	24	100 0	
654D 11DC011 15 88.99 7121 713a BARDSEY 4 29.41 654c Gelligaer 15 100.00 21 11.76 711a STANWAY 18 20.00 24 58.82 711b BROCKHURST1 21 20.00 15 18.75 711b BROCKHURST1 21 20.00 15 18.75 711c BROCKHURST2 9 13.33 24 18.75 711d MARTOCK 24 100.00 24 78.95 711e WICKHAM1 20 11.76 26 10.53 711e WICKHAM1 20 11.76 26 10.53 711f WICKHAM2 20.11.75 713d CEGIN 17 11.6 725 70.59 18 11.76 24 66.75 18 11.76 711g WICKHAM2 10 15.79 713f BRICKFIELD1 24 68.75 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 <td< td=""><td>6 E A h</td><td></td><td>20</td><td>13.33</td><td>7125</td><td>FOGGATHORFET</td><td>24</td><td>100.0</td><td>יטי וח ~</td></td<>	6 E A h		20	13.33	7125	FOGGATHORFET	24	100.0	יטי וח ~
654c Gelligaer 15 10:00 21 11:76 711a STANWAY 18 20:00 24 58.62 11:76 711b BROCKHURST1 21 20:00 15 18:75 711b BROCKHURST1 21 20:00 21 18:75 711c BROCKHURST2 9 13.33 24 18:75 711c BROCKHURST2 9 13.33 24 18:75 711c MARTOCK 24 00:00 21 10:53 711e WICKHAM1 20 11:76 26 10:53 711f WICKHAM2 20; 16:67 13 CEGIN 17 11:76 711g WICKHAM3 10 15:79 713f BRICKFIELD1 24 68:75 21 711g WICKHAM3 10 15:79 713f BRICKFIELD2 6 20:00 18 10:53 21 26:67 24 53:33 21 26:67 711g WICKHAM4 25 100:00 713g BRIC	0540		26	11.11	713a	BARDSEY	4	29.4	11
711a STANWAY 18 20:00 24 58.82 711b STANWAY 18 20:00 15 18.75 711b BROCKHURST1 21 20:00 15 18.75 711c BROCKHURST1 21 20:00 21 18.75 711c BROCKHURST2 9 13.33 24 18.75 711d MARTOCK 24 100:00 24 78.95 711e WICKHAM1 20 11.76 26 10.53 711f WICKHAM1 20 11.76 26 10.53 711f WICKHAM2 20 16.67 24 68.75 711g WICKHAM3 10 15.79 713f BRICKFIELD1 24 68.75 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 18 10.53 21 26.67 24 53.33 21 26.67 711g WICKHAM3 10 15.79 713f BRICKFIELD3 24 100.00	654c	Gelligaer	15	100:00	7130		21	11.7	16 .
24 80.00 713b SPORTSMANS 9 43.75 711b BROCKHURST1 21 20.00 15 18.75 711c BROCKHURST2 9 13.33 24 18.75 711c BROCKHURST2 9 13.33 24 18.75 711d MARTOCK 24 100.00 24 78.95 711e WICKHAM1 20 11.76 26 10.53 711e WICKHAM2 20 11.76 26 10.53 711f WICKHAM2 20 11.76 26 10.53 711g WICKHAM2 20 16.67 18 11.76 25 70.59 18 11.76 24 76.47 23 11.11 713e BRICKFIELD1 24 68.75 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 711g WICKHAM4 25 100.00 713g BRICKFIELD3	711a	STANWAY	18	20:00			24	58.8	32 1.
711b BROCKHURST1 21 20.00 15 18.75 711c BROCKHURST2 9 13.33 24 18.75 711c BROCKHURST2 9 13.33 24 18.75 711c BROCKHURST2 9 13.33 24 18.75 711d MARTOCK 24 100.00 24 78.95 711e WICKHAM1 20 11.76 26 10.53 711f WICKHAM2 20 11.76 26 10.53 711f WICKHAM2 20 16.67 1.0 24 76.47 711g WICKHAM2 20 16.67 24 76.47 23 11.11 713e BRICKFIELD1 24 68.75 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 711g WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 7			24	80.00	713b	SPORTSMANS	9.	43.7	75
24 80.00 21 18.75 711c BROCKHURST2 9 13.33 24 18.75 711d MARTOCK 24 86.67 713c FFOREST 21 10.53 711d MARTOCK 24 100.00 26 10.53 711e WICKHAM1 20 11.76 26 10.53 24 17.65 713d CEGIN 17 11.76 25 70.59 18 11.76 24 76.47 711g WICKHAM2 20 16.67 1 26 31.25 711g WICKHAM3 10 15.79 713f BRICKFIELD1 24 68.75 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 711g WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM4 25 100.00 713g BRICKFIELD3 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3	711b	BROCKHURST1	21	20.00			15	18.7	75
711c BROCKHURST2 9 13.33 24 18.75 24 86.67 713c FFOREST 21 10.53 711d MARTOCK 24 100.00 24 78.95 711e WICKHAM1 20 11.76 26 10.53 24 17.65 713d CEGIN 17 11.76 711f WICKHAM2 20 16.67 1 24 76.47 23 11.11 713e BRICKFIELD1 24 68.75 1 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 18 10.53 21 26.67 21 26.67 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 18 10.53 24 53.33 21 26.67 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 24 63.16		×	24	80.00		•	21	18.7	75
24 86.67 713c FFOREST 21 10.53 711d MARTOCK 24 100.00 24 78.95 711e WICKHAM1 20 11.76 26 10.53 24 17.65 713d CEGIN 17 11.76 24 17.65 713d CEGIN 17 11.76 711f WICKHAM2 20, 16.67 1 24 76.59 711f WICKHAM2 20, 16.67 24 76.47 25 72.22 26 31.25 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 18 10.53 21 26.67 21 26.67 23.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 50.33 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 61.04 714b OAK1 24 100.00 711j <td< td=""><td>711c</td><td>BROCKHURST2</td><td>9</td><td>• 13.33</td><td></td><td>· .</td><td>24</td><td>18.7</td><td>75</td></td<>	711c	BROCKHURST2	9	• 13.33		· .	24	18.7	75
711d MARTOCK 24 100.00 24 78.95 711e WICKHAM1 20 11.76 26 10.53 24 17.65 713d CEGIN 17 11.76 25 70.59. 18 11.76 24 76.47 23 11.11 713e BRICKFIELD1 24 68.75 25 72.22 26 31.25 31.25 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 18 10.53 21 26.67 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 26.32 26 26.32 24 12.99 14a DUNKESWELL 18 100.00 711j KING			24	86.67	713c	FFOREST .	. 21	10.5	53
711e WICKHAM1 20 11.76 26 10.53 24 17.65 713d CEGIN 17 11.76 711f WICKHAM2 20 16.67 24 76.47 23 11.11 713e BRICKFIELD1 24 68.75 25 72.22 26 31.25 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 18 10.53 21 26.67 24 53.33 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 18 10.53 21 26.67 24 53.33 33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 63.16 24 100.00 711j KINGSTON 3 17.65 714c 0AK2 18 33.33	711d	MARTOCK	24	100.00		ċ	24	78.9	€5
24 17.65 713d CEGIN 17 11.76 25 70.59 18 11.76 23 11.11 713e BRICKFIELD1 24 68.75 25 72.22 26 31.25 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 18 10.53 21 26.67 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 26 26.32 25 61.04 714b OAK1 24 100.00 711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 </td <td>711e</td> <td>WICKHAM1</td> <td>20</td> <td>, 11.76</td> <td></td> <td></td> <td>26</td> <td>10.5</td> <td>53</td>	711e	WICKHAM1	20	, 11.76			26	10.5	53
711f WICKHAM2 20 16.67 1 24 76.47 23 11.11 713e BRICKFIELD1 24 68.75 1 25 72.22 26 31.25 1 25 72.22 26 31.25 711g WICKHAM3 10 15.79 713f BRICKFIELD2 6 20.00 18 10.53 21 26.67 24 33.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 63.16 24 63.16 24 12.99 24 63.16 24 100.00 711j KINGSTON 3 17.65 714c OAK1 24 66.67 18 23.53 714d ESSENDEN 18 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 <t< td=""><td></td><td>• • • •</td><td>24</td><td>17.65</td><td>713d</td><td>CEGIN</td><td>17</td><td>11.7</td><td>76 .</td></t<>		• • • •	24	17.65	713d	CEGIN	17	11.7	76 .
711f WICKHAM2 20, 16.67 1 24 76.47 23 11.11 713e BRICKFIELD1 24 68.75 25 711g WICKHAM3 10 15.79 713f. BRICKFIELD2 6 20.00 18 10.53 21 26.67 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 714a DUNKESWELL 18 10.53 24 63.16 24 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 63.16 24 12.99 711j KINGSTON 3 17.65 714c OAK1 24 100.00 711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18		1	·25_	70.59.	0	· .	1,8	11.7	76
23 11.11 713e BRICKFIELD1 3.24 68.75 31.25 711g WICKHAM3 10 15.79 713f. BRICKFIELD2 6 20.00 18 10.53 21 26.67 25 73.68 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 63.16 24 63.16 24 12.99 24 63.16 24 100.00 711j KINGSTON 3 17.65 714c OAK1 24 100.00 711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 140 04K1 18 20.00 24 66.67 <td>711f</td> <td>WICKHAM2</td> <td>20_i;</td> <td>16.67 1,</td> <td></td> <td></td> <td>24</td> <td>76.4</td> <td>17</td>	711f	WICKHAM2	20 _i ;	16.67 1,			24	76.4	17
711g WICKHAM3 10 15.79 713f. BRICKFIELD2 6 20.00 18 10.53 21 26.67 25 73.68 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 63.16 24 63.16 24 12.99 26 26.32 26 26.32 711j KINGSTON 3 17.65 714c OAK1 24 100.00 711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 140 04K1 18 20.00 18 20.00			23	11.11	713e	BRICKFIEDDI	: 24	· 68.	/5, , >E
711g WICKHAM3 10 15.79 7131.BRICKFIELD2 6 20.00 18 10.53 21 26.67 25 73.68 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 63.16 24 63.16 24 12.99 26 26.32 26 26.32 25 61.04 714b OAK1 24 100.00 711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 140.06 14 24 60.00 18 20.00			. 25	72.22	7176		46 6	31.4	45
18 10.33 21 20.07 25 73.68 24 53.33 711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 63.16 24 12.99 26 26.32 24 12.99 25 61.04 714b OAK1 24 100.00 711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 17.06 140.00 18 20.00 18 10.00	/11g	WICKHAMS	10	10.52	/131	, BRICKFIEDUZ	21	20.0	50
711h WICKHAM4 25 100.00 713g BRICKFIELD3 24 100.00 711i WICKHAM5 18 12.99 714a DUNKESWELL 18 10.53 20 12.99 24 63.16 24 12.99 26 26.32 25 61.04 714b OAK1 24 100.00 711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 17.06 18 20.00 18 20.00 18 20.00			18 25	10.33			21	20.0 53 (37 33
7111 MICHAINT 25 (* 100,00 7159 MICHAINDS 24 100,00 7111 WICKHAM5 18 12,99 714a DUNKESWELL 18 10,53 20 12,99 24 63,16 24 12,99 26 26,32 25 61,04 714b OAK1 24 100,00 711j KINGSTON 3 17,65 714c OAK2 18 33,33 16 11.76 24 66,67 18 23,53 714d ESSENDEN 18 20,00 24 47,06 24 710 24 66,67 18 20,00	7112	WTCKHAMA	2J 25	. 100 00	712~	BRICKFIFLDS	. 24	100 (00
20 12.99 24 63.16 24 12.99 26 26.32 25 61.04 714b OAK1 24 100.00 711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 10.00<	7114	WTCKHAMS	19	12 99	714a	DUNKESWELL	19	10.0	53
24 12.99 26 26.32 25 61.04 714b 0AK1 24 100.00 711j KINGSTON 3 17.65 714c 0AK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 47.06 18 20.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 18 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.		11 T.C.I.N.I.C.	20	12.99	/ 1 % d		24	63	16
25 61.04 714b OAK1 24 100.00 711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 47.06 18 20.00 18 20.00			2.4	12.99		-	26	26.1	32
711j KINGSTON 3 17.65 714c OAK2 18 33.33 16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 47.06 18 20.00			25	61.04	714b	OAK1	24	100.0	00
16 11.76 24 66.67 18 23.53 714d ESSENDEN 18 20.00 24 47.06 18 20.00	711i	KINGSTON	- 3	17.65	714c	OAK2	18	33.3	33
18 23.53 714d ESSENDEN 18 20.00 24 47.06 18 18 20.00			16	11.76			24	66.0	67
24 47.06			18	23.53	714d	ESSENDEN	18	20.4	00
			24	47.06					

•

.

CODE	MAP_UNIT	CLASS . PERC	CODE MAP_UNIT	CLASS The PERC
714d	ESSENDEN	24 60.00 25 20.00	832 KELMSCOT	···· 7 ··· 12.50 ····
	PRINCETOWN	15 100.00		9 12.50
7216	ÓNECOTE /	26 100.00		10 75.00
7216	WILCOCKS1		841a Curdridge,	18 80.00
	,	26 88 89	· · ·	25
7214	WTLCOCKS2	15 11'11'	841b HURST	7 6 6 2 13.33
, , ,	, '	26 55.56	· · · ·	8 13.33
		29 33.33		10 . 73.33
721e	WENALLT	26 84.21	841c. SWANWICK	10 100.00
/210	,	29 15.79	841d'. SHABBINGTON	7 🖉 13.33 👘
811a	ENBORNE	8 21.05		8 26.67
0110	BREGRAD	9 15.79		.9
		10 19 . 63.16	、 · ·	25 13.33
811b	CONWAY	8 23.53	841e [,] PARK GATE	8 : 22.22
		9 76.47	· :	9 77.78
811c	HOLLINGTON	8 11.11	851a DOWNHOLLAND1	9 Str64.71 f
0110		9 88 89	. 1	10 17.65
811d	ROCKCLIFFE	B 11.11	· · ·	11 e17.65 'all'
	+1 F	9 55.56	851b DOWNHOLLAND2	9 71.43
		10 33.33		10 : 28.57
811e	TANVATS	9 61.11	851c DOWNHOLLAND3	9 50.00
0110		10 38.89	· · · ·	10 20.00
812a	FROME	10 95.00		11 J. M 30.00 J. TA
V1 10		11 5.00	861a Islehaml	10 80.00
812b	WISBECH	8 31 25	· . :	22 20.00
0100	, ,	9 68 75	861b Isleham2	7 20.00
8120	AGNEY	9' 1 00 00	· · · · · · · · · · · · · · · · · · ·	10 50.00
813a	MIDELNEY	9 83 33		11 (: .30.00 (⁻¹)
0104		10 16.67	871a LAPLOYD	10 23.53
813b	FLADBURY1	8 15.00	· · · · ·	12 64.71
		9 85.00	· ·	29
813c	FLADBURY2	8 3 23.53	871b HENSE	3 10.00
	·	9 76.47		10 cm + .70.00 + C.
813d	FLADBURY3	9 88.89		12 20.00
		10 11.11	871c HANWORTH	10 .70.00 J
813e -	COMPTON	9 100.00	· · ·	11 30.00
813f	WALLASEA1	9 100.00	. 872a PEACOCK	9.121115.00
813g ·	WALLASEA2	8: 12.77	· · · ·	11 16.67 . 775
	; `	9 87.23		25 68.33
813h	Dowels	9 100.00	872b'Clayhythe	9 15.79
814a	THAMES .	8 8.89		10 · 63.16 · · ·
	•	9 · 91.11 · ′	· • • · · ·	11 10.53
814b	Newchurch1	<u>8 25.32</u>		25 10.53
• •		9 74.68	873 IRETON	10 100.00
814c	NEWCHURCH2	9 100.00	1011a LONGMOSS	10- 100.00 .
815 .	NORMOOR	9 100.00	1011b WINTER HILL	29 100.00 ·····
821a	EVERINGHAM	7 26.32	1013a CROWDY1	15 11.11
	:	10 73.68		26 16.67
821b	BLACKWOOD	7 9.52	t III – ES	29 72.22
	• • •	10 90.48	1013b CROWDY2	29
831a	YEOLLANDPARK	8 17.65	1021 TURBARY MOOR	11 80.00
	· , ·	9 70.59		12 20.00 di
	•	24 11.76	1022a ALTCAR1	11 // 100.00 / i
831b	SESSAY	9 55.00 -	1022b ALTCAR2	11 100.00
	·	10 15.00	1024a ADVENTURERS'1	11 100.00
		24 30.00	1024b ADVENTURERS'2	10 N. 20.00 T.C.
831c	WIGTON MOOR	7 11.11	1	11 80.00
	н н ¹	8 16.67	1024c ADVENTURERS'3	9 23.53
• •		9 44.44	<u>`</u> !	10 (B. 23.53 (B))
	*	10 27.78	· . · ·	11 52.94
	, I	_ · · •	1025 Mendham	9 38.89
	1		1025 Mendham	11 - 661. 617.11 - 7.3
	:	· 1 .	1	E. S. March Street
	; .		·, · , ·	
	•		 4 1 4 2 	
	25 - 25	, , , , , , , , , , , , , , , , , , , ,	, · · · · · ·	
		•1 ·	·	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.
			· · · · ·	
4		· + ` `		

٩

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
1	ALLUVIAL SOILS	7	35.00	44	BALROWNIE	6	50.51
		8	15.00			13	49.49
		9	10.00	45	BALROWNIE	15	100.00
		10	20.00	46	BALROWNIE	12	49.49
		12	20.00			26	50.51
2	ALLUVIAL SOILS	10	100.00	47	BALROWNIE	24	100.00
3	ORGANIC SOILS	12	100.00	48	BALROWNIE	26	100.00
4	ORGANIC SOILS	29	100.00	49	BALROWNIE	5	100.00
5	ABERLOUR	14	70.00	50	BALKOWNIE	12	49.49
6	ABERIOUR	13	40 00	51	BARCOUR	20	100.00
0	ADDIADOON	17	60.00	52	BARNCORKRIE	16	50.51
7	ABERLOUR	15	50.51			24	49.49
	•••	29	49.49	53	BEMERSYDE	17	100.00
9	ABERLOUR	12	35.00	54	BEMERSYDE	17	100.00
		15	65.00	55	BEMERSYDE	15	100.00
10	ABERLOUR	15	50.51	56	BENAN	6	100.00
		17	49.49	57	BENAN	6	100.00
11	ABERLOUR	15	50.51	58	BENAN	24	100.00
		29	49.49	59	BERRIEDALE	6	100.00
12	ABERLOUR	17	100.00	60	BERRIEDALE	14	100.00
13	ABERLOUR	17	50.51	61	BERRIEDALE	15	70.00
14		29	49.49	62		12	30.00
16	ADERLOUR	17	75 00	62	DERKIEDADE	12	49.49
15	ABERDOUR	22	25.00	63	BERRIFOALE	6	100 00
16	ARBIGLAND	18	25.00	64	BERRIEDALE	15	80.00
10	ACTOLIC	24	75.00	•1		29	20.00
17	ARDVANIE	5	100.00	65	BERRIEDALE	15	100.00
18	ARKAIG	17	100.00	66	BERRIEDALE	4	34,34
19	ARKAIG	14	50.51			6	35.35
•		15	49.49			17	30.30
20	ARKAIG	13	49.49	67	BERRIEDALE	6	50.51
		17	50.51			29	49.49
21	ARKAIG	15	100.00	68	BLAIR	24	100.00
22	ARKAIG	15	50.51	69	BLAIR	24	35.35
22	NDVNTC	29	49.49			20	34.34
23	ARVAIG	29	35.00	70	BOGTOWN	24 .	100.00
24	ARKATG	15	100.00	71	BRAEMORE	6	50.51
25	ARKAIG	17	100.00			13	49.49
26	ARKAIG	12	35.00	72	BRAEMORE	6	35.35
		15	65.00			13	34.34
27	ARKAIG	17	100.00			14	30.30 .
28	ARKAIG	15	50.51	73	BRAEMORE	14	100.00
		17	49.49	74	BRAEMORE	6	100:00
29	ARKAIG	12	49.49	75	BRAEMORE	15	34.34
		15	50.51			26	35.35
30	· ARKAIG	15	50.00		DD T (1101/03/7/	29	30.30
		22	25.00	76	BRIGHTMONY	10	100.00
	102170	27	25.00	11	CAIRNCRUSS	5 5 A - 1	20.21
31	ARKAIG	15	70.00	70	O MIT OD NV	24 5 '	49.49
22	104170	27	30.00	78	CANISBAI	24	100.00
32	ARKAIG	12	30.30	13	CANISDAI	24	15 00
		15	37.32	80	CANTERAV	20 6	29 29
77	ARKATC	19	100.00	00	CHUIDDAI	15	20.20
34	ARKATG	19	50.51			24	30.30
~ 7		29	49.49			26	20.20
35	ARKAIG	19	100.00	81	CANISBAY	15	100.00
36	ARKAIG	22	49.49	82	CANISBAY	26	100.00
36	ARKAIG	27	50.51	83	CANISBAY	24	100.00
37	ARRAN	24	100.00	84	CANONBIE	16	50.51
38	ARRAN	26	100.00		•	24	49.49
39	ASHGROVE	24	100.00	85	CANONBIE	24	100.00
40	ASHGROVE	24	100.00	86	CANONBIE	6	100.00
41	BALROWNIE	18	100.00	87	CANONBIE	26 `	100.00
42	BALROWNIE	24	100.00	88	CANONBIE	12	49.49
43	BALROWNIE	4	100.00			26	50.51

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC		
		_							
89	CARPOW	5	100.00	128	COUNTESSWELLS	17	50.51		
90	CARTER	6	30.00			22	49.49		
	•	14	70.00	129	COUNTESSWELLS	15	49.49		
91	CARTER	14	30.00			27	50.51		
		24	70.00	130	COUNTESSWELLS	15	70.00		
92	CARTER	6	30.00			29	30.00		
		24	70.00	131	COUNTESSWELLS	15	70.00		
93	CARTER	15	100.00			27	30.00		
94	CARTER	24	49.49	132	COUNTESSWELLS	12	49.49		
		26	50.51			15	50.51		
95	CARTER	26	50.51	133	COUNTESSWELLS	27	100.00		
		29	49.49	134	COUNTESSWELLS	17	100.00		
96	CORBY	17	100.00	135	COUNTESSWELLS	17	50.51		
97	CORBY	5	100.00			29	49.49		
98	CORBY	5	70.00	136	COUNTESSWELLS	17	100.00		
		7	10.00	137	COUNTESSWELLS	22	100.00		
		8	5.00	138	CRAIGDALE	15	49.49		
		9	5.00			17	50.51		
		10	5.00	139	CRAIGDALE	24	50.51		
		12	5.00			26	49.49		
99	CORBY	5	100.00	140	CRAIGELLACHIE	18	100.00		
100	CORBY	5	100.00	141	CREETOWN	17	100.00		
101	CORBY	15	100.00	142	CREETOWN	17	100.00		
102	CORBY	7	10.10	143	CREETOWN	24	50.51		
		8	5.05			26	49.49		
		9	5,05	144	CROMARTY	13	100.00		
		10	5.05	145	CROMARTY	18	100.00		
	-	12	39.39	146	CROMARTY	14	49.49		
		15	35.35		4	15	50.51		
103	CORBY	5	50.51	147		17	100 00		
		12	49.49	148	DARLETTH	24	100.00		
104	CORBY	12	85 00	140	DARLEITH	24	100.00		
	001121	15	15 00	150	DARIEITH	17	100.00		
105	CORBY		50 51	150		10	100.00		
105	CONDI	15	19.19	150	DARLEITH	15	50 51		
106	COPPY	10	49.49 EA E1	154	DARGETTH	15	50.51		
100	CORBI	16	10.11	1 5 2		19	49.49		
107	CORDIERRECK	14	45.45	153	DARLEITH	15	100.00		
107	CORRIEBRECK	14	15.00	104	DARLEITH	15	70.00		
100	COBBIERRECK	17	100.00	165		29	30.00		
100	CORRIEBRECK	10	20.00	100	DARLEITH	15	50.51		
109	CORRIEBRECK	14	30.00			29	49.49		
110	00001000000	15	70.00	156	DARLEITH	15	49.49		
110	CORRIEBRECK	15	100.00			17	50.51		
111	CORRIEBRECK	12	49.49	157	DARLEITH	12	35.00		
		15	50.51			15	65.00		
112	CORRIEBRECK	17	100.00	158	DARLEITH	19	100.00		
113	COUNTESSWELLS	17	100.00	159	DARLEITH	15	50.51		
114	COUNTESSWELLS	17	100.00			19	49.49		
115	COUNTESSWELLS	17	100.00	160	DARLEITH	15	50.51		
116	COUNTESSWELLS	14	100.00			29	49.49		
117	COUNTESSWELLS	15	100.00	161	DARLEITH	17	100.00		
118	COUNTESSWELLS	15	50.51	162	DARLEITH	17	50.51		
		29	49.49			29	49.49		
119	COUNTESSWELLS	15	50.51	163	DARVEL	5 [·]	100.00		
		29	49.49	164	DARVEL	5	70.00		
120	COUNTESSWELLS	12	49.49			7	5.00		
		15	50.51			8	10.00		
121	COUNTESSWELLS	17	70,00			9	5.00		
		22	30,00			10	5.00		
122	COUNTESSWELLS	17	100.00			10	5.00		
123	COUNTESSWELLS	10	35 00	165		10	100 00		
		15	65 00	166	DEBCADIDE	41 A	100.00		
124	COINTECCMETTC	10	95.00	100	DEECASTLE	4	47.47		
107	COMPHERICS	14	15.00	1.00	50503001-	15	50.51		
125	COINTECOURT	61	100 00	167	DEECASTLE	4	100.00		
123	COUNTESSWELLS	17	100.00	168	DOUNE	5	100.00		
120	COUNTESSWELLS	15	50.51	169	DREGHORN	5	100.00		
100		17	49.49	170	DREGHORN	10	100.00		
127	COUNTESSWELLS	12	49.49	171	DRONGAN	24	100.00		
		15	50.51	172	DULSIE	16	100.00		

,

CODE	MAP_UNIT	CLASS	PERC		MAP_UNIT	CLASS	PERC
173	DULSIE	15	100.00	215	ETTRICK	12	85.00
174	DULSIE	12	49.49			27	15.00
		15	50.51	216	ETTRICK	15	70.00
175	DULSIE	15	100.00			29	30.00
176	DUNNET	15	100.00	217	ETTRICK	15	100.00
177	DUNNET	15	100.00	218	ETTRICK	15	70.00
178	DUNNET	17	100.00			29	30.00
179	DURISDEER	6	50.51	219	ETTRICK	12	25.00
		18	49.49			15	25.00
180	DURISDEER	18	49.49			26	50.00
101		24	50.51	220	ETTRICK	15	25.00
181	DOKNHILL	14	50.51			26	25.00
192		15	49.49	221		29	50.00
102	DURNHILL	15	50 51	221	ETTRICK	1/	100.00
103	DORNHILL	10	20.21	222	ETTRICK	19	100.00
184	DURNHTLL	15	49.49 50 51	223	BIIKICK	13	70.00
104	Dordmill	29	49 49	224	ETTRICK	17	34 34
185	DURNHILL	12	35.00	224	DITAICA	19	30.30
		15	65.00			22	35 35
186	DURNHILL	17	100.00	225	ETTRICK	17	70.00
187	DURNHILL	15	70.00			24	30.00
		27	30.00	226	ETTRICK	15	70.00
188	DURNHILL	12	30.00			17	30.00
		15	70.00	227	ETTRICK	17	100.00
189	DURNHILL	27	100.00	228	ETTRICK	15	100.00
190	DURNHILL	15	70.00	229	ETTRICK	15	100.00
		27	30.00	230	ETTRICK	15	100.00
191	DURNHILL	15	70.00	231	ETTRICK	15	100.00
191	DURNHILL	27	30.00	232	ETTRICK	14	50.51
192	DURNHILL	17	85.00			17	49.49
103		27	15.00	233	ETTRICK	14	50.51
193	DOKNHILL	17	50.51	224		15	49.49
104	DIDNILLY I	29	49.49	234	ETTRICK	15	65.00
194	DURNHILL	17	100.00	225		29	35.00
195	FCKEORD	5	100.00	235	ETTRICK	42	100.00
197	ECKFORD	5		230	FOREAR	17	45.00
÷••		12	30.00	2.57		18	55 00
198	ECKFORD		70.00	238	FORFAR	24	100.00
		- 7	10.00	239	FORFAR	16	50.51
		8	20.00			18	49.49
199	ECKFORD	10	100.00	240	FOUDLAND	17	100.00
200	ECKFORD	5	70.00	241	FOUDLAND	14	100.00
		10	30.00	242	FOUDLAND	14	100.00
201	ELGIN	14	50.51	243	FOUDLAND	17	100.00
		15	49.49	244	FOUDLAND	15	100.00
202	ELGIN	6	60.00	245	FOUDLAND	15	50.51
		13	40.00			29	49.49
203	ELGIN	15	100.00	246	FOUDLAND	15	70.00
204	ETHIE	19	100.00			29	30.00
205	ETTRICK	16	100.00	247	FOUDLAND	15	70.00
206	ETTRICK	17	100.00			29	30.00
207	ETTRICK	19	100.00	248	FOUDLAND	12	49.49
208	ETTRICK	17	100.00			17	50.51
209	ETTRICK	13	49.49	249	FOUDLAND	12	49.49
210		24	50.51			15	50.51
210	BITRICK	14	49.49	250	FOUDLAND	17	100.00
211	EMMETON	24	20.51	251	FOUDLAND	17	T00.00
411	STIKICK	12	70.00	252	roodland	15	30.51 30.51
212	FTTPTCY	10	JU.UU AQ AQ	252	FOUR AND	1 -	47.47
616	STIKICK	16	47.47 50 51	253	FOUDLAND	10	100.00
213	FTTPICY	10	30.31	∠04 255		17	100.00
د د م	P111/1/2	15	30.00	200 252	FOUDTAND	17	70.00
211	FTTDICK	10	30.00	200	LOODPAND	1/	70.00
6 T #	DIINICK	15	50.00) E 7	FOUDLAND	29 17	100 00
		10	15 00	201	FOUDLAND	1/	100.00
		11	TO:00	200	T CODUMND	44	700.00

.

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
173	DULSIE	15	100.00	215	ድዮዮክፕሮፕ	12	85 00
174	DULSIE	12	49.49	215	DITRICK	27	15 00
		15	50.51	216	ETTRICK	15	70.00
175	DULSIE	15	100.00			29	30.00
176	DUNNET	15	100.00	217	ETTRICK	15	100.00
177	DUNNET	15	100.00	218	ETTRICK	15	70.00
178	DUNNET	17	100.00			29	30.00
179	DURISDEER	6	50.51	219	ETTRICK	12	25.00
		18	49.49			15	25.00
180	DURISDEER	18	49.49			26	50.00
		24	50.51	220	ETTRICK	15	25.00
181	DURNHILL	14	50.51			26	25.00
192		15	49.49	221	FOODTCY	29 17	50.00
182	DUDNUTLL	10	50 51	221	ETTRICK	1/	100.00
105	DOMINIDD	29	49 49	222	ETIRICK	19	70.00
184	DURNHTLL	15	50.51	223	BIIKICK	22	30.00
	2012	29	49.49	224	ETTRICK	17	34.34
185	DURNHILL	12	35.00			19	30.30
		15	65.00			22	35.35
186	DURNHILL	17	100.00	225	ETTRICK	17	70.00
187	DURNHILL	15	70.00			24	30.00
		27	30.00	226	ETTRICK	15	70.00
188	DURNHILL	12	30.00			17	30.00
		15	70.00	227	ETTRICK	17	100.00
189	DURNHILL	27	100.00	228	ETTRICK	15	100.00
190	DURNHILL	15	70.00	229	ETTRICK	15	100.00
		27	30.00	230	ETTRICK	15	100.00
191	DURNHILL	15	70.00	231	ETTRICK	15	100.00
191	DURNHILL	27	30.00	232	ETTRICK	14	50.51
192	DOKNHILL	17	85.00		DOMESTIC:	1/	49.49
103	DIDNUTI I	27	50 51	233	ETTRICK	14	20.21
175	DOMINITED	29	10.11	234	EMPDICK	15	45.45
194	DURNHTLL	17	100.00	2 4 4	ETIMICK	29	35.00
195	DURNHILL	22	100.00	235	ETTRICK	22	100.00
196	ECKFORD	5	100.00	236	ETTRICK	17	100.00
197	ECKFORD	5	70.00	237	FORFAR	16	45.00
		12	30.00			18	55.00
198	ECKFORD	5	70.00	238	FORFAR	24	100.00
		7	10.00	239	FORFAR	16	50.51
		8	20.00			18	49.49
199	ECKFORD	10	100.00	240	FOUDLAND	17	100.00
200	ECKFORD	5	70.00	241	FOUDLAND	14	100.00
		10	30.00	242	FOUDLAND	14	100.00
201	ELGIN	14	50.51	243	FOUDLAND	17	100.00
202		15	49.49	244	FOUDLAND	15	100.00
202	LLGIN	13	40.00	245	FOUDLAND	20	50.51
203	FLOTN	13	40.00	246		29	49.49
203	EDGIN	19	100.00	240	FOODLAND	15	30.00
205	ETTRICK	16	100.00	247	FOUDLAND	15	70 00
206	ETTRICK	17	100.00		100022210	29	30.00
207	ETTRICK	19	100.00	248	FOUDLAND	12	49.49
208	ETTRICK	17	100.00			17	50.51
209	ETTRICK	13	49.49	249	FOUDLAND	12	49.49
		24	50.51			15	50.51
210	ETTRICK	14	49.49	250	FOUDLAND	17	100.00
		24	50.51	251	FOUDLAND	17	100.00
211	ETTRICK	12	70.00	252	FOUDLAND	15	50.51
		17	30.00			17	49.49
212	ETTRICK	12	49.49	253	FOUDLAND	15	100.00
		15	50.51	254	FOUDLAND	15	100.00
213	ETTRICK	12	70.00	255	FOUDLAND	17	100.00
_		15	30.00	256	FOUDLAND	17	70.00
214	ETTRICK	.12	35.00			29	30.00
		15	50.00	257	FOUDLAND	17	100.00
		17	15.00	258	FOUDLAND	22	100.00

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
				<u> </u>			
250	PRACERDIDAL	5	100 00	308	TMCHK ENNIETH	24	100 00
209	FRASERDUKGN	5	100.00	308	INCREENSET	24	100.00
200	FRASERBURGH	5	70.00	310	TNCHKENNETH	24	100.00
201	FRASERBURGE	10	30.00	310	INCHKENNETH	20	100.00
262	FRASERBURCH	10	100.00	312	INCHKENNETH	26	100.00
263	FRASERBURCH	12	100.00	313	INCHKENNETH	6	100.00
264	GLENALMOND	16	100.00	314	INCHNADAMPH	4	100.00
265	GLENALMOND	24	100.00	315	INCHNADAMPH	4	34.34
266	GLENALMOND	24	100.00	515		15	35.35
267	GLENALMOND	6	100.00			29	30.30
268	GLENALMOND	15	100.00	316	INSCH	17	100.00
269	GLENALMOND	15	34.34	317	INSCH	15	30.00
		24	30.30		-	24	70.00
		26	35.35	318	INSCH	17	100.00
270	GLENALMOND	26	50.51	319	INSCH	15	100.00
270	GLENALMOND	29	49.49	320	INSCH	15	50.51
271	GLENALMOND	6	100.00			29	49.49
272	GLENALMOND	15	100.00	321	INSCH	14	49.49
273	GLENEAGLES	5	100.00			17	50.51
274	GOURDIE	6	30.00	322	INSCH	12	30.00
		18	70.00			15	70.00
275	GOURDIE	24	51.02	323	INSCH	17	70.00
		26	48.98			22	30.00
276	GOURDIE	6	100.00	324	INSCH	17	100.00
277	GOURDIE	6	49.49	325	INSCH	15	70.00
		15	50.51			29	30.00
278	GRULINE	5	100.00	326	INSCH	17	49.49
279	GRULINE	5	25.00			22	50.51
		12	75.00	327	INSCH	12	49.49
280	GRULINE	12	30.00			15	50.51
		27	70.00	328	INSCH	15	30.00
281	HATTON	24	50.51			<u>1</u> 7	70.00
		26	49.49	329	INSCH	17	50.51
282	HATTON	6	100.00			29	49.49
283	HATTON	15	100.00	330	INSCH	17	100.00
284	HATTON	15	50.51	331	KILMARNOCK	24	100.00
		29	49.49	332	KILMARNOCK	24	100.00
285	HATTON	6	49.49	333	KINTYRE	24	100.00
		15	50.51	334	KINTYRE	26	100.00
286	HATTON	15	100.00	335	KINTYRE	24	100.00
287	HAYFIELD	16	51.02	336	KINTYRE	26	50.51
		24	48.98			29	49.49
288	HAYFIELD	6	70.00	337	KIPPEN	13	50.51
		24	30.00			17	49.49
289	HAYFIELD	24	100.00	338	KIPPEN	24	100.00
290	HAYFIELD	15	100.00	339	KIPPEN	5	100.00
291	HINDSWARD	24	100.00	340	KIPPEN	24	100.00
292	HINDSWARD	24	100.00	341	KIPPEN	5	100.00
293	HINDSWARD	26	50.51	342	KIPPEN	15	100.00
205	NODUTDY	29	49.49	343	KIPPEN	15	65.00
295	HOBKIKK	16	100.00	344		29	35.00
290	HOBKIKK	6	100.00	344	KIPPEN	15	50.51
291	HUBRIEK	6	70.00	245		29	49.49
200	UODUTOU	14	30.00	345	KIPPEN	15	100.00
298	HOBKIKK	14	100.00	346	KIPPEN	12	30.00
433	NUDKIKK	15	49.49	2.47		15	100.00
200	UODVIDV	15	20.21	347	KIPPEN	12	100.00
300	NODVIKY	15	49.49	348	KIRKCOLM	5	100.00
201	עמדעמט	15	100.00	349	KIRKWOOD	D	50.51
202	NODVIKY	15	100.00	250	WTRWW000	24	49.49
502	NUDALKK	25	30.51	350	KTKKWOOD	24	20.51
202	HOI WHOOD	29 10	49.49	251	WNOOVOVAR	20	47.47
202	TOPINOD	10	49.49 E0 C1	155	NUCLSKAE	14	100.00
304	HOLVMOOD	10 10	50.51	352	KNUUKSKAE	17	70.00
504	NOPIMOOD	79	30.51	353	WINCHARD	24	30.00
305	HOLVMOOD	24 F	43.43	223	NUCLSKAE	1/	100.00
305	HOLVWOOD	р С	100.00	304	NUCLSKAB	10	100.00
307	INCHKENNETH	۲ ۲	100.00	202	NUCCERTE	16	55.00
507		Ų	100.00	100	1710CVOLUE	12	UU.UU

ŧ

.

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
356	KNOCKSKAE	17	100.00	399	LYNEDARDY	24	49.49
357	KNOCKSKAE	15	70.00		21110011101	26	50.51
		29	30.00	400	LYNEDARDY	15	50.51
358	KNOCKSKAE	15	70.00	100	BIRDDIADI	26	49.49
		27	30.00	401	MAUCHLINE	~° 18	100 00
359	LANFINE	24	100.00	402	MAUCHLINE	24	100.00
360	LANFINE	24	100.00	403	MAUCHLINE	26	100.00
361	LANFINE	24	100.00	404	MAUCHLINE	5	70 00
362	LAUDER	-0	100.00	303	moonbind	14	30.00
363	LAUDER	24	100.00	405	MILLBUITE	14	100.00
364	LAUDER	6	100.00	405	MILLBUIE	-11	30.00
365	LAUDER	6	30.30	400	MIDDOIL	19	70.00
505	1100 Lit	15	35 35	407	MINTO	24	100.00
		15	. 34 34	407	MINTO	24	100.00
366	LAUDED	6	50 51	400	MINTO	24	100.00
200	HODER	15	10.31	405	MINTO	24	10.00
267	LAUDER	15	45.45	410	MINIO	10	49.49
201	LAUDER	10	20.21	411	MINIMO	24 1 E	30.31
260		29 C	49.49	411	MINIO	12	70.00
300	LAURENCERIKK	17	24.49	410	VINTO	29	30.00
		17	24.49	412	MINIO	15	100.00
360		18	51.02	413	MOUNTBOY	10	100.00
369	LESLIE	1/	100.00	414	MOUNTBOY	6	30.00
370	LESLIE	24	100.00			18	70.00
371	LESLIE	17	100.00	415	MOUNTBOY	24	70.00
372	LESLIE	24	100.00			26	30.00
373	LESLIE	22	30.00	416	MOUNTBOY	6	100.00
		24	70.00	417	MOUNTBOY	15	100.00
374	LETHANS	6	100.00	418	MOUNTBOY	6	50.51
375	LETHANS	24	100.00			15	49.49
376	LETHANS	6	49.49	420	NIGG	5	100.00
		15	50.51	421	NIGG	10	100.00
377	LETHANS	15	100.00	422	NOCHTY	5	70.00
378	LETHANS	15	100.00			7	10.00
379	LINFERN	12	49.49			8	5.00
		15	50.51			9	5.00
380	LINKS	5	100.00			10	5.00
381	LINKS	5	50.51			12	5.00
		10	49.49	423	NORTH MORMOND	24	100.00
382	LINKS	12	100.00	424	NORTH MORMOND	24	100.00
383	LINKS	5	100.00	425	NORTH MORMOND	6	50.51
384	LINKS	12	100.00			13	49.49
385	LOCHINVER	14	100.00	426	NORTH MORMOND	15	100.00
386	LOCHINVER	17	100.00	427	ORDLEY	24	50.51
387	LOCHINVER	17	70.00			26	49.49
		22	30.00	428	ORDLEY	6	65.00
388	LOCHINVER	14	65.00			13	35.00
		17	35.00	429	PETERHEAD	24	100.00
389	LOCHINVER	17	100.00	430	PETERHEAD	24	100.00
390	LOCHINVER	15	50.51	431	RACKWICK	12	49.49
		29	49.49			15	50.51
391	LOCHINVER	12	49.49	432	REPPOCH	6	100.00
		15	50.51	433	REPPOCH	24	100.00
392	LOCHINVER	15	50.51	434	REPPOCH	6	49.49
		29	49.49			15	50.51
393	LOCHINVER	14	15.00				
		17	85.00	435	REPPOCH	15	70.00
394	LOCHINVER	12	49.49			29	30.00
		15	50.51	436	REPPOCH	15	50.51
395	LOCHINVER	12	34 34			29	49.49
		15	35 35	437	RHINS	17	100.00
395	LOCHINVER	27	30.30	438	RHINS	24	100.00
396	LOCHINVER	4/ 15	70 00	120	RHTNS	10	700.00
0.0	PARTITI A PIV	77 77	30.00	107	101110	24	37.87 50 51
207	LOCUTARIER	21 17	50.00	440	DUTNE	64 21	100.01
321	DOCUTINAEY	1/	20.21	440	DUINC	24	100.00
200	LOCUIN	29	43.43	414 L	KUTNO	13	15 00
228	TOCUTINAER	1/	80.00		DUTNO	22	100.00
		22	20.00	442	RHINS	24	100.00
				443	KHINS	17	100.00
				444	ROWANHILL	18	100.00

CODE	ODE MAP_UNIT CLASS PERC		CODE	MAP_UNIT	CLASS	PERC		
					· · · · · · · · · · · · · · · · · · ·			
445	ROWANHILL	24	100.00	493	STONEHAVEN	6	49.49	
446	ROWANHILL	24	100.00			13	50.51	
447	ROWANHILL	6	100.00	494	STONEHAVEN	15	100.00	
448	ROWANHILL	4	85.00	495	STONEHAVEN	6	100.00	
		13	5.00	496	STONEHAVEN	6	100.00	
449	ROWANHILL	15	100.00	497	STRICHEN	14	49.49	
450	ROWANHILL	15	50.51			24	50.51	
		29	49.49	498	STRICHEN	17	100.00	
451	ROWANHILL	6	25.00	499	STRICHEN	15	100.00	
		14	25.00	500	STRICHEN	15	50.51	
450	DOV	15	50.00	5.01	000 7 01101	29	49.49	
404	RUI	2	30.51	201	STRICHEN	15	50.51	
453	POV	24	49.49	500	CODICUIN	29	49.49	
4.).)	YO1	25	30.00	202	SIRICHEN	10	50.51	
454	CABUATT.	20	10.00	503	CODTOUCN	29	49.49	
4.54	SVDUVID	12	47.47 50 51	505	SIRICHEN	15	15.00	
455	SABHATI.	15	100.00	504	STRICHEN	17	30.00	
456	SABHATI.	15	50 51	204	STRICHEN	15	70.00	
100	0.0.0.0	29	49 49	505	STRICHEN	17	100.00	
457	SABHATL	13	49 49	506	STRICHEN	15	50 51	
		15	50.51	200	O INI GILLI	17	49 49	
458	SHAWHILL		100.00	507	STRICHEN	12	49 49	
459	SKELBERRY	14	49.49		or the criter	15	50.51	
		15	50.51	508	STRICHEN	17	65.00	
460	SKELBERRY	15	100.00			22	35.00	
461	SKELBERRY	15	100.00	509	STRICHEN	15	49.49	
462	SKELMUIR	24	100.00			22	50.51	
463	SKELMUIR	26	100.00	510	STRICHEN .	15	70.00	
464	SMAILHOLM	17	100.00			27	30.00	
465	SORN	18	100.00	511	STRICHEN	12	30,30	
466	SORN	24	100.00			15	35.35	
467	SORN	24	100.00	*		, 27	34.34	
468	SORN	6	24.74	512	STRICHEN	19	100.00	
		15	24.74	513	STRICHEN	19	30.00	
		24	25.77			29	70.00	
		26	24.74	514	STRICHEN	19	100.00	
469	SORN	15	50.51	515	STRICHEN	22	75.00	
		26	49.49			27	25.00	
470	SORN	14	49.49	516	SYMINGTON	5	100.00	
		26	50.51	517	TARVES	13	49.49	
471	SORN	6	50.51			17	50.51	
		_\ 14	49.49	518	TARVES	15	49.49	
472	SOURHOPE	17	100.00			24	50.51	
473	SOURHOPE	24	100.00	519	TARVES	14	50.51	
474	SOURHOPE	19	100.00			17	49.49	
475	SOURHOPE	17	100.00	520	TARVES	17	100.00	
476	SOURHOPE	15	100.00	521	TARVES	15	100.00	
4/7	SOURHOPE	15	50.51	522	TARVES	15	50.51	
400		29	49.49			29	49.49	
4/8	SOURHOPE	15	50.51	523	TARVES	12	49.49	
		29	49.49			15	50.51	
479	SOURHOPE	19	100.00	524	TARVES	12	30.00	
480	SOURHOPE	15	55.00			15	70.00	
400	00000000	29	35.00	525	TARVES	17	100.00	
482	SOURHOPE	22	100.00	526	TARVES	14	49.49	
483	STAFFIN	24	100.00			17	50.51	
484	STAFFIN	24	100.00	527	TARVES	15	49.49	
400	STAFFIN	26	50.51	-		17	50.51	
105	CON DECIM	29	49.49	528	TARVES	12	49.49	
400	STAFFIN	26	50.51			15	50.51	
107		29	49.49	529	TARVES	17	49.49	
40/ 100	STIKLING	24	100.00			22	50.51	
400	STIRLING	24	100.00	530	TARVES	17	49.49	
489	STIKLING	26	100.00			22	50.51	
490	STUNERAVEN	6	30.00	531	TARVES	15	50.51	
101	CHONDER N1/2011	18	100.00	c • •	(1) DU 100	27	49.49	
471	GEONEUNIEN	24	100.00	532	TARVES	17	50.51	
474	SIONERAVEN	6	100.00			29	49.49	

CODE	MAP_UNIT	CLASS	PERC	CODE	CODE MAP_UNIT		PERC
533	TARVES	17	49.49	561	TORRIDON	17	25.00
		29	50.51			19	50.00
534	TARVES	17	100.00			22	25.00
535	THURSO	4	30.00	562	TYNEHEAD	6	50.51
		6	70.00			13	49.49
536	THURSO	24	100.00	563	TYNEHEAD	24	100.00
537	THURSO	24	100.00	564	TYNEHEAD	15	100.00
538	THURSO	24	100.00	565	TYNET	14	100.00
539	THURSO	6	100.00	566	TYNET	6	100.00
540	THURSO	12	49.49	567	TYNET	15	100.00
		15	50.51	568	WALLS	29	100.00
541	THURSO	15	100.00	569	WALLS	14	49.49
542	THURSO	15	100.00			15	50.51
543	THURSO	15	100.00	570	WALLS	15	100.00
544	THURSO	12	49.49	571	WALLS	15	50.51
		15	50.51			29	49.49
545	TIPPERTY	24	100.00	572	WALLS	4	30.00
546	TOROSAY	17	70.00			15	70.00
040		22	30.00	573	WALLS	17	100.00
547	TOROSAY	12	49.49	574	WHITSOME	16	30.00
		15	50 51			24	70.00
548	TOROSAY	15	50.51	575	WHITSOME	24	100.00
540	10100011	29	49.49	576	YARROW	5	100.00
549	TOROSAY	15	50.51	577	YARROW	5	100.00
	•••••	17	49.49	578	YARROW	5	35.35
550	TOROSAY	15	35.35			12	64.65
		27	34.34	579	YARROW	5	70.00
		29	30.30			7	10.00
551	TOROSAY	19	50.51			8	5.00
		29	49.49			9	5.00
552	TORRIDON	14	100.00			10	5.00
553	TORRIDON	14	49.49			12	5.00
		17	50.51	580	YARROW	5	70.00
554	TORRIDON	12	35.00			12	30.00
	•••••	15	65.00	600	BUILT_UP_AREA	97	100.00
555	TORRIDON	17	70.00	601	LAKE	98	100.00
		22	30.00	602	SÉA	99	100.00
556	TORRIDON	15	50.51	731	ORGANIC SOILS - 3D	12	100.00
		29	49.49	732	ORGANIC SOILS - 3E	12	100.00
557	TORRIDON	12	49.49	733	ORGANIC SOILS - 3DE	12	100.00
		15	50.51	741	ORGANIC SOILS - 4D	29	100.00
558	TORRIDON	12	34.34	742	ORGANIC SOILS - 4E	28	100.00
		15	35.35	743	ORGANIC SOILS - 4DE	28	100.00
		27	30.30	800	BARE ROCK - X	17	40.00
559	TORRIDON	15	100.00			22	60.00
560	TORRIDON	19	50.51				
		29	49.49				

Appendix C

Catchment data used in the development and calibration of HOST

Appendix C contains two tables of catchment data. The first contains rounded percentages of HOST classes on catchments used to help develop the HOST classification. The second table, starting on page 97, gives details of the catchments including values of BFI and SPR derived from data.

2001								5			51		2							2 36	3
3001								7	2		34		3		5				1	12 27	8
3003								7			42		3		4				2	12 27	1
3803								7			31				1					59	1
4003	2		5					5	5		28		8		2		1		_	41	2
5802								12			38		4		32				2	5	5
6005		2						18			38		6		18	1			3	9	5
6000								23	-		29		1		5	1			2	32	5 2
7001		2		1	1		1	19	'	1	41	1	23		1	1			2	د ۵۵ ۱۵	4
7002		7		1	T		1	3		1	26	1	2		5	4			* ٦	JJ 10	
7003		22	8	2	1	1	1	2	9	3	14	•	12		2	1	1		5	23	
7004	2	20	ĩ	1	1	1	1	3	2	2	19	5	2	5	2	2	-		2	23 5	2
7005		2		-	-	-	-	2	-	2	41	4	5	•	-	1	1		1		1
8001		9		1	1		1	4	3	1	23	2	16		7	6	1		3	7 14	
8002		7		2	1	1	1	7			24	2	9		15	7			6	11 9	1
8004	1	1	1					1	4	1	20		32		1	5	2	2	1	4 24	
8005		11		1	1		1	6			23	2	10		13	9			5	9 B	1
8006		8		1	1		1	4	3	1	23	2	17		7	5	1		3	7 14	
8009		6		1	1		1	4			30	6	15		6	2			2	19 8	
8010		11		2	1		1	6	1		25	3	10		11	1			4	98	1
6V11 0001	1	2	n	1				,	c	'n	24		45			2	2	2		22	
9001		2	2	1			1	1	2	2	13		4/				о 0			20	
9002		J	2	1	1		1	1	9. A	12	20		40				14			11	
9004		3	ъ 6	T	T		1	2	4	12	10		63				14	1		, ,	
10001		2	4	1				1	9	5	6		68				4	-		Ū	
10002		5	1	1			1	7	9	9	ß		36				17	3		2	
10003		2	3	1			-	1	12	4	7		63				6	-		_	
11001		3	1	1	1		1	1	9	3	15		56				3			4	
11002		3	1	1			1	1	11	3	20		48				2			7	
11003		2	2	1					13		21		46				2		1	11	
11801				1	1		1	1		4	10		76				6				
12001		5		1				1	5	1	22		37		5	8	1		1	2 11	
12002		5		1				1	4	1	22		39		4	6	1		1	1 13	
12003		3						1	4		22		28		10	16	•		1	14	
12004		1						2	8	4	53		21		1	2	2		4	10 0	n
12005		1						2	2	1	24		22	1	1	1	2		1	19 8	2
12000		T						1	ა ი	Ţ	45		22	1	4	1 20	2			22	
13001		6	24	1	1		1	1	4		10		11	38	10	20	٦			5	
13002		2	20	3	i	1	ì	1			11	3	19	33			2			4	
13005		10	3	2	1	1	1	1				14		67			1			-	1
13007		6	8	1	1	-	1	1		1	24	3	17	17	2		2			78	
13008		6	2	2	1	1	1	1	1	2	12	6	28	19	5	3	3			37	
14001		16	7	1			5	1	4			1	37	9			18				
14002		1	11	2	1		1	1	5			3	8	67			1				
15001		3						3		2	18		27		14	3				2 26	
15002		1						5		5	16		48		1	1	6			17	
15004		4	2	1				^		4	28		53	1	2		4	2		1	2
15000	,	30	1	,				2	1	5	29		41	• •		1		2		2 7	נ 1
15010	T	10	2	1				1	1	2	15	4	28	11	4 1	1	5	2		י יי	I
15017		1						2		10	20	4	20	15	1	1	10	4		14	1
15023		ž						2		10	28		30			1	10			13	1
15024		2		1				11		**	34		22		10	1	10		2	16	•
15809		2		-				2		9	22		45		6	-	9		-	3	1
16001	3	4	4	2	1	1	1	5	1	2	13	1	22	14	3	1	4	1		14	2
16003	-	1	7	-		-	-	7	6	5	10	_	19	6	4	_	3	3		29	
17004								3					2	18	2		73				2
17005		7						3			4		6	19			54			5	1
18001	3	13	4	2	1	1	1	2	4		11		3	24			4			27	
18003	1	3	3	1				5	1	6	20		28	5	4	1	3	1		12	5
18005	2	12	3	2	1		1	1	3		12		2	30	2		6			23	
18008				1				5		4	25		41		8	1	3			9	3
18011	1	3	4	1				7	1	3	14		20	12	3	1	13	2		11	3
18017								23			42		20		4					11	
18018		-						11			16		53	. -	13					6	
19001		1		1				2		1	10		2	32			41	1		9	

NWA_NO HO1 HO2 HO3 HO4 HO5 HO6 HO7 HOB HO9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 LAKE

ī

1 31

30011 30012 30013	65 23	89			B	11 6	1	1 4	42	1	2			1 8	2 4 2	2	1 3	30	7 17	
30014		00		12		2		2	2	Ŧ	3				2	14	1 २	1 0 h	د ۱۹	
31005		8					1	5						1	14	17	7	12	33	
31006		48						1						1	4	10	4	13	11	8
31007		7					1	5						1	15	18	7	12	34	
31010		35							_					1	10	4	8	12	31	
21011		26							7							11	7	39	9	
31020		00 58													ز د ا	11		19	22	
31021		2					1	۶						2	13	19	נ 7	12	23	
31022							•	-							10	43	6	16	40	
31023		1														22	-	77		
31025								1							4	31	4	42	18	
31026		32				-			••		-				12	14	6		29	7
31027		2		20		1	1	1	31	2	6			2	2	2	4	6	21	
32001		11		د 1		I	1	4						2	8	27	9	7	11	1
32003		12		-				1							6	41	40	29	4	
32004		30	·					3							10	36	6	3	11	
32006		13		5		1	1	3						5	19	9	7	5	32	
32007		30		1				1						4	11	26	4	2	18	2
32008		9		9		2		2						10	16	8	6	8	29	1
32020		85 17		2	1	1	n	2						-	1		7	1	3	
32027		4		1	Ţ	T	2	2						j	3	44 61	9 20	10	2	1
32031		16		3	1	1		1						8	4	35	20	19	7	
32801		16		_	_	_		_						7	18	9	8	5	37	
33001	5	5	3	4	2		2	4						5	6	33	13	7	10	
33002	1	11	2	1	1		2	4						5	4	31	8	13	13	
33003	40	10		3	•		7	4						1	2	36	6		2	
33005	36	13		17	2	5	1	5	7		1			11	4	17	5	16	20	
33007	40			28		2			4	4	1		4 1	11				15		
3300B	26			18		3			5	3	1		3	13		2		24		
33011	18			25		2			4	2	_		2	13		-		33		
33012	• .			2	2		1								8	48	12		29	
33013	24			14	1			1	1	1			2	15		8		32		
33014	48		e	13	•	-		1	1	3			2	6		23		3		
33018	Q	10	2	1	T	2	4	4	2					6	5	24	15	42	11	
33019	22	10		19		б		T	8	5	1		4	14	0	10	3	42 21	20	
33020						-		1	·	-	•		-		12	45	31	2	8	
33022	23		12	8	1		2	5	1		1			11	4	18	10	2	3	
33024	43			1			3	3						1		48		1		
33026	6	6	4	4	2		2	4						5	5	32	11	8	11	
33027	51			1		n	4	3		•			2	2	7	24	18		4	
33030	00			9		2			4	د			د	6	1	41	10	4	3	
33031			22	1			2	1			1			4	12	41 21	15	15	9 18	
33033	50			8	1		-	7			-			15	- 4	17		1		
33034	26			19		3			5	3	1		3	13		2		24		
33035	35			10		2	2	6	5	7			2	4	1	13	2	6	3	
33037	1	14	2	1	1		1	4						7	4	28	5	19	17	
33039	18	10	2	10	2	¢	2	4	0	c	1			5	5	31	11	12	13	
33045	10			25		2			5	י ז	1		3	15				25		
33046	5			16		7			7	4	2		2	22				10 75		
33048	45			20		5			12	7.	5		10							1
33049	41			14		10			9	5	3		9	7				2		•
33062	80			4			16													
33063	14			22		2			3	2			2	15				40		
13055	87			6										7						
33067	29 74			5				21								72		2		
33809	••			J				41						46	2	36	Ę	10	1	
34001				19		2			5	3				30	4	50	J	41	T	
34002				10		1			3	2				17				68		
34003				50	17		3		7	3	10	1		S				5		

NWA_NO HO1 HO2 HO3 HO4 HO5 HO6 HO7 HO8 HO9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 LAKE

34010 3 9 1 2 4 8 2 70 34012 36 42 1 2 5 3 22 70 34012 47 32 1 3 3 3 3 34013 46 16 1 4 10 4 13 3 3 34019 46 16 1 4 10 4 13 3 3 35001 7 7 1 2 9 40 34 3 35001 1 6 2 1 3 6 3 1 3 6 35001 1 6 2 2 1 13 6 3 1 3 6 3 1 3 6 3 1 3 6 3 1 3 6 3 1 3 6 3 1 3 6 3 1 3 6 3 1 3 3 1 3	34004 34005 34006 34007 34008	12 6 10				35 30 4 1 55	1 22	2 2	2	2 1	5 4 10	3 3 2 4		7		23 30 10 17		6 6		18 32 69 64			
And a of 32 1 2 5 3 22 200 35000 3 1 5 3 1 4 10 4 13 3 3 35000 3 1 5 3 1 2 4 3 3 56 35000 7 7 7 3 1 2 2 10 65 35000 1 9 3 2 20 7 3 2 2 11 54 4 36002 1 9 3 1 2 80 3	34010 34011	3 38 67				9 42		1 1		2	3	4 2				8 7		2		70 7			
35003 1 2 3 1 26 37 32 3600 5 17 6 1 2 2 11 54 4 3600 2 20 7 - - 34 31 6 3600 1 1 - 20 60 9 3 36005 17 6 1 3 2 31 1 36005 17 6 1 3 2 30 64 6 36005 1 3 2 - 30 64 6 36005 7 3 - - 30 64 6 36010 7 2 - - 44 70 2 36011 1 3 2 - 14 56 5 5 37005 12 2 1 1 1 1 4 36 30 37005 12 1 1 1 1 1 1 1 1 37005 2 1 1 1 1 1 1 1 37005 2 1 <t< td=""><td>34012 34014 34019 35002 35004</td><td>67 17 3 7</td><td></td><td>1</td><td></td><td>32 31 46 5 7</td><td>1</td><td>2 1</td><td>4</td><td>3 1</td><td>5 10 1</td><td>3 4 2</td><td>1</td><td>3</td><td></td><td>22 3 4 9</td><td></td><td>33 40</td><td></td><td>20 3 50 34</td><td></td><td></td><td></td></t<>	34012 34014 34019 35002 35004	67 17 3 7		1		32 31 46 5 7	1	2 1	4	3 1	5 10 1	3 4 2	1	3		22 3 4 9		33 40		20 3 50 34			
35001 5 17 6 1 2 11 54 4 36003 2 20 7 - 34 31 6 36003 2 20 7 - 34 31 6 36005 2 20 60 9 3 1 5 36005 1 3 1 20 60 9 3 36007 1 9 3 1 20 60 3 36007 1 9 3 1 20 64 6 36010 7 2 - 4 70 2 36 36012 7 3 2 11 42 5 5 1 36012 7 3 2 11 44 70 2 1 10 1 44 70 3 3 1 37001 12 8 3 - 11 17 44 64 1 1 1 1 <t< td=""><td>35008 35013</td><td></td><td></td><td></td><td></td><td>2 1</td><td></td><td></td><td></td><td>3 2</td><td>1</td><td>2</td><td></td><td></td><td></td><td>26 1</td><td></td><td>37 30</td><td></td><td>32 65</td><td></td><td></td><td></td></t<>	35008 35013					2 1				3 2	1	2				26 1		37 30		32 65			
3600 2 20 7	36001	5				17 9	6 3		1	2						11		54 88		4			
10005 1 1 3 20 60 9 36006 5 17 6 1 3 7 39 3 36006 5 17 6 1 3 7 39 3 36007 11 16 6 1 3 1 2 80 3 36008 1 2 3 1 2 80 3 36010 7 2 91 1	36003 36004	2 14				20	7									34		31 81		6 1			
shous 5 11' 6 1 3 7 59 3 36007 1 16 6 . 2 80 3 36008 1 9 3 1 2 80 3 36010 7 2 . . 81 . . 36011 6 12 4 2 .	36005					8	3									20		60		9			
36008 1 2 80 3 36009 7 2 8 3 36011 6 2 8 3 36012 7 3 2 4 70 2 36015 6 12 4 2 4 70 2 36015 6 12 4 2 4 70 2 37006 12 8 3 11 42 3 6 30 37006 22 7 3 1 1 16 4 7 9 39 37007 1 1 1 1 17 25 4 9 39 37008 221 8 5 1 7 14 64 1 37010 17 7 1 1 1 14 64 1 37011 18 6 1 2 1 10 1 7 4 1 37021 19 7 1	36006 36007	5 11				17 16	6 6		1	3						7 5		59 59		3 4			
Jown Journer Booll Jown Problem Jown Problem Jown Problem Jown Problem Jown P	36008	1				9	3			1						2		80		3			
36011 6 2 6 77 3 36012 7 3 2 4 70 2 37001 11 3 3 2 11 42 3 6 30 37003 12 8 3 12 14 56 5 1 37005 22 7 3 1 1 1 14 56 5 1 37006 12 2 1 1 1 1 6 4 7 14 64 37009 2.28 10 - - 3 56 3 <td< td=""><td>36010</td><td></td><td></td><td></td><td></td><td>7</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>30</td><td></td><td>64 91</td><td></td><td>Đ</td><td></td><td></td><td></td></td<>	36010					7	2									30		64 91		Đ			
10015 6 12 4 2 6 70 2 37001 1 1 3 3 2 11 42 6 30 37005 22 7 3 1 1 12 8 3 10 1 37005 22 7 3 1 1 1 14 456 5 1 37006 1 2 1 1 1 1 1 4 64 7 14 64 37009 21 8 3 7 6 3 3 3 3 6 3 3 3 3 3 3 6 3	36011					6 7	2									6		88 77		3			
37001 1 3 3 2 11 42 3 6 30 37003 12 8 3 14 56 5 1 37005 22 7 3 1 1 12 3 10 1 37006 1 2 1 1 1 17 2 4 9 38 37009 21 8 3 7 6 7 14 64 37009 21 8 3 7 6 3 3 3701 3 56 3 3 37010 17 7 1 2 1 10 1 7 4 64 5 37010 10 7 7 14 64 1 3 3 3 16 1 3 3 16 1 3 3 16 1 3 3 16 1 3 3 16 3 3 3 3 3 1 1 3	36015	6				12	4			2						4		70		2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37001 37003					1 12	3 8		3	2						11 14		42 56	3	6 5	30 1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37005					22	7	3	1							22		33		10	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37005					1	2		1		1			1 1		17 6		25 4	4	9 14	38 64		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37008					21	8									7		65		,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37019					26 17	10 7		1							13		50		3 9	3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37011	1				16 8	6 1									٨		78		1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	37013	•				6	1				2			1		10		1	7	4	64		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37016 37017					10 20	4 7									9		87 59		5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37019					12	-	4	3		14					2		2	5	8	50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37020					19 15	7	36	2							1 14		74	1	9	14		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37022					20	7	9	23							16		47	.4	11	34		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37025					20 18	7									36		47		21			1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37030					20		9	23							Đ			4 R	11	34 75		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38002	24									1			1		2		70	U	,	3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38003 38007	39 4				5	2			1						49		3 91	1	2	5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38014	17				,	4	1	4		3					5		2	7	12	64		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38018	37				0	4		2	1						ډډ		د 27	17	5	64		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38021						4	1	3		2					6		2	6	17	61		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38022						4 24	1	4 24	10	3					3		1	3	8 7	68 25		2
38030 15 9 3 1 23 48 1 39002 2 38 2 5 1 1 2 3 48 1 39002 2 38 2 5 1 1 2 3 3 1 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	38026 38029	17					1									23		75 03					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38030	15				9	3			1						23		48		1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39002 39004	2 60	38	2		5 5	1 ٦	1 1	2	5	3				1	1 26	I	6	10	2	21		
39006 66 3 1 5 2 12 9 39007 15 11 11 3 15 4 10 1 23 39008 1 46 1 6 2 1 4 1 3 14 1 6 39011 34 29 1 2 6 1 1 3 3 4 2 1 2 3 9 39012 36 2 1 2 2 3 11 35 5 1 35 39015 81 10 3 5 1 12 1 13 39016 52 1 6 1 5 1 13	39005	17		2		-	5	3	3	1	24			1		8		_			41		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39006 39007	15	66	11		3 11	3	1	1	5 3	15			4		10	:	2	12	1	9 23		
39011 34 29 1 2 6 1 1 3 3 4 2 1 2 3 9 39012 36 2 1 2 2 2 3 11 5 1 35 39015 81 10 3 6 6 1 5 2 1 12 39016 52 1 6 6 1 5 2 1 12 1 13	39008	1	46	1		6	,	2	1	4	4			-		1		3	14	1	16		
39015 81 10 3 6 39016 52 1 6 1 5 2 1 12 1 13	39011 39012	54 36		29 2	1	2	ь 2	1 2	1 2	1 3	3 11			3	4	2		L	2	3	9 35		
	39015 39016	81 52		1		6	10 6			1	3 5			2	1	12				1	6 13		

NWA_NO HO1 HO2 HO3 HO4 HO5 HO6 HO7 HO8 HO9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 LAKE

19917 2 2 1 1 2 4 4 19928 3 2 1 2 1 3 4 19928 37 1 1 5 3 2 2 1 2 5 5 19928 17 1 1 5 2 1 2 6 3 5 5 19928 17 7 1 1 2 3 1 1 1 1 1 1 19928 17 7 1 1 2 1																						
39019 63 2 2 1 2 2 1 1 1 3 4 39020 82 1 1 1 5 3 2 1 2 1 <td< td=""><td>39017</td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td>1</td><td>20</td><td>4</td><td>62</td><td></td></td<>	39017		2													11	1	20	4	62		
19920 10 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	39019	63				2	9				2				21					2		
3902 3902 3 1 1 5 3 2 2 1 2 5 3 4 39025 3 1 2 2 1 2 6 17 2 10 5 5 39025 3 6 3 6 2 1	39020		82													1		13		4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39022	37		1		1	5			3	2	2	1		2	-		10		46		
1900 11 <	19025	21		•		12	2			2	5	5	1	2	6				٦	45		
Joca Joca <thjoca< th=""> Joca Joca <thj< td=""><td>20022</td><td>23</td><td>17</td><td></td><td></td><td>14</td><td>4</td><td></td><td></td><td>h</td><td>J</td><td></td><td>ł</td><td>4</td><td>v</td><td>17</td><td>n</td><td>10</td><td>5</td><td>45</td><td></td></thj<></thjoca<>	20022	23	17			14	4			h	J		ł	4	v	17	n	10	5	45		
3342 300 3 3 3 4 4 5 24 1 1 1 2 33625 11 7 1 2 3 1 1 1 2 33625 11 1 2 1 1 1 37 2 1 <td>35020</td> <td>F A</td> <td>17</td> <td></td> <td></td> <td>~</td> <td>F</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>17</td> <td>17</td> <td>4</td> <td>10</td> <td>2</td> <td>90</td> <td></td>	35020	F A	17			~	F			2					17	17	4	10	2	90		
3922 86 3 8 4 5 24 1 8 39301 72 10 1 1 17 17 39301 75 11 4 1 325 11 7 4 17 39301 75 11 4 1 325 5 5 3 6 7 12 3 39303 81 1 3 2 5 5 3 1 4 7 11 2 32 39303 81 7 1 2 5 3 6 1 4 7 11 2 32 39304 42 1 6 2 1 3 4 12 12 32 1 13 14	39027	50				3	5			2	1				17					20		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39028	46		3			8		-	_	4		4	5	24				1	6		
3901 72 10 1 1 37 3902 75 1 4 1 35 5 3903 52 1 2 1 4 1 35 5 3904 52 1 2 1 4 1 32 5 3 1 4 1 2 3903 52 1 2 5 3 1 4 1 1 2 3904 4 1 1 2 5 3 1 1 4 1 1 2 3904 6 15 7 2 5 9 1 7 14 1 1 3905 5 7 3 3 1 1 3 1	39029	11		79				1	2	3			1		1					2		
3903 52 1 1 4 1 3 9 1 7 5 3903 51 1 4 1 3 9 1 7 5 3904 52 1 1 2 5 5 6 1 2 2 3904 42 1 6 1 2 5 1 4 7 1 2 3 39040 42 1 6 1 2 5 9 1 7 16 1 2 3 39042 76 4 1 1 2 5 9 1 7 15 2 4 18 3905 10 - - 3 4 12 15 2 14 18 13 13 14 13 13 14 </td <td>39031</td> <td>72</td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>17</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	39031	72					10				1				17							
39813 51 1 1 4 1 37 5 5 3 1 3 7 4 17 39014 52 1 2 1 4 7 11 2 3 39017 81 7 1 2 5 5 3 1 4 7 11 2 3 39040 42 1 6 5 5 3 1 1 4 7 11 2 3 39040 15 7 2 5 9 1 7 18 5 2 14 1 1 3 3 1 1 1 3 3 1 1 1 3 1 1 1 3 3 1 1 3 3 1 1 3 3 1 1 1 3 3 1 1 3 3 1 1 3 3 1 1 1 3 3 1 1 3 3 </td <td>39032</td> <td>75</td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	39032	75					11								14							
39036 97 1 2 1 4 17 4 17 39057 97 7 2 3 6 1 2 1 39040 42 1 6 1 2 5 5 1 4 7 11 2 32 39040 42 1 6 1 2 5 5 1 4 7 11 2 32 39040 76 4 1 1 2 5 9 1 7 16 1 1 2 32 39040 76 4 1 2 5 9 1 7 18 5 2 14 1 1 3 13 14 1 1 14 1 3 34 1 1 1 1 1 14 1 <td>39033</td> <td>51</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>4</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>35</td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td>	39033	51		1		1	4				1				35					5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39034		52			1	2		1	4					3	9	1	7	4	17		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19016			97		-	_		-	-			1		•	•				2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39037	83	1	21			7				3		6							•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20010	14	2	1			2	2	6	5	2		v	1	A	7		11	2	32		
John Markov Markava Markava Markov Markov Markov Markov Markov Marko	20010	T.4	12	Ţ	•	,	5	4	2	5	5		•	T	1			10	4	10		
John 2 16 1 2 1 2 1 1 2 1 1 2 1 1 1 2 1<	32040		92		1	0		1	4	2	י ר				1	4		10		13		
3044 8 15 7 16 1 2 4 18 3051 5 2 8 4 12 6 6 3053 18 1 3 7 18 5 2 14 31 3054 17 2 13 41 7 13 41 3055 6 11 7 2 13 40 3066 6 12 1 2 4 4 11 7 2 13 40 3066 12 1 2 5 6 18 6 2 15 32 3076 61 3 1 1 5 1 3 4 18 18 19 13 3077 8 8 4 1 3 16 19 13 14 3 4 19 16 19 39 14	39042	~	10			4	~	1	Ţ	-	2		-					14		1		
3905159595261266390531817226117213413905417671852143139055176314125611721341390568661412561862153239057121256186215323907861311511343907873136134121373907788884136134134139078101415113413613439081101415113411111390786613341361341111390811011341111111111111111111111111111111	39044	8		15		1	Z			5	9	1	1		16		-		T	29		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39051		58	_		_				2	_					15	2	4		18		
3963 18 1 3 7 18 5 2 14 31 39054 17 2 2 6 11 7 2 13 41 39055 6 1 2 4 11 7 2 13 41 39056 86 14 11 7 2 13 40 39056 12 1 2 5 6 2 15 32 39076 73 1 1 5 1 1 3 4 39075 73 1 1 7 3 6 1 3 4 39076 73 1 1 7 3 6 1 3 4 39076 73 1 1 7 3 6 1 1 3 4 39071 8 8 8 1 1 1 3 4 1 1 1 3 4 <td>39052</td> <td></td> <td></td> <td>9</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td>4</td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td>66</td> <td></td>	39052			9		2					8		4		12					66		
39354 17 17 2 13 41 3965 91 6 3 14 14 17 2 13 41 3965 86 12 1 2 4 4 11 7 2 13 40 3905 86 12 1 2 5 6 18 7 2 13 40 3906 12 1 2 5 6 18 6 19 . 3907 39 14 2 1 2 1 2 1 <td>39053</td> <td></td> <td></td> <td>18</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>3</td> <td></td> <td></td> <td></td> <td>7</td> <td>18</td> <td>5</td> <td></td> <td>2</td> <td>14</td> <td>31</td> <td></td>	39053			18					1	3				7	18	5		2	14	31		
39050 39061 91 6 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	39054			17						2				6	11	7		2	13	41		
	39055																	5		95		
19058 86 14 1 2 4 4 11 7 2 13 40 39069 12 1 2 5 6 18 6 2 15 32 39073 61 3 1 1 5 26 3 39075 39 14 2 1 2 1 26 3 39076 73 1 3 1 1 5 1 1 3 4 39076 73 1 1 7 3 6 1 3 4 4 42 1 5 6 1 1 3 4 1 1 1 6 1 3 4 1 1 1 6 1 1 3 4 1	39061	91					6								3							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39065	86													14							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39068	3		14				1	2	4				4	11	7		2	13	40		
3003 79 1 1 5 10 6 10	39069	•		12				1	ž	ŝ				6	19	۲		2	15	32		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30073		70	12				+	2	5	1			Ū	10	U		10	10	76		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20073		(1) (1)			2		1		1	5							25	•	2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37074		20					1		1	2							20				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39075		39			14		2	Ţ		2				1	-		25		17		
39077 86 8 4 3908 10 14 13 1 1 1 7 3 6 4 4 7 3 6 1 39091 10 14 13 1 1 1 7 3 6 4 4 7 3 6 1 39092 13 1 1 5 1 1 3 4 1 3 16 19 39092 2 44 1 5 1 1 3 4 1 3 16 17 39101 88 9 2 75 - - 1 14 23 1 13 6 39813 75 - - 1 1 1 1 1 1 2 2 1 3 6 2 39813 7 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1	39076		73			1				3						2		13		7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39077	88					8						4									
3968110141311736447361390913914442118181818390972441511134131617391018895113411361316173911343125614131613626239831755612134363881639814121311175266121344000457311175152664000515173111111111400051111243314611539400103111124331461153940010311111751522320400103111111314611539400105555	39078	66			1	3	13	1	1				1	5		1		1	3	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39081	10	14	13	1		1	1	7	3	6			4	4	7		3	6	19		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39091	39					14				4				42				1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39092																	10	1	89		
11 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	39097	2	44	1		5		1	1	3	4				1	3		16	_	17		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39101	88	••	•		5	0	•	•	5	-				1			10		• ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30013	00		43			,							1.4	2	,			12	¢		
39814105022102398317521398312440004535212440005213884240007636326316363240007636323400082134400076363240011316363234001777314632240011314632240011314632240021632 <th co<="" td=""><td>30014</td><td></td><td></td><td>43</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>14</td><td>23</td><td>Ţ</td><td></td><td></td><td>13</td><td>0</td><td></td></th>	<td>30014</td> <td></td> <td></td> <td>43</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14</td> <td>23</td> <td>Ţ</td> <td></td> <td></td> <td>13</td> <td>0</td> <td></td>	30014			43										14	23	Ţ			13	0	
3983021243983175311244000453638816400061751731111175264000762139189423204000821316339189423204000961124314611539400103111243314611539400177771515212134001777715152121340020874325174002167738432021400216778432021400215778443202140021577844225940021577844225940021571112523324002110111252332	32010	~		12										10	50				20	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39830	2		15							1									21		
40004 5 3 5 26 6 1 21 34 40005 2 1 2 1 3 6 3 8 8 16 50 40007 6 2 6 36 3 29 15 26 40008 21 3 16 3 3 9 1 8 9 4 2 3 20 40008 21 3 16 3 3 9 1 8 9 4 2 3 20 40010 3 11 1 2 4 3 14 6 1 15 39 40017 7 6 3 7 1 5 15 2 1 2 13 40010 8 7 40 3 25 17 40021 6 7 40 3 25 18 41002 5 7 40 3 25 18 410	39831			75											1					24		
40005 2 1 2 1 3 6 3 8 8 16 50 40006 17 5 17 3 1 1 11 7 5 1 5 26 40007 6 3 3 9 1 8 9 4 2 3 20 40009 6 1 1 1 2 4 3 14 6 1 15 39 40011 3 11 1 1 2 4 3 14 6 1 15 39 40011 3 11 1 1 2 4 3 14 6 1 15 39 40017 7 3 7 1 5 15 2 1 2 13 40024 7 7 38 4 3 20 21 4 41001 5 - - 7 40 3 25 18 <td>40004</td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>5</td> <td>26</td> <td>6</td> <td></td> <td>1</td> <td>21</td> <td>34</td> <td></td>	40004			5						3				5	26	6		1	21	34		
4000617517311111175152640007622636329152400082131633918942320400096 3 3 91 8 942 3 20400103111 2 4 3 146115 39 40011 32 2116 3 71 5 15 2 1 2 33 40017 7 6 3 7 1 5 15 2 1 2 13 40020 8 $ 7$ 40 3 25 17 40021 6 $ 7$ 40 3 25 17 40021 6 $ 7$ 40 3 25 18 40021 5 $ 7$ 40 3 25 18 40024 $^{\prime}$ 7 $ 7$ 40 3 25 18 41001 5 $ 5$ 28 6 22 33 24 41002 5 $ 2$ 5 27 9 11 14 <th< td=""><td>40005</td><td>2</td><td>1</td><td>2</td><td></td><td></td><td></td><td>1</td><td>3</td><td>6</td><td></td><td></td><td></td><td>3</td><td>B</td><td>8</td><td></td><td></td><td>16</td><td>50</td><td></td></th<>	40005	2	1	2				1	3	6				3	B	8			16	50		
4000762636329152 40008 2131633918942320 40009 6163732517 40010 3111124314611539 40011 32211637151521213 40017 777738432021 40020 874032517 40021 663252328 40024 774032518 41001 552862234 41002 552952332 41006 61-63642422 41007 11112527911148 41010 3-11129732617 41013 5211129732617 41014 1211127921148 41016 12	40006	17	5	17		3	1	1	1					11	7	5		1	5	26		
400082131633918942320400096111243146115394001031111243146115394001132211637151521213400177777773843202140024776325232840024776740325184100155752862234410025778442259410066111252791410071111125279111410103111297326174101351112527921148410141211111592952410182371259295241018211111111<	40007			6						2				6	36	3			29	15	2	
40009 6 1 6 37 3 25 17 40010 3 11 1 1 2 4 3 14 6 1 15 39 40011 32 2 11 6 3 7 1 5 15 2 1 2 13 40017 7 6 3 7 1 5 15 2 1 2 13 40020 8 7 40 3 20 21 40024 7 6 32 5 23 28 40024 7 40 3 25 18 41001 5 7 40 3 25 18 41002 5 7 70 3 2 6 22 34 41005 10 1 1 8 44 2 25 9 41005 10 1 1 2 5 31 5 23 30	40008	21	3	16			3		3	9	1			8	9	4		2	3	20		
40010 3 11 1 1 2 4 3 14 6 1 15 3 40011 32 2 11 6 3 7 1 5 15 2 1 2 13 40017 7 7 7 38 4 3 20 21 40020 8 7 7 38 4 3 20 21 40020 6 7 40 3 25 17 40024 7 6 32 5 23 28 40024 7 7 40 3 25 18 41001 5 5 29 5 23 32 41005 10 1 1 8 44 2 25 9 41005 10 1 1 1 2 7 9 1 11 48 41011 13 35 2 1 1 1 2 17 5	40009			6						1				6	37	3			25	17		
40011 32 2 11 6 3 7 1 5 13 2 1 2 13 40017 7 7 7 38 4 3 20 21 40020 8 7 40 3 25 17 40021 6 7 40 3 25 18 41001 5 7 6 32 5 23 28 40024 7 7 40 3 25 18 41001 5 5 29 5 23 32 41002 5 5 29 5 23 32 41005 10 1 1 8 44 2 25 41005 10 1 1 8 44 2 25 41007 11 1 2 5 27 9 1 41010 3 1 1 1 1 1 17 41011 13 35 2 1 1 1 1 41014 12 1 2 5 27 9 2 41014 12 1 2 5 27 9 2 41018 2 3 7 12 5 9 29 41021 1 1 1 5 1 1 5 41021 1 21 3 7 12 5 41022 <td>40010</td> <td>3</td> <td></td> <td>11</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>2</td> <td>\$</td> <td></td> <td></td> <td></td> <td>3</td> <td>14</td> <td>6</td> <td></td> <td>1</td> <td>15</td> <td>39</td> <td></td>	40010	3		11		1		1	2	\$				3	14	6		1	15	39		
40017777778432021 40020 874032517 40021 663252328 40024 774032518 41001 5774032518 41002 552952332 41005 1011844225 41006 6163642422 41007 111252791 41010 31163642422 41007 1111297326 41011 1335211116111761 41010 3111129732617 41013 5527921148 41014 1212592952 41020 11211592952 41021 1115921652 41021 111111111 41013 23712378	40011	32	2	11		•	6	•	วั	,	1			5	15	ž		1	2	17		
400177738432021 40020 874032517 40021 63252328 40024 77632523 41001 552862234 41002 5552952332 41005 10118442259 41006 6163642422 41007 1112527911148 41010 311129732617 41011 1335211129732617 41013 5527921148 41014 1212527921148 41015 7815111592952 41020 112115921652 41021 112111966 41022 21371237839 41024 995012633	40011	20	4				Ŷ		J	'	T			2	20	4		1 2	30	13		
40020874032517 40021 63252328 40024 774032518 41001 574032518 41002 552862234 41002 552952332 41005 10111844225 41006 6111844225 41006 6111148 41007 111252791 41011 13352111297326 41014 1211129732617 41013 5211129732617 41014 12125315233030 41015 7815111211195 41020 1121119665237839 41021 1371237839 41024 99501263	40017													,	38	4		2	20	21		
4002163252328 40024 774032518 41001 552862234 41002 552952332 41005 10118442259 41006 6163642422 41007 1112527911148 41010 31129732617 41011 1335211129732617 41013 552792148 41015 7815111592952 41020 11211592952 41021 121111966 41022 21371237839 41024 995012637121263	40020			8										1	40	3			25	17		
4002477 40 3 25 18 41001 552862234 41002 552952332 41005 10118442259 41006 6163642422 41007 1112527911148 41010 311129732617 41011 1335211129732617 41013 5527921148 41014 1212527921148 41015 7815111592952 41020 1121,1592952 41021 1-12111966 41022 21371237839 41024 99501263	40021			6										6	32	5			23	28		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40024			7										7	40	3			25	18		
4100255 29 5 23 32 41005 101118 44 2 25 9 41006 616 36 4 24 22 41007 11125279111 48 41010 311129732617 41011 1335211129732617 41013 55279211 48 41014 12125279211 48 41015 76151111592952 41020 1121,1592952 41021 1-15921652 41022 21371237839 41024 99501263	41001			5										5	28	6			22	34		
4100510118442259 41006 6163642422 41007 1112527911148 41010 311129732617 41011 1335211129732617 41013 5553152330 41014 1212527921148 41015 78151111592952 41020 11211592952 41021 1111111111 41022 213712111111 41024 99501263311111	41002			5										5	29	5			23	32		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41005			10					1	1				8	44	2			25	9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41006			6					1					6	36	4			24	22		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41007			11				1	2	5				2	7	ģ		۱	11	48		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41010			3				-	-	ī				1	ĥ	11		-	17	61		
41013 5 1 1 2 5 7 3 2 6 17 41013 5 1 1 2 5 31 5 23 30 41014 12 1 2 5 31 5 23 30 41014 12 1 2 5 2 7 9 2 11 48 41015 78 15 1 1 1 5 9 2 9 52 41020 11 2 1 1 5 9 2 9 52 41021 1 1 2 11 19 66 41022 21 3 7 12 3 7 8 39 41024 9 50 1 26 3 7 8 39	41011	12		15	n		,		1	1	1		n	٠ ٥	2	2		n	÷,	17		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41012	10		3	4		Ţ		1	Ŧ	T		6	2	22	ر م		2	0 10	1/		
4101412127921148 41015 78151115 41018 23712592952 41020 112115921652 41021 112111966 41022 21371237839 41024 99501263	41013			2				1	•	r				2	11	2		-	43	30		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41014			12				1	4	2				2	7	9		2	11	48		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41015	7 B					15		1		1				1					5		
41020 11 2 1 5 9 2 16 52 41021 1 1 2 11 19 66 41022 21 3 7 18 39 41024 9 9 50 1 26 3	41018			2				3	7	12					5	9		2	9	52		
41021 1 2 11 19 66 41022 21 3 7 8 39 41024 9 9 50 1 26 3	41020	11		2					1,					1	5	9		2	16	52		
41022 21 3 7 8 39 41024 9 9 50 1 26 3	41021			1										1	2	11			19	66		
41024 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	41022			21				3	7	12				-	ĩ	7			Ŕ	10		
	41024			9				-	•					Q	50	1			26	3		

•

2

ı,

3

1

3

•

					-		_																			 	
41025 41026 41027 41028 41801 41806 42001 42003 42004 42005	15 14 46 48 75 87		8 7 27 20 3 1 3 2 1	2	3 2	1 1 5 12	1	1	2	5 3 24 2	1		4		7 12 2 3 1		5 39 5 8 28 2 3 10 1		11 3 6 8 7			3 3 4 6 2	10 28 8 11 18 4 14	59 16 15 36 39 33 35 40 5	1	_	
42007 42008 42009 42010 42012 42014 42019 43003 43005 43006 43007 43008 43009 43011 43012	90 84 87 83 79 16 69 66 41 34 81 63	1 7 6 12	2 10 12 4 5 13 3 2 2 1 8	1	2 1 1 5 1	8 13 12 11 16 2 1 7 5 4 5 9 1 9 11	1	1 1 1	1 1 4 3 4 4	2 2 2 1 9 14 5 2 5 3 4 2 5 8	1		1 2 2 1 1 1 4 4		3 11 1 1 2 1 3		1 8 13 1 1 2 2	1 3 1 2	1 4 5 9			3 7 13	2 1 1 2 1	1 49 58 2 13 23 43			
43013 43014 43021 44001 44003 44004 44006 44008 44008	38 62 41 8 48 60 56 31	1 15 35	5 13 4 6 33 4		28 4 7 1 4 1	16 2 6 6 1 6 5	4	9 2 1	2 4 1	22 3 7 11 3 6		1	2 3 2 2 4 12		28 2 1 8 1		3 1 17 5 23 26 32	1 1 2 1	1 2 1 3			13 1 9	3 5 2 1	6 5 4 11 4 15			
45001 45002 45003 45004 45005 45008 45009 45010	2 8 2 3	2	7 20 6 17 10	3 4 2 2 9 11	1 1 8 4	9	1	1 2 1 4 2 1	2 1 9 3 4 2 1 3	11 7 6 9		2 1 1 1		8 11 7 2	3	38 46 1 57 59	7 6 13 16 10 14 7 9	1 1 2 3	4	10 5 16 13 28 31	5 7 11 11	3	9 8 14 8 15 18	16	4 6 1 2 3 3	2 3 3	1 4
45011 45012 45013 46002 46003 46005 46005 46007 46008 46802	1	5	20 10 1	1 39 30 14 9 21	12			7 2 2	4 6 4	4 2 1 1 1		1 3 2 2 3		28 9 30 39 58 11 69		42 20 21 19 35	1 8 5 3 2 7		1	24 37 4	6 2 4 3 8		14 16 5	3	14	2 13 44 29 10 30	
46805 46812 46818 47001 47004 47005 47006 47007 47008		2	7	8 27 14 7 16 1 8 19 3	-	2 3 1 3		3 1 4 1 5	2 4 3 8 2 6					43 4 23 4 4 9		41 60 28 39 19 34 32 23	9 13 8 7 7 9 5 10	1		14 20 11 21	9 13 4 9 6 3		2 25 1 31 23 3 39		1 1 3	49 1 2 1 1 8	
47011 47014 47015 47016 47017 48002 48003 48004 48004				15 43 30 25 2 15 5 22 3		1 4		1 1 4 10	2 7 3 6 1 18	2		1 6		41 15 10 3 32 13 40 3		26 20 29 39 20 35 53 22 42	1 3 4 7 14 1 1 3			1 2 25 1 3	4 4 7 11 2 5 4 3 3		1 2 37 1 3		1 2 2 1	12 14 15 1 6 1 12	

NWA_NO HO1 HO2 HO3 HO4 HO5 HO6 HO7 HO8 HO9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 LAKE

i.

| |

91

NWA_NO HO1 HO2 HO3 HO4 HO5 HO6 HO7 HO8 HO9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 LAKE

.

.

48006 48009 48010				59 13 18		3		3	3 1 2	1		3		14 47 7		13 21 50	1				1 3 10					14	
49001 49002				11 24		8 7		B 7	9 8					24		32 48	·				2 5				1	5 13	
49004				2		13		13	19					1		45	2			1	3		2				
50001 50002			2 1	3 2		1 1		2 3	$\frac{1}{1}$					4		32 19	9 11			15 23	4 1		24 31	1	1 2	1	
50006		'n	£	5		1		3	2	1		c		9		42	8			6 12	7		15 25		2	6	
50012		4	0	7				J		1		د		15		31	8			3	7		25		3	1	
51001 51002		3	18	11 40	4	3		1						2 40		28 2	1			20 6	2	2	3	1	8	3	
51003 52003		1	2 18	3	7	4		1	3				2	2		77 21	10			4 22	7 1		6				
52004	6	2	8	,		7	1	1	4	2		•	-		4		20		7	21	- -	5	8	24			1
52005 52006	1	2 23	9	3	2	4 1	1	2	4 2	2		T			4	23	6		4	21	2	22	2	18			•
52007 52009		16 18	19	1 31	5	6			3						8	10	2 1		8	18		25 5	2 1	20			
52010 52011		21 23	8 1	1	3			1	1	1					2		5 2		7 10	7		22 29	8 8	19 6			
52014		1	2	5	~	2		~	1					1	•	55	6			10	6		8	-			2
52016	2	8	7	20	У	2		2		4			1	14		40	8	2	8	,	2	26	0	35			
53002 53003	18 4	5 28	5 3	3	2		1 1	2 1	4 2	3 2			2 1		10 1	1	2 3		6 3	2		8 20	2	31 21			
53005 53006		40 3	3 1	2 3					1 2				1			1 3	7 6		4	17 25		23 8	5 23	21			
53007	2	19 49	4	16		2		1	1	2					1	5	2	1	3	1		19 27	5	17 16			
53009		44	4	3		÷			-	•						1	2		-	24		21	2	24			
53013 53016	18 15	10	8 26			1 13	1	1	1	4 10			2 3		19		4	6	1			6	4	34			
53017 53018	4	28 28	1 3	3	2		1	1	2	3			1		1 1	1	8 3		2 3	11 2		28 19	9 2	10 21			
53022 53023	4	28 63	3	3	2		1	1	2	2			1		1	1	3		3	2		20 32	2	21 3			
53024		69		3												10			-	2		28	11	,			
53025		22 5	1	36 5		1		1	3					1		3	6		3	24 24		8	24	16			
53029 54001	11	11	3 6	6	10	1	1 1	2 3	5 2	4 2	2		1	3	4	14	1 13		6	2	2	12	1 28	37	3	3	
54004 54006		1	15 30	2	7 14		3	1	1	5			1				12 15			24 2			35 26				
54008		1	50	29	5	4		5	4	,			•	1		12	24	2	1.4	- 1	2	10	10	43	2	1	
54010 54011		10	21	3	4	1	1	1	2	2							6		14	44		19	14	40			
54012 54013			16	2	19		2	1	1	6	5			28		40	14			3	6		32 3		11	7	4
54014 54015			1	2	1			3	2					8		34	4		5	17	5	10	26 29	22	9	4	
54016			6	2	28		2		2	5	7						10		5	1			36				
54018 54019		1		20	4 5		10	1	ა 3	3	1					4	16 13	2	4	7	1	4	46 30	19			
54020 54022			2		33	1	4		1	3	11			58		1 1	10			2			33		15	26	
54025 54027		64								1				4		45	1				6	23	24 10		16	3	
54029		1	-	26	4	4	4	5	3	•				1		9	32	2			1		9		2	1	
54032 54034			1	10 58	9	Ţ	1	ر	2	2	1		1	2		11	17	1		4 12	2		22 15		2	2	
54038 54041			26	1 3	1 17		3	2 1	2	5	2			10		43	3 10			7	6		18 26		3	8	
54043 54044			7 34	10 د	9 15	1	15	3 1	2	2	1			2		11	17 7	1		4	2		22 17		2	2	
54048		8	24	U	3		1	1		4	T						2		7	3		30	6	41			
54049 54052		1			3 31		3 3	1	1	1 8	2						3 12		У	2		10	41	4 j			T

92

.

i

NWA_NO	H01 H02	H03 H04	H05 #	HO6 HO7	H08 H	i09 H10	H11	H12	H13	H14	815	H16	H17	H18	819	H20	H21	H22	H23	H24	H25	H26	H27	H28	H29	LAKE

54053 54054 54055 54057 54059 54060 54062 54065 54066 54066	1 1 1	1 5 63 33 65 6 35	28 36 15 7 5 2	1 4 9 12 3 26 15	3 9 1	2 1 1 2 1	13 1 4 3 2	2 3 1 3 3	1 5 12 1 4 11	1 4 1 9 2	1	1	2 7	40 15 54 13 3 12 6 9 9	8 3 1	1	1 7 2 3 1	1	4	9 27 7 21 12 26 17 38 26	7	1 6 2		2	
54085 54085 54085	5	د 00	30 29	14		1	11		¢		7		16 18	2			9 8 2		1	37 44					
54087	25	3	5	6		1		1	6	ą		:	ł	8		3	11		12	19	14				
54090 54091								,				76 43	3									14 15		11 40	
54092 54818				G		1		1		40		64		9						39		14		22	
55002			2	1	6	•	3	2				11	33	6	1		1	3		17		8		5	
55004 55005			1				2		1			30 24	27 34		2			4 5		4 9		21		20 4	
55008 55009			21	,	5		٨	,				64 3	13	55				2		3		12 1		9 1	
55010			21	2	5			2				61	16	55				2				14		6	
55011 55012			1	1			1	1	1			7 19	27	3	1			4 5		22 12		24 15		8	
55013			14	. 1	20	3	1	1	1			6	22	9	•		12	4		7		2			
55014			15	5	6	1	1	4				4 29	34	13			5	6		4		1		15	
55016			2	J	1		2	2				4	29	6	1			4		35		11	1	3	
55017 55018		1	1 16		1		٦					15	29	4 78				4		21		15		12	
55021			20	4	11	1	ž	7			•	2	18	21			3	3		7					
55022 55023		1	10) 1	4		7	1				6	27 19	47 23			4	2		11		4		3	
55025		-	6	-	8		1	1				1	62				9	-		7		1		1	1
55026 55028		-	1 1 1 F						1			23	35	1 80				5		10		20		4	
55029		•	21	2	5		4	2				3	1	55						3		1		1	
55033 55034												66 70	16					2				14 11		19	
55035												69						-				14		17	
56001 56002			24	1 11	5	1	. 3		2			12 12	23	2			3 8			2 B		10 16		2 1	
56003			1	2 2	7				4			B	57	2			8	2		8		6		1	
56004 56005			- E 2/	5 13 1 1	8		2		,			15 11	33	13			5 4			3 12		12 12		2 1	1
56006			41	. 1	7		1		·			16	32	15			5			4		22		4	1
56007 56009			د.	, 19	8							15	17	2		,	4		,	12	10	22		3	
56010			24	1 12	: 5	1	. 3					12	23	5		v	3			2		10		2	
56011			33	3	2				2			10	16				8			8		19 7		1 7	
56013			0	1	6							20	50	1			7	1		4		10		1	
56015			1	83	. 6	}	2	5				10	57	6			8			4		12		6	
57003			1	2 1	5	i J	. 1		3			20	6				9			, 19		24		v	
57005			1	2 2	2 4	1	l 1		3			21	6				5			6		34		6	
57006 57008			2	6 4.4	. 4	1 1	L 5		4			44 4	4	6			2			11		18		0	
57009		1	1	1 16	5	1!	5 1		8			2	5	2			5			11		20			
57010 58001		1	1	7 <u>:</u> 2	i 2	2 2	? 2		5 3			6 26	10 12				6 5		1	5 . 4	2	42 21			
58002		-		6	2	2	2		4			16	2				3		-	13	-	46		5	
58003 58005	1	0	2	7 ! २	5 1		23 23		4			3 ∡∩	5 14			1	35		4	11	5	17 15			
58006			4	5	3	}	1		2			17	11				ž			6		55		8	
58007			2	3		1	2		4	1		24	14				5			11		28 43			
58009	1	0	2	7	5	L :	23		4	•		3	5			1	3		3	12	5	17			

NWA	NO	H01	н02	H03	HOA	805	нок	H07	HU8	H09	H10	н 11	H12	H13	H14	#15	H16	817	H1R	н19	H20	H21	H22	н23	H24	H25	H26	н27	H28	H29 J	LAKE
r.i	_no	HAT	1102	110.7	1104	110.2	1100	1107	1100	1103	117.0	ITTT.	1117	1173	lira	1177	Π¥Ϋ	1111	1110	111.2	112.0	112 1	1122	116.5	****		,				

58010				1								10									75		14	
58011	18		38	6		15	1	1	8							1		6		6				
59001			14		3		4		4			15	6				5		10		37		3	
59002			12	4	5		2		1		•	4	16	1			10		32		12		-	
60002				3			1		1			9	56					8	7		12		2	
60003			3		1		2	2.				1	68	3			1	9	6		3			
60004			3				1	4				2	73	3				10	1		3			
60005							5	1	1			12	51					1	8		12		T	
60006							1	1				ز ۲	13					9	2		10		12	1
600007			,	د	'n)4 10	30 31				E	4 1	4 15		16		2	1
60009			¢	,	3				r			19	32 7.4				5	5	14		25		ŝ	
60012				4			1		1			10	53					7	7		14		ž	
61001			12	3		1	2	4	1			2	49	2			1	7	5		10		-	
61002			5	4		•	2	4	1			4	51	4			-	8	5		12			1
61003			4				1	3	2			8	50		4			7			21			
61004			12	3		1	2	4	1			2	49	2			1	7	5		11			
62001			4	2			3	2	1			6	46	6				8	11		9		2	
62002			3	3			3	4	1			10	38	4				6	11		15		3	
63001			3				1	4	1			13	47	4				8	5		B		7	
63003			6		•				1			4	39	9				1	21		11	1	2	
64001			,	2			1	1				17	52 56	Ţ				1	0		6	11	10	
64002			0 2	2			1	3				27	20 55	2				4 Q			4	11	1	
65001			17				1	2	3		R	12	3	-	9			1	2		6	17	18	2
65004			1	4	2	1	1	3	4		10	21	15		2		3	2	6		6	6	10	2
65005			21	·	10	1	-	-	4			9			_		9	-	10		35			
65006			9	11	1	4	1	2				22	16		1		2	2	4		8	8	8	1
65007			3		1		1	2	1			41	16	1				2	3		14	2	12	
65801			47									16	5					1			2	16	14	
66001			8	9	8	3	2	4				4	37	5				6	11		2		1	
66002			1			_	2	1				7	52	2				7	12		8		6	
66004	5		21	15	29	5		1				1	19	3			1	4	1				1	•
66005	. •		8	2	9		4	2				2	33	8				2	11		4 10		1 7	
66006 66011			n	Ţ			2	T				8 10	24 20	2				2	*		10	Q	28	
67001			2				1	1				19	20	1	1			1	17		0 14	6	26	٦
67001			4				1	1				15	11	I	1			1	11		22	v	14	18
67005			1	1								17	44	3			3	б	8		7		10	10
67006			-	•			1	1				21	29	2			•	4	18		12		9	3
67008			15	13	16	4	1	2				5	12	2			6	2	21				1	
67010												9			1				1		32	7	51	
67013												29	34					5	3		6		23	
67015			1	2		1	2	1				18	29	2			1	4	15		8	2	12	1
67018				1				1	1		2	27	3	2		;			15		4	12	33	
68001		3		17		3	1		12	2				10			1		50					
68003			4	11		1	1		15	1		6		8			1		44		2		4	
68004		1	1	21		4	1		14	3				11					43					
68005		1	•	13		4	1	1	12	3		17		16			2		45				11	,
69000		2	3	ر 10		1 2			4	2		10		כ 12			2		40		0		11	1
68010		10		10		4			0 17	J				10					40 61					1
68014		10		1		,			16					14					65					
68015		7		18		1		1	19					11					43					
68020		12	1	15		2		4	7					13					46					
69008			23	13		5		-	7			1	1	7			5		32		3			1
69011			5	2		2			9			4	-	14			1		62		2			
69012			10	15		5		2	4	4		2	2	9			2	1	42		1		1	
69013				7		3			33	3	1			10					43					
69017			32						2			16	3	1			6		21		6		13	
69018		17		4					1					14					63					
69019			_							6	2								92					
69020			15							1		5		-			3	`	72		4			·
69027		-	11	-			1	1	4			14		1			2		34		10		21	1
69034 60034		2	2	5					14					15					60		41		20	
600034 60000			ช 1						ز ۱			50							J		41 ¢		29	
030V2 70003			12	D					1	1		D		7			n		A C		0 1		Co o	2
70004			12 R	0 7					2	T				36			2		40 12		1		o	2
70006			12	19					41	5	1			3			2		74 15		÷			
				~ ~						,	-			-			-							

.

!

,

						_													·····	
70803	•	10	•		2	1	14	2			-		25		'n		46	16	11	
71001	8 1	T	2		I	1	3				1		2		ز ۱		42	16	13	
71003	16	1				2	4				8 7				1		44	16	7	
71004	10	1				6	2				1				5		50	19	28	
71006	4	3	۵	1	1	1	ĩ				7	1			5		39	20	11	
71008	4		2	-	1	1	3	,			11	-			2		37	18	21	
71009	B	2	2		1	1	3				8				3		41	18	12	
71010	17						5				6				3		38	20	10	
71011	6	4	3	1	1	3	3				11	2			4	1	12	26	23	
71802	6	5	3	1	1	3	3				11	2			4	1	12	25	23	
71804	6						1				24	_						4	66	
72001	6	4	4	1	2	1	3	•			12	8	1		3	2	17	17 2	1/	
72002	2	1			6	1	8	2			8	•	7		2	•	35	20	9 17	
72004	11	ز 1	4	1	2	1	ງ ງ				12	17	2		3	2	10	17 Z	16	
72005	11	1	2	1	1	1	2				10	1/	2			2	11	16 3	18	
72000	2	4	3	Т	1	T	2				13	14	1			2	17	47	9	
72008	4				7		5				13		ī				24	31	17	
72009	4		7		í	2	2				12	2	-		10	1	27	14	16	
72011	4	2	2	1	-	1	4				8	6	1			1	14	29 1	26	
72811	3				3	2	13				12		1			·	17	41	8	
72814	5						3				23						21	28	20	
72817		5					1						23				69	1		
72818		3			1	1	5	2					21				66	1		
72820											16	44	4	~~		6	28	2	15	7
73001	10				1	1	1				2	17	2	20		4		10 12	10	7
73002	د ح	r		1	,		3				2	20	4	4		6		13 5	16	,
73005	0 10	2	2	2	I		4				Д	34	ŝ	4		7	3	7 3	12	
73007	6	J	4	٤	1	1	2				3	17	5	16		2	•	13 16	24	
7300R	15	3	2	1	•	-	ĩ	3	1		5	29	9			6	19	6		
73009		1	-	-			-	•	-		2	35	2	10		6		75	25	
73010	10				1	1	1				2	18	2	19		4		10 11	15	7.
73011	7	2		1							4	47	8			9	9	- 4 3	6	
73803	12										1	53	8			14		7	4	
73804	14	2			1	3	1							36				7 17	18	1
74001	7	_					4					2		16				22 22	27	c
74002	8	5					~					,	4	15				<i>ر</i> د در	27	0 6
74003	23	12	2	n		1	4				1	ر ۱	1 5				4 77	1 13	24 Q	2
74005	20 10	12	2	2		1	נ 1				2	4	J	12			21	2 28	32	1
75002	20	4	4		1	1	*				5	21		6	5	3	22	2 9	11	3
75003	5	4	3		•	2					Š	18		11	4	3	8	2 13	17	4
75004	1	1	1		2	-	1				7	49	1		2	7	3	1 12	8	3
75006		2	2		-	1					10'	43			3	6	6	19	7	
75007	3		7			1	1				9	· 13		4	9	2	19	10 8	14	
75009	1		4				1				7	9		15	6	1	12	5 10	21	2
75010	6	16	7	1			1				6	23	2		3	3	27	2 1		
75017	6	13	4	3			2				4	9	4	1	1	1	50	4 7	14	1
76002	4 9	12	6	2	1		4				3	2	b 2	4	1		22	4 J A Q	14	1
76004	11	. 1	9	h			1					2	נ	11	2		14	4 ° 6	2J 13	J
76003	3 6	. 6 13	9 A	د د	1		2		2		4	2	Ŕ	2	1		25	52	12	1
76007	5 0	10	4	1	2		10		16		J	2	4	2	1		19	20	17	-
76009	6	2	5	-	1	1	2		10		8	9	5		2	1	38	5	15	
76010	2 9	24	,	6	2	-	7					-	16		-	-	34			
76011	- ,			•	-		2		70									19	8	
76014	1 10	2	18	1			3				7		6				2	20	32	
76805	26	5	12								62									
77001				1			1		1		7 32	13	1				16	10	18	
77002				1			1		1	1	6 47	19	i i				7	5	12	
77003			1				1				8 11	6					24	18	29	
77004			4						5		47	2					64	12	1	
77005		1			1		8		1			. -	. 8	-		~	28	37	16	
78001		4	4	2	1	1	1		3	6	4 28	2 15	, 3	3		2	10	4	8	
78002		3	2	2	1		1		4	4	b 35	4 5	/ 4	,		n	4 10	4	17	
18003		4	4	2	1	1	1		; ,	1	5 25 5 17	2 13) 2) 1	3 1		2 1	0 57	2	0 20	
70004 79005		2	n	4 ว	1	1	1		N L	ט ב	4 3/	4 L	29 29	1		Ţ	5 6	3	19	
10000		3	۷.	4	1	1	1		4)		* (/ 11				•	-		

																	•											
79002			•	3	2	1	1		1	1		5	31	۱	20	1	2		1		15		2			12		
79003				ĩ	ĩ	2	î	1	1	2	1	6	23	-	6	1	2		•		28		7			20		
79004				2	- /	-	-	-	•	5	-	13	30		29		10		5		1		•			10		
79005				6	2	1			1	4		13	27	1	34	1	Ę		1		1					2		
79006				1	1	1			-	1		4	36	-	13	ī	1		-		20		3			16		
80001				2	-	-				16		•	23		Q	-	10		٦		22		ī			5	1	
80004				-						5			74		5		10		1				•			13	ī	
80005										2			15		14				67							1	•	
81002				1		1				22		1	17		11		2		8				1	2		15	1	
81003				î		-				14		1	16		7		5		1				Å	1		49	-	
81004				î						58		-	11		16		Ă		•					Â		4	1	
82001				â	٨	1				20		2	10	R	8		1	-			19		R			11	î	
82003				5	6	1	1		1	13	4	č	15	0	14		2				11		2			24	•	
83002			-		v	2	1	1	1	2	r	5	19		11		2				44		4			14	1	
83003				3	5	6	1	-	1	4		-	1.4			2	5				32					37	-	
83064				2	1					4		1	14		1	1					34		ç			31		
83005				5	1	1	1		1			1	2		1	T					60		3			10		
83006				2	2		1		1	1			ว้	•	1	Q					AQ		2			2/		
83007				Å	•	1				10			,		5	U					92		5			41		
83009				1		1	1		1	2			13		11		2				55		2			Q	1	
84002				1		1	1		1	2			16		11		6				,,		4			77	1	
84003				10	6	1	1		1	٦		1	32		1٥	٨	,				17		2			11	1	
84004				q	3	2	1		1	2		2	41		13	5					6		2			11		
84005				â	5	1	1		1	2		1	23		15		•				22		1			12		
84006				4	15	4	2	1	2	r V		Ŧ	23		0	7	а				17		*			7	1	
84008				3	13	-	4.	1	1	2			4		5		2				70					12	1	
84009				2	24		•			1			13		2	2	2				22					28		
84011				-	67					1			13		51	2	6				17					19		
84012				A					R				8		21	4	2				17					13	2	
R4013				7	5	1	1		1	2		1	21		<u>د</u>		2				26		1			12	4.	
84014				à	1	1	1		T	2		1	21		1	۳ د					11		1			27		
84015				4	, ,	2	1	1	1	2			י נ		1	с С					41.J					0	1	
84016	•		1	-	1	2	1	1	1	2			י ר		2	0	4				07					7	. ,	
84018			,	۵	5	2	1		1	2		1	76		11						12		2			12		
84020			•	7	J	2	1		Ţ	4		1	0		13	- 1	12				20		4			22		
84022				,	1	1	1		1		1	2	45		12	5	10				20		7			10		
84023					1	T			T	4	Ţ	J	90		,	2					1		'			19	2	
84025			1										2			1					37					2	1	
84025	-		1										21		16		0				54 43					10	2	
84020				2	2					1			21		1)	22	0				9.3 C1					10	د	
85002				ŝ	2	2	1		1	2	۳	1	11		11	22	D				201		٩			10		
85002				0		2	1		T	10	'	, 1	11		11	2	10		•		20		Ţ	,		10		
95003										18			48 51		17		10		2					1		9. 7		
96002						1			1	10		1	21		29		,				2			•		2	•	
00002 07001						t			T	12		Ţ	44		14		5		I		2			8		D	3	
0/001										10			22				22							14		•		
02007				2						34			10		1											3	4	
90002				2						13			38		16		22		1					6		1		
70003 02001						1				13			11		30		16		6					4		~	•	
10060						Ţ				15			39		18		18		2					1		4	1	
94001 05001			,							18			35		16		7		2					6		7	8	
95001			6							15			26		22		2		1					9	1	11	7	
90001				1						4			33		-										4	57	1	
96002				2						17			51		2		2				_			1	4	18	3	,
97002	11	20	1	•	3			•		2			17	-							6	-			4	64	3	
101001	11	51	2	8		1		3	1					9		13		3		1	8	5						
101002	У.	36	3	4										13		13		4		1	11	5						

NWA_NO HO1 HO2 HO3 HO4 HO5 HO6 HO7 HO8 HO9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 LAKE

.

.

-

:

-

.

NWA_NO	RIVER	LOCATION	ç	2.	AREA	SPR	EVENTS	BFI
10000	Makan of taibh	Manuar 64 a 1 d		~	107			450
19005	Water of Leith	Murrayfield	L T		107			.409
19007	ESK Braid Durn	Musselburgn Liberten	1		14 2			607
19010	North Fek	Dalkoith Balaco	1	2	137			
10011	Spittle Burn	Ninemile Burn		n. A	157			.55
20001		Rect Linton	2	л. Л.	307	36 59	10	519
20001	Tyne Tyne	Spilmersford	1	8	161	50.55	10	. 491
20003	Tyne Birne Water	Saltour Hall		ግ ስ	101			.462
20000	Biel Water	Belton House	,	Δ.	51.8			. 608
20000	Gifford Water	Lennoxlove		Δ.	64			.567
20804	Thornton Burn	Thornton Mill		R	14.2			.641
20806	Hedderwick Burn	North Belton		Ā	7.1			.243
20807	Woodhall Burn	Woodhall		A	10			.691
20808	Cogtail Burn	Athelstane Ford	1	D	3.9			.507
20809	Salters Burn	Crichton Dene		D	1.8			.32
21001	Fruid Water	Fruid		Ā	23.7			.307
21002	Whiteadder Water	Hungry Snout		A	45.6			.5
21005	Tweed	Lyne Ford		A	373			.559
21006	Tweed	Boleside		A	1500			.499
21007	Ettrick Water	Lindean		A	499			.397
21008	Teviot	Ormiston Mill		A	1110			.446
21009	Tweed	Norham		A	4390			.517
21010	Tweed	Dryburgh		A	2080			.514
21011	Yarrow Water	Philiphaugh	-	A	231			.441
21012	Teviot	Hawick		A	323			.426
21013	Gala Water	Galashiels		A	207			.509
21015	Leader Water	Earlston	1	D	239			.483
21016	Eve Water	Evemouth Mill		A	119			.441
21017	Ettrick Water	Brockhoperig		A	37.5			.344
21018	Lyne Water	Lyne Station		D	175			.588
21019	Manor Water	Cademuir		A	61.6			.599
21020	Yarrow Water	Gordon Arms		A	155			.434
21021	Tweed	Sprouston		A	3330			.496
21022	Whiteadder Water	Hutton Castle	3	D	503			.511
21023	Leet Water	Coldstream		Ā	113	•		.341
21024	Jed Water	Jedburgh		A	139			.416
21025	Ale Water	Ancrum		A	174			.427
21026	Tima Water	Deephope		A	31		•	.269
21027	Blackadder Water	Mouth Bridge		A	159			.489
21028	Menzion Burn	Menzion Farm		A	5.7			.43
21030	Megget Water	Henderland	• •	A	56.2	43.05	4	.382
21031	Till	Etal		D	648			.572
21032	Glen	Kirknewton		A 1	98.9			.481
21805	Whiteadder Water	Blanerne		A	277			.487
22001	Coquet	Morwick	-	A 5	69.8			.447
22002	Coquet	Bygate		A	59.5			.47
22003	Usway Burn	Shillmoor		A	21.4			.395
22004	Aln	Hawkhill		A	205			.46
22006	Blyth	Hartford Bridge		A 2	269.4			.342
22007	Wansbeck	Mitford		A 2	287.3			.353
22008	Alwin	Clennell		A	27.7			.45
22009	Coquet	Rothbury		A	346			.473
23001	Tyne	Bywell		D 21	175.6			.349
23002	Derwent	Eddys Bridge		A	118	37.13	9	.426
23004	South Tyne	Havdon Bridge	•	A 7	751.1			.34
23005	North Tyne	Tarset		A 2	284.9	53.79	6	.269
23006	South Type	Featherstone		A 3	321.9	38.74	1	.329
23007	Derwent	Rowlands Gill		A 2	242.1			.495
23008	Rede	Rede Bridge		A 3	343.8			.328
23009	South Type	Alston		A :	118.5			.299
23010	Tarset Burn	Greenhaugh		A	96	49.22	6	.267
23011	Kielder Burn	Kielder		A	58.8			.335
23012	East Allen	Wide Eals		D	88			.341
23013	West Allen	Hindlev Wrae		A	75.1			.267
23014	North Type	Kielder temporary		A	27			.346
24001	Wear	Sunderland Bridge		D	657.8			.413
24002	Gaunless	Bishop Auckland		D.	93			.513
24007	Wear	Stanhone		Ā	171.9	46.92	5	.343
24004	Bedburn Beck	Bedburn		A	74.9		5	.464
24005	Browney	Burn Hall		A	178.5	28.87	18	.516
24006	Rookhope Burn	Eastgate		A	36.5			.349
21000	· ····································							

NWA_NO	RIVER .	LOCATION	Q	AREA	SPR	EVENTS	BFI
-			-				
24007	Browney	Lanchester	v	44 5	37 77	A	944
24007	Wear	Witton Park	A	455	51.21	0	.444
24009	Wear	Chester le Street	D	1008.3			.457
25002	Tees	Dent Bank	À	217.3			.21
25003	Trout Beck	Moor House	A	11.4	64.76	, 5	.147
25004	Skerne	South Park	Y	250.1	24.58	5	.523
25005	Leven	Leven Bridge	۰A ۸	190.3	16 19	2	209
25000	Clow Beck	Croft	A	78.2	40.45	2	.536
25011	Langdon Beck	Langdon	A	13	47.02	1	. 197
25012	Harwood Beck	Harwood	Α	25.1	67.67	2	.224
25019	Leven	Easby	Α	14.8			.579
25020	Skerne -	Preston le Skerne	, D	147			.368
25021	Skerne Svka Wair	Moor House	M	0.1	58 92	.5	.401
26007	Catchwater	Withernwick	A	15.5	50152	5	.353
27001	Nidd	Hunsingore Weir	Y	484.3	42.28	12	.496
27008	Swale	Leckby Grange	Α	1345.6			.48
27009	Ouse	Skelton	D	3315			. 427
27010	Hodge Beck	Bransdale Weir	Y	18.9	52.42	1	.483
27014	Rye	Stamford Bridge	لا د	1634 3			.623
27024	Swale	Richmond	Ā	381			.354
27026	Rother	Whittington	D	165	34.13	8	.451
27027	Wharfe	Ilkley	, D	, 443	50.73	24	.374
27031	Colne .	Colne Bridge	Y	245	41.31	2	.391
27032	Hebden Beck	Hebden Kilanan Dridaa	D	22.17	E0 0	10	.411
27034	Ure Aire	Kildwick Bridge	A	282 3	40 99	10	369
27040	Doe Lea	Stavelev	Â	67.9	40.35		.507
27041	Derwent	Buttercrambe	D	1586		•	.676
27042	Dove	Kirkby Mills	Α	59.2			.595
27043	Wharfe	Addingham	Α	427			.319
27044	Blackfoss Beck	Sandhills Bridge	A	47			.454
27047	Snaizenoime Beck	Low Houses Sleights	A A	308			. 401
27051	Crimple	Burn Bridge	A	8.1	32.25	8	.307
27052	Whitting	Sheepbridge	A	50.2			.475
27054	Hodge Beck	Cherry Farm	A	37.1			.528
27055	Rye	Broadway Foot	A	131.7		•	.562
27056	Pickering Beck	Ings Bridge	A	68.6			.685
27058	Biccal	Crock House Farm	A A	57 6		,	. 300
27059	Laver	Ripon	Ā	87.5			.407
27061	Colne	Longroyd Bridge	A	72.3			.375
27062	Nidd	Skip Bridge	ر D	516			.284
27064	Went	Walden Stubbs	D	83.7			.588 .
27065	Holme	Queens Mill	D	97.4			.47
27066	Blackburn Brook Shoaf	Asniowes Mighfield Read	A X	42.8			.2/1
27069	Wiske	Kirby Wiske	Ā	215.5			.158
27071	Swale	Crakehill	A	1363			.439
27072	Worth	Keighley	В	71.7			. 513
27074	Spen Beck	Northorpe .	Α	46.3			.561
28002	Blithe	Hamstall Ridware	A	163			.491
28008	Dove	Rocester Weir	A	399	25 06		.612
28018	Dove	Marston on Dove	I N	167 2	25.80	. 4	.695
28021	Derwent	Dravcott	D	1175			.668
28023	Wye	Ashford	Ď	154	15.07	9	.742
28025	Sence	Ratcliffe Culey	Α	169.4			.427
28026	Anker	Polesworth	Y	368	48.63	5	. 474
28029	Kingston Brook	Kingston Hall	A	57			.383
28030	BLACK BROOK	Unebarrow Ilam	A	140 5			-437
28031	Dove	Hollinsclough	А 2	ά 140.2	24 39	<u>ہ</u>	. 33
28037	Derwent	Mytham Bridge	ח	203	47.30	. 0	406
28038	Manifold	Hulme End	Ā	46			.31
28039	Rea	Calthorpe Park	A	74			.486
28041	Hamps	Waterhouses	A	35.13	44.23	5	.349

.

NWA_NO	RIVER	LOCATION	Q	AREA	SPR	EVENTS	BFI
20046	Deve		л	63			707
28046	Dove	lzaak walcon Ningfiold Dark	A D	130			514
28049	Ryton	Worksop	Ă	77			.626
28055	Ecclesbourne	Duffield	A	50.4			.492
28058	Henmore Brook	Ashbourne	Α	42			.457
28060	Dover Beck	Lowdham	Α	69			.732
28066	Cole	Coleshill	А	130		_	.441
28070	Burbage Brook	Burbage	A	9.1	42.47	9	.447
28075	Derwent	Slippery Stones	A	1/			.3/5
28079	Meece Waitha Daak	Shallowiord		100.3	7 40	0	.604
29001	Walthe Beck	Brigsley Clauthorno Mill	А Х	77 /	1.49	9	. 882
29002	Lud	Louth	n D	55.2			.899
29004	Ancholme	Bishopbridge	Ŷ	54.7	31.42	8	.455
29005	Rase	Bishopbridge	Ā	66.6			.541
29009	Ancholme	Toft Newton	Α	27.2			.515
30001	Witham	Claypole Mill	A	297.9	27.5	11	.675
30002	Barlings Eau	Langworth Bridge	Α	210.1			. 454
30003	Bain	Fulsby Lock	A	197.1			.584
30004	Partney Lymn	Partney Mill	A	61.6	22.21	11	.654
30011	Bain	Goulceby Bridge	A	62.5			.722
30012	Stainfield Beck	Stainfield	A	3/.4			.443
30013	Heighington Beck	Heighington	A A	11 9			./40
21005	Pointon Lode	Pointon Tixovor	м	A17	57 48	8	.4/3
31005	Cuach	Belmesthorne	A	150	57740	Ŭ	. 69
31007	Welland	Barrowden	Ä	411.6		•	. 444
31010	Chater	Fosters Bridge	A	68.9	41.41	7	.511
31011	West Glen	Burton Coggles	A	31.6			.355
31016	North Brook	Empingham	A	36.5			.939
31020	Morcott Brook	South Luffenham	A	19.6			.596
31021	Welland	Ashley	A	250.7	31.12	2	.412
31022	Jordan	Market Harborough	A	20.8	<u> </u>		.411
31023	West Glen	Easton Wood	A	4.4 04 E	32.97	1	.142
31025	Gwash South Arm	Manton	A >	24.0			342
31020	Egiecon Brook Bourpe Fau	Egieton Mays Sluice Bourne	- <u>n</u>	10.6			.71
32001	Nene	Orton	· Ď	1634.3			.515
32002	Willow Brook	Fotheringhay	D	89.6			.687
32003	Harpers Brook	Old Mill Bridge	A	74.3			.465
32004	Ise Brook	Harrowden Old Mill	Α	194			.551
32006	Nene/Kislingbury	Upton	D	223			.582
32007	Nene Brampton	St Andrews	D	232.8			.572
32008	Nene/Kislingbury	Dodford	D	107			.547
32020	Wittering Brook	Wansford	D	46.9			.859
32023	Grendon Brook	Rycholmes Bridge	A	4/.5			.602
32027	Billing Brook	Chesterton Noction Bark	A A	24.3			.408
32031	Flore Stream	Flore	м	6 81	19 84	В	
32001	Bedford Ouse	Brownshill Staunch	מ	3030	22.03		.404
33002	Bedford Ouse	Bedford	Ā	1460			.515
33003	Cam	Bottisham	Á	803			.653
33005	Bedford Ouse	Thornborough Mill	D	388.5			.504
33006	Wissey	Northwold	Α	274.5			.815
33007	Nar	Marham	D	153.3			.905
33008) Little Ouse	Thetford No1 Staunch	D	699			.719
33011	. Little Ouse	County Bridge Euston	A	128.7			.727
33012	kym .	Meagre Farm	A	137.5		,	.259
33013	Sapiston	Rectory Bridge	A	205.9			.633
33014	Lark	Temple	A	272	13.65	9	.775
33015	Ouzel	Willen	Y	277.1	36.03	10	.548
81066	1 TOAG	Cappennam Bridge	A	1.00.1			,529 197
11015	Alconhume Brech	Rellora Bridge Brampton	U ×	201 E			,/oz
22020	AICONDULY BLOOK	Blunham	А П	541 2			.403 779
12022	l Cam	Dernford	ם ה	198			.77
33024	5 Bedford Ouse	Offord	۵ ۵	2570			493
33027	Rhee	Wimpole	A	119.1			655
33029	9 Stringside	White Bridge	Ŷ	98.8	11.72	2 7	.857
33030) Clipstone Brook	Clipstone	Ā	40.2		-	.377
33031	1 Broughton Brook	Broughton	A	66.6			.389
	-	=					

.

I
NWA_NO	RIVER	LOCATION	۵	AREA	SPR	EVENTS	BFI
33033	Hiz	Arlesev	·	108			.851
33034	Little Ouse	Abbey Heath	A	699.3			. 8
·33035	Ely Ouse	Denver Complex	D	3430			.498
33037	Bedford Ouse	Newp't Pagnell Wr	A	800			. 493
33039	BedIord Ouse	Roxton	A A	1660			.545
33044	Thec Wittle	Bridgnam Ouiderbam	A A	28 3	21.93	7	. 644
33046	Thet	Red Bridge	Ä	145.3	21.75	,	.633
33048	Larling Brook	Stonebridge	A	21.4			.829
33049	Stanford Water	Buckenham Tofts	A	43.5			.885
33062	Guilden Brook	Fowlmere two	D				.967
33063	Little Ouse	Knettishall	A	101			.691
33065	Hiz	Hitchin	A	6.8			.848
33067	Granca New River	LINCON Rurwall		19.6			.4/4
33809	Bury Brook	Burv Weir	Ă	65.3	55.53	9	.316
34001	Yare	Colney	A	231.8			.657
34002	Tas	Shotesham	D	146.5			.579
34003	Bure	Ingworth	А	164.7	13.07	9	.831
34004	Wensum	Costessey Mill	A.	536.1		-	.733
34005	'Iud	Costessey Park	A	/3.2	22.59	/	.652
34006	Dove	Oakley Park	А Д	173 9	42.95	5	.40
34008	Ant	Honing Lock	A	49.3	74.73	-	864
34010	Waveney	Billingford Bridge	A	149.4			428
34011	Wensum	Fakenham	А	127.1	11.23	5	.825
34012	Burn	Burnham Overy	А	80			.954
34014	Wensum	Swanton Morley Total	D	363			.749
34019	Bure	Horstead Mill	D	313			.795
35002	Depen	Nauncon Hall Boyorcham Bridge	А Х	54 0			.357
35008	Gipping	Stowmarket	A	128.9	44.29	10	. 385
35013	Blyth	Holton	D	92.9			.342
36001	Stour	Stratford St Mary	` D	844.3			.507
36002	Glem	Glemsford	A	87.3			.435
36003	Box	Polstead	Α	53.9			.637
36004	Chad Brook	Long Melford	A	47.4			.425
36005	Stour	Hadieign	A D	100			.449
36007	Belchamp Brook	Bardfield Bridge	A	58.6			.416
36008	Stour	Westmill	A	224.5	46.19	12	.371
36009	Brett	Cockfield	А	25.7			.312
36010	Bumpstead Brook	Broad Green	А	28.3			.228
36011	Stour Brook	Sturmer	A	34.5			.357
36012	Stour	Kedington	A	76.2			.402
370015	Roding	Bedbridge	ل م	303.7	17 96	13	205
37003	Ter	Crabbs Bridge	Ā	77.8	36.75	5	. 492
37005	Colne	Lexden	D	238.2		-	.526
37006	Can	Beach's Mill	A	228.4			.419
37007	Wid	Writtle	A	136.3	38.9	7	.391
37008	Chelmer	Springfield	A	190.3	32.98	2	.548
37009	Brain	Guithavon Valley	A	60.7			.682
37010	Chalmer	Churchend	A X	247.5			.531
37012	Colpe	Poolstreet	A A	65 1			.431
37013	Sandon Brook	Sandon Bridge	A	60.6			. 34
37016	Pant	Copford Hall	Â	62.5			.274
37017	Blackwater	Stisted	Α	139.2			. 496
37,019	Beam	Bretons Farm	Α	49.7			.364
37020	Chelmer	Felsted	D	132.1			.517
37021	Roman	Bounstead Bridge	A	52.6			.613
37022	Holland Brook	genorpe le Soken	A	54.9			. 489
37024	Bourne Brook	Derces Bridge	A x	104.2			4/1 مە
37030	Holland Brook	Cradle Bridge	А Д	48 K			.49
37031	Crouch	Wickford	Ä	71.8	24.15	9	.305
38002	Ash	Mardock	D	, 78.7		2	.506
38003	Mimram	Panshanger Park	Y	133.9	11.85	6	.937
38007	Canons Brook	Elizabeth Way	A	21.4	37.2	18	.414
38014	Salmon Brook	Edmonton	A	20.5			.271
38018	Upper Lee	Water Hall	D	150			.813
							•

•

.

.

,

NWA_NO	RIVER	LOCATION	Q	AREA	SPR	EVENTS	BFI
							
38020	Cobbins Brook	Sewardstone Road	А	38.4			.239
38021	Turkey Brook	Albany Park	D	42.2			.216
38022	Pymmes Brook	Edmonton Silver Street	Ā	42.6			.438
38024	Small River Lee	Ordnance Road	A	41.5			.466
38026	Pincey Brook	Sheering Hall	A	54.6			.384
38029	Quin	Griggs Bridge	А	50.4			.437
38030	Beane	Hartham	A	175.1			.786
39002	Thames	Days Weir	A	3444.7	F 01	~~	.643
39004	Wandle Boyorlow Brook	Beddington Park	r n	122	10 21	17	. / 6 /
30005	Windrush	Newbridge	<u>ک</u>	362 6	10.21	. 17	.000
39000	Blackwater	Swallowfield	n n	354 8	19 13	. 13	. 684
39008	Thames	Evnsham	Ā	1616.2	19.19	10	.674
39011	Wey	Tilford	A	396.3			.742
39012	Hogsmill	Kingston upon Thames	Y	69.1	19.08	11	.728
39015	Whitewater	Lodge Farm	A	44.5	•		.936
39016	Kennet	Theale	A	1033.4			.873
39017	Ray	Grendon Underwood	A	18.6	57.38	25	.153
39019	Lambourn	Shaw	A	234.1			.964
39020	Coln	Bibury	A	106.7	40 15	10	.938
39022	Loadon	Sneeporlage Brimston	A	104.0	40.10	12	575
30035	Cherwoll	Banbury	n I	100 /	20.10	10	401
39020	Pang	Panghourne	A	170.9	34.03	10	.869
39028	Dun	Hungerford	Ă	101.3			.95
39029	Tillingbourne	Shalford	A	59			.888
39031	Lambourn	Welford	А	. 176			.981
39032	Lambourn	East Shefford	D	· 154			.974
39033	Winterbourne St	Bagnor	Α	49.2			.959
39034	Evenlode	Cassington Mill	Α	430			.708
39036	Law Brook	Albury	Y	16	3.8	1	.933
39037	Kennet	Marlborough	A	142			.949
39038	Thame	Snabbington Weat Mill Cricklade	u U	443			.53/
39040	Leach	Priory Mill Lechlade	ل م	76 9			793
39042	Hart	Bramshill House	- n	84			. 626
39051	Sor Brook	Adderbury	Ā	106.4			.77
39052	The Cut	Binfield	Ŷ	50.2	29.44	8	.422
39053	Mole	Horley	Y	89.9	51.05	7	.425
39054	Mole	Gatwick Airport	A	31.8			.245
39055	Yeading Bk West	Yeading West	Α	17.6			.262
39061	Letcombe Brook	Letcombe Bassett	A	2.7			.959
39065	Ewelme Brook	Ewelme	A	13.4			.974
39068	Mole	Castle Mill	D	315			.414
39069	Mole	Circegoster	А Х	142			.300
39073	Amprey Brook	Sheepen Bridge	л 2	711			
39075	Marston Meysev Bk	Whetstone Bridge	л А	25			486
39076	Windrush	Worsham	A	296			.832
39077	Og	Marlborough Poulton Fm	 D	59.2			.976
39078	Wey (north)	Farnham	D	191.12			.706
39081	Ock	Allott Gardens	A	.234			.648
39091	Misbourne	Quarrendon Mill	D	66.29			.809
39092	Dollis Brook	Hendon Lane Bridge	М	25.1	46.86	8	
39097	Thames	Buscot	A	997			.728
39101	Aldbourne	Ramsbury	A	53.1			.972
39813	Mole	Ifield Weir	М	12.69	47.34	9	
39814	Crawters Brook	Hazelwick	M	4.5	43.78	13	
39830	Beck Chaffingh Drack	Rectory Road	M	10	14.94	11	•
39831	Charrinen Brook	Beckennam Udiam	M	206	20.41	20	20
40004	Reult	Stile Bridge	I R	200	03.21	4	פני סבר
40005	Bourne	Hadlow	л А	50.3	22.98	16	.619
40007	Medway	Chafford Weir	y N	255.1	43.37	19	.501
40008	Great Stour	Wye	ý	230	35.11	10	.581
40009	Teise	Stone Bridge	À	136.2	43.46	11	.437
40010	Eden	Penshurst	A	224.3	48.64	27	.322
40011	Great Stour	Horton	D	345			.694
40017	Dudwell .	Burwash	A	27.5			.439
40020) Eridge Stream	Hendal Bridge	A	53.7			.439
40021	Hexden Channel	Hopemill Br Sandhurst	A	32.4			.447

NWA_NO	RIVER	LOCATION	. Q	AREA	SPR	EVENTS	BFI
40024	Bartley Mill St	Bartley Mill	A	25.1			.421
41001	Nunningham Stream	Tilley Bridge	A	16.9			.356
41002	Ash Bourne	Hammer Wood Bridge	A	18.4			.51
41005	Ouse	Gold Bridge	D	180.9	45.22	23	.484
41006	Uck .	Isfield	·Υ	87.8	60.44	15	.415
41007	Arun	Park Mound	М	403.3	77.49	11	
41010	Adur W Branch	Hatterell Bridge	A	109.1			.247
41011	Rother	Iping Mill	А	154			.624
41013	Huggletts Stream	Henley Bridge	A	14.2			.362
41014	Arun 🗠	Pallingham Quay	D	379			.321
41015	Ems	Westbourne	- Y	58.3	4.68	10	.918
41018	Kird	Tanyards	D	66.8			.174
41020	Bevern Stream	Clappers Bridge	A	34.6	<u> </u>	_	.272
41021	Clayhill Stream	Old Ship	D	7.1	53.52	5	.168
41022		Haliway Bridge	A	5Z	49.66	8	. 348
41024	Shell Brook	Shell Brook P S	A	22.6	67 00	c	.523
41025	Loxwood Stream	Drungewick	A	91.0	21.00	0	. 441
41020	Cocknaise Brook	Rolywell Dringer March	А Х	30.1	•		. 523
41027	Chong Stroom	Chose Prideo	л х	37.2	40.02	10	374
41020	Hollington St	Vollington	- л м	3 52	20.03	15	
41806	North End Stream	Allington	n N	2.22	39.91	13	422
42001	Wallington	North Farebam	<i>ل</i>	111			403
42001	Ivmington	Brockenburgt Park	Λ Δ	9.89			. 363
42003	Test	Brockelindist Faix Broadlands	л П	1040			.944
42004	Wallon Brook	Broughton	2	53.6			.935
42007	Alre	Drove Lane Alresford	A	57			.98
42008	Cheriton Stream	Sewards Bridge	 A	75.1			. 969
42009	Candover Stream	Borough Bridge	A	71.2			.964
42010	Itchen	Highbridge+Allbrook	A	360			.961
42012	Anton	Fullerton	A	185			.965
42014	Blackwater	Ower	A	104.7			.45
42019	Tanners Brook	Millbrook	D	16			.7
43003	Avon	East Mills	А	1477.8			.91
43005	Avon	Amesbury	Α	323.7			.909
43006	Nadder	Wilton Park	Α	220.6			.813
43007	Stour	Throop Mill	Α	1073			.661
43008	Wylye	South Newton	Α	445.4			.913
43009	Stour	Hammoon	A	523.1			.319
43011	Ebble	Bodenham	Α	109			.843
43012	Wylye	Norton Bavant	A	112.4			.873
43013	Mude	Somerford	A	12.4			.571
43014	East Avon	Upavon	A	86.2			.891
43021	Avon	Knapp Mill	A	1706			.89
44001	Frome	East Stoke total	A	414.4			.841
44003	Asker	Bridport	A	49.1			.644
44004	Frome	Dorchester total	A	206			.812
44006	Sydling Water	Sydling St Nicholas	A	12.4			.861
44008	Sth Winterbourne	W'bourne Steepleton	A	19.9			. 886
44009	Wey	Broadwey	A	7			.945
45001	Exe	Thorverton	A	600.9			.513
45002	Exe	Stoodleigh	A	421.7	33.07	21	.518
45003	Culm	WOOD MILL	A	226.1	43.38	15	.524
45004	Axe	Whittord	Y	288.5	42.53	15	. 495
45005	Otter	Dotton	A	202.5			.538
45008	Offer	Fenny Bridges	A	104.2			.488
45009	Exe	Pixton	Y	147.59	19.65	18	.501
45010	Haddeo	Hartford	D	50			.547
45011	Barle	Brushtord	D	128	32.99	14	.565
45012	Creedy	Cowley	D	261.6			.45
45013	Tale	Fairmile	D	34.4			.535
40002	Terdu	Preston	A	180	~~ -		.549
40003	Dart Fact Dart	Austins Bridge	A -	241.0	30.1	23	.524
40005	Last Dart	Belléver Belléver	A -	21.5	58.32	· 11	. 424
40007	West Ddft	Lunnapridge	u *	4/.9			.416
40008	AVOII	Luudiswell Cuincomh- intr'	A 	102-3	(n ··	• •	. 509
40002	Dela Presh	Swincompe intake	Ŷ	14.2	63.11	13	.368
40005	Dala BIOOK	Dala Intake	M	5.9	44.43	8	
40812	nems Voma	Tally HOJ Woodland-	Ď	39.2			.542
40010	пешь		0	5.5			. 188
47001	Idinal		A	ATP'A	•		.462
4/004	rhuuer	PILLACON MILL	A	132.2			, 569

.

•

•

•

NWA_NO	RIVER	LOCATION	Q	AREA	SPR	EVENTS	BFI
47005	Otten	Werrington Park	۵	120.7			. 39
47006	Lvd	Lifton Park	A	218.1			.476
47007	Yealm	Puslinch	A	54.9	28.74	13	.54
47008	Thrushel	Tinhay	А	112.7	31.14	7	.385
47009	Tiddy	Tideford	А	37.2			.598
47011	Plym	Carn Wood	Y	79.2	28.93	13	.482
47014	Walkham	Horrabridge	A	43.2			.585
47015	Tavy	Denham / Ludbrook	D	197.3			.4//
47016	Lumburn	Lumburn Bridge	D	20.5			.030
4/01/	WOIL	Combe Park Farm		171 2			. 303
48002	Fowey	Tregony	A	87			. 694
48004	Warleggan	Trengoffe	Ä	25.3	33.49	11	.72
48005	Kenwyn	Truro	А	19.1	12.69	10	.668
48006	Cober	Helston	D	40.1			.735
48009	St Neot	Craigshill Wood	A	22.7	37.19	7	.628
48010	Seaton	Trebrownbridge	A	38.1			.726
49001	Camel	Denby	A	208.8			.614
49002	Hayle	St Erth	A	40.9 11 7	47 60	10	.830
49003	De Lank Cannel	Cwille	I D	<u>41</u> .7	47.09	10	683
50001	Taw	Umberleich	A	826.2			. 424
50002	Torridge	Torrington	A	663			. 393
50006	Mole	Woodleigh	D	327.5			.467
50007	Taw	Taw Bridge	D	71.4			.453
50012	Yeo	Veraby	D	53.7		•	.392
51001	Doniford Stream	Swill Bridge	А	75.8		_	.626
51002	Horner Water	West Luccombe	D	20.8	20.09	8	.624
51003	Washford	Beggearn Huish	D	30.3			.641
52003	Haise water	Ashford Mill	A A	9/.0	43 38	10	476
52005	Толе	Bishops Hull	D	202	35.94	10	.579
52006	Yeo	Pen Mill	Ŷ	213.1	33.87	13	.407
52007	Parrett	Chiselborough	D	74.8			.448
52009	Sheppey	Fenny Castle	D	59.6			.676
52010	Brue	Lovington	D	135.2	47.37	9	.473
52011	Cary	Somerton	A	82.4			.373
52014	Tone Commencel Street	Greenham Guerrando J. Rour	D N	57.2	12 01	7	.5//
52016	Callica Stream	Callica Bridge	А А	16 4	66 05	2	.709
53002	Seminaton Brook	Semington	л П	157.7	00.00	2	.566
53003	Avon	Bath St James	D	1595			.627
53005	Midford Brook	Midford	А	147.4	18.59	12	.616
53006	Frome(Bristol)	Frenchay	A	148.9			.393
53007	Frome(Somerset)	Tellisford	Y	261.6	28.87	14	.522
53008	Avon	Great Somerford	Y	303	28.83	10	.584
53009	Wellow Brook	Wellow	Ŷ	72.6	14.92	9	.621
53013	Marden	Stanley	A	99.2			.638
53010	Spring Flow	Bitton	A	48			459
53018	Avon	Bathford	D	1552			. 608
53022	Avon	Bath ultrasonic	Ā	1605			.584
53023	Sherston Avon	Fosseway	D	89.7			.659
53024	Tetbury Avon	Brokenborough	D	73.6			.659
53025	Mells	Vallis	D	119			.588
53026	Frome(Bristol)	Frampton Cotterell	D	78.5			.417
53029	Biss	Trowbridge	D				.519
54001	Severn	Bewdley	A	4325	41 15	• •	.524
54004	Sowe	Stoneleign	Y Y	202	41.15	13	.599
54000	Scour	Kidderminster	I A	1134 4	21.00	2	567
54008		Alecot Park	л А	1134.4	40 21	6	503
54011	Salwarpe	Harford Mill	v	184	34,85	16	. 646
54012	Tern	Walcot	Â	852		10	. 691
54013	Clywedog	Cribynau	A	57			. 4
54014	Severn	Abermule	D	580			. 42
54015	Bow Brook	Besford Bridge	A	156			.397
54016	Roden	Rodington	A	259	27.05	7	.609
54018	Rea Brook	Hookagate	A	178			.506
54019	Avon	Stareton	Y	347	40.68	15	.477
54020) Perry	Yeaton	Y	180.8	24.6	5	.652

NWA_NO	RIVER	LOCATION	Q	AREA	SPR	EVENTS	BFI
			-				
E 4000	G						
54022	Severn	Plynlimon flume	A	8.7	36.69	21	.317
54025	Dulas	Rnos-y-pentrei	A	52.7			.3/5
54027	Tome	EDIEY MILL Vnichtaford Prideo	A	198			.002
54029	Severn	Savone Lode	ע	1400			. 30/
54034	Dowles Brook	Dowles	ل م	40 P	31 66	2	. 504
54034	Tanat	Llanyblodwel	7	20.0	34.00	2	.410
54041	Tern	Faton On Tern	λ	197			713
54043	Severn	lipton On Severn	'n	6850			547
54044	Tern	Ternhill	Ā	92.6			759
54048	Dene	Wellesbourne	D	102			.446
54049	Leam	Princes Drive Weir	D	362			.366
54052	Bailey Brook	Ternhill	A	34.4			.652
54053	Corve	Ludlow	D	164			.568
54054	Onny	Onibury	A	235			.475
54055	Rea	Nean Sollars	D	129			.608
54057	Severn	Haw Bridge	A	9895			.574
54059	Allford Brook	Allford	A	10.2			.691
54060	Potford Brook	Potford	A	25			.761
54062	Stoke Brook	Stoke	A	13.7			.749
54065	Roden	Stanton	D	210			.664
54000	Charle Brook		A	15.7			./44
54083	Crow Brook	Horton Barbard	A	16.7			./2/
54084	Cannop Brook	Parkend Cappon Cross	A	10 4			. 585
54065	Allford Brook	Childa Ercall	A X	10.4			.000
54087	Little Avon	Parkeley Kennels	н х	124			.003
54000	Tanllwith	Tanllwith Flume	à	724	57 65	16	205
54090	Severn	Hafren Flume	л А	3 6	57.05	10	252.
54092	Hore	Hore Flume	Δ	3.0			318
54818	Rođen	Northwood	A	20.9			.573
55002	Wve	Belmont	A	1895.9			463
55004	Irfon	Abernant	A	72.8			.381
55005	Wye	Rhayader	Α	166.8			. 373
55008	Wye	Cefn Brwyn	Α	10.55	43.74	12	.324
55009	Monnow	Kentchurch	A	357.4			.501
55010	Wye	Pant Mawr	Α	27.2			.303
55011	Ithon	Llandewi	A	111.4			.385
55012	Irfon	Cilmery	Α	244.2	50.7	5	.385
55013	Arrow	Titley Mill	A	126.4			.562
55014	Lugg	Byton	A	203.3			.668
55015	Honddu	Tafolog	A	25.1			.512
55016	Ithon	Disserth	A	358			.382
55017	Chweiru	Carreg-y-wen	A	29			.34
55018	Frome		D	144		-	. 496
55021	Lugg Drahbu	Butts Bridge	A	3/1	32.56	7	.652
55022	Trochy	Mitchel Troy	A	142	47.55	8	.507
55025	wye tlunfi	Readrook	A	4010	a a a	~	.559
55025	biynti	Three Cocks	A	132	29.3	1	.5//
55028	Frome	Dubi raim Bishong Frome	×	1/4	40.03	2	. 301
55020	Monnow	Grosmont	A A	264			- 4/2
55033	Wye	Giosmone Guy flume	Λ λ	201			· 210
55034	Cyff	Cuff flume	n م	3.5	54 41	1.4	.007
55035	Tago	Lago flume	A X	J.1 1 1	24.41	14	.270
56001	Usk	Chain Bridge	λ	Q11 7			500
56002	Ebbw	Rhiwdervn	v	216 5	20 32	1	
56003	Honddu	The Forge Brecon	'n	62.1	29.79	7	516
56004	Usk	Llandetty	Ă	543 9	46 17	, B	. 310
56005	Lwvd	Ponthir	Α	98.1	30.69	12	.552
56006	Usk	Trallong	Y	183.8	46.55	13	.446
56007	Senni ·	Pont Hen Hafod	À	19.9			. 37
56008	Monks Ditch	Llanwern	A	15.4			.595
56010	Usk	Trostrey Weir	A	927.2			572
56011	Sirhowy	Wattsville ·	Y	76.1	29.73	4	.503
56012	Grwyne	Millbrook	Â	82.2		-	.593
56013	Yscir	Pontaryscir	A	62.8			.471
56015	Olway Brook	Olway Inn	A	105.1			. 497
57003	Taff	Tongwynlais	D	486.9			.438
57004	Cynon	Abercynon	D	106	35.69	17	.417
57005	Taff	Pontypridd	D	454.8	39.4	10	. 473

.

¢

NWA_NO	RIVER	LOCATION	Q	AREA	SPR	EVENTS	BFI
			-				
57000			-	100 5	15 17	25	401
57005	Rhondda	Trenalod	D	100.5	35.47	25	.421
57009	Fly	St Fagang	Л	145			. 489
57010	Elv	Lanelav	Ā	39.4			.44
58001	Ogmore	Bridgend	A	158	29.74	14	. 494
58002	Neath	Resolven	Y	190.9	30.45	6	.335
58003	Ewenny	Ewenny Priory	Y	62.9	33.88	11	.591
58005	Ogmore	Brynmenyn	Α	74.3			. 493
58006	Mellte	Pontneddfechan	A	65.8	44.47	6	.354
58007	Llynfi	Coytrahen	A	50.2	55 76	-	.491
58008	Dulais	Cilirew	A N	43	25.40	6	.380
58009	Ewenny	Reepers Loage	A A	02.5	20.00	Q	. 379
50010	Thew	Gigman Bridge	Δ	49 2			699
59001	Tawe	Yvnstand]ws	D	227.7			.341
59002	Loughor	Tir-y-dail	D	46.4			. 423
60002	Cothi	Felin Mynachdy	A	297.8	46.22	9	.434
60003	Taf	Clog-y-Fran	Α	217.3	42.25	1	.546
60004	Dewi Fawr	Glasfryn Ford	Α	40.1			.531
60005	Bran	Llandovery	A	66.8			.354
60006	Gwili	Glangwili	A	129.5	27.8	1	.456
60007	Tywi	Dolau Hirion	A	231.8	49.86	2	166.
60009	Sawdde	relin-y-cwm	A n	20 7			
60012	Twich	Dont Ynys Brechfa	D ک	261 6			439
610013	Western Cleddau	Prendergast Mill	n	197.6	25.22	20	.65
61002	Eastern Cleddau	Canaston Bridge	D	183.1			.543
61003	Gwaun	Cilrhedyn Bridge	A	31.3	40.52	8	.568
61004	Western Cleddau	Redhill	Α	197.6			.644
62001	Teifi	Glan Teifi	Α	893.6			.532
62002	Teifi	Llanfair	A	510	55.17	3	. 486
63001	Ystwyth	Pont Llolwyn	Α	169.6			.407
63003	Wyre	Llanrhystyd	A	40.6	40.24	~	.403
64001	Dyti	Dyfi Bridge	A	4/1.3	48.34	0	. 303
64002	Dysynni Lori	Pont-y-Garth Dolybort	D N	13.1			.49
65001	Glaslyn	Beddgelert	n n	68 6	30 74	14	. 313
65004	Gwyrfai	Bontnewydd	Ă	47.9	50.74		. 427
65005	Erch	Pencaenewydd	A	18.1			. 529
65006	Seiont	Peblig Mill	Α	74.4			.395
65007	Dwyfawr	Garndolbenmaen	D	52.4			.372
65801	Nant Peris	Tan-Yr-Alt	М	11.4	61.96	3	
66001	Clwyd	Pont-y-cambwll	A	404			.599
66002	Elwy	Pant yr Onen	Ŷ	220	21.59	4	.451
66004	Wheeler	Bodiari Buthia Naim	A	62.9	19.78	2	.828
66005	C1wyd Diwyd	Ruchin Weir Derb w Gruddel	A	104	43 63		.502
66000	Elwy	Cum (lanorah	I N	344 5	43.24	11	284
67001	Dee	Bala	λ	261.6	57.05		.529
67003	Brenig	Llvn Brenig outflow	x	20.2	74.26	6	.498
67005	Ceiriog	Brynkinalt Weir	A	113.7	24.92	4	.54
67006	Alwen	Druid	A	184.7			.464
67008	Alyn	Pont-y-Capel	Y	227.1	18.3	7	.564
67010	Gelyn	Cynefail	A	13.1	46.73	12	.259
67013	Hirnant	Plas Rhiwedog	A	33.9			. 4
67015	Dee	Manley Hall	D	1019.3			.519
67018	Dee	New Inn	D	53.9			.273
68001	Weaver	Ashbrook	A	622			.538
68003	Dane	Rudheath	A	407.1			.516
68004	Wistaston Brook	Marshileid Bridge	A	92.7			.044
68000	Dapo	Audiem Hulmo Walfield	A X	150	12 21	6	547
68005	Wincham Brook	Lostock Gralam	R R	148	10.5	. 0	. 54/
68010	Fender	Ford	м	18.4	49 59) 1	4
68014	Sandersons Brook	Sandbach	м	5.4	41.58	3 R	
68015	Gowy	Huxley	A	49		J	.511
68020	Gowy	Bridge Trafford	A	156			. 47
69008	Dean	Stanneylands	м	51.8	36.57	7 5	
69011	Micker Brook	Cheadle	M	67.3	27.22	2	
69012	Bollin	Wilmslow	D	72.5	51.71	3	.643
69013	Sinderland Brook	Partington	A	44.8	21.26	5 8	.586

NWA_NO	RIVER	LOCATION	Q	AREA	SPR	EVENTS	BFI
69017	Goyt	Marple Bridge	A	183			.498
69018	Newton Brook	Newton Le Willows	M	32.8	59.4	E	
69019	Worsley Brook	ECCIES	M	24.8/	29.55	ь	536
69020	Medlock	London Road	0	5/.5	40 01	2	.536
69027	Tame Distance Ducab	Portwood Granne Drides	Y	150	40.21	/	.562
69031	Ditton Brook	Greens Bridge	Y N	47.9	48.44	8	. 202
69034	Musbury Brook	Heimsnore	M	⊥.د ۲۱	57.24	9	
69802	Ecnerow	Woodnead Wassa Bladas Daidas	Pi	100	22.11	2	664
70002	Varrey	Wanes Blades Bridge	A	198			. 224
70004	Tallow Tallow	Croscon Mill Nouburgh	и И	74.4	25 22	0	.41/
70000	Jawu Neurood Brook	Newburgh Elate Earm	מ	20.9	33.34	0	26
70803	Newreed Brook		A .	2.4			.20
71001	KIDDIE Creandala	Samlesbury Granadala fluma	A	1145	64 OF	24	.321
71003	Croasuare	Whaller Wair	2	216	24.03	10	
71004	Calder Bettema Beak	Rettore Rock flums	- A - D	10 6	33.14	10	.434
71005	Dibble	Vonthorn	2	10.0			207
71008	Noddor	Neddar Diaco	v	900	30 53	B	207
71008		Tumbles Peak	I X	1053	20.32	0	.304
71009	Ribble Bondle Water	Bardon Lano	м Л	109			426
71010	Penule Water	Arnford	2	204			.420
71802	Ribble	Halton Wost	- <u>м</u>	204	64 3	6	. 4.33
71802	RIDDIE	Restalmo	191 101	207	22.00	6	
71004	Dunsop	Valter	m D	24.7	32.00	Q	222
72001	Lune	Haiton Ch Michaele		334.0	60 16	14	. 225
72002	wyre	St Michaels	. A	275	59.10	14	. 344
72004	Lune	Calon Villington Nove Deidge	A N	203			242
72005	Lune	Killington New Bridge		E07 1	CO 00	0	. 242
72006	Lune	Kirkby Lonsdale	M	507.1	29.95	8	252
72007	Brock	U/B A6	2	114			205
72008	Warning	Garstang Wannington Dood Dridge	А Х	143			305
72009	Rewthou	Reiga Flatta	м х	144			205
72011	Rawchey	Brigg Flaces	A >	200			.200
72011	Brock	Roe Bildye Condholmo Drideo	~	J/.J 10 E			. 310
72014	Calder Danten Drock	Sandhoime Bridge	~	10.0			.241
72017	New Mill Brook	Carvora Bridgo	л х	51.9	25 47	0	161
72010	New Mill Brook	Carvers Bridge	~	04.3	20.47	9	.101
72820	Burnes Gill	Neutri Dridee	×	2/1	20.21	9	. 29
73001	Leven	Newby Bridge	A	241			.4/0
73002	Crake	Low Nibenwaite	Ä	73 6			. 273
73003	Kent	Burneside	A >	/3.0	24 07	11	.332
73005	Nenu hoak	Sedgwick Broutbook Drideo	A	209	34.97	11	. 400
73007	Pala	Troucbeck Bridge	M	23.0	43.07	2	604
73008	Deld	Beetham Cariat Mill	A	131	20.92	0	. 304
73009	Sprinc	Sprint Mili	A	34.0			.3/2
73010	Deven Mi-s	Newby Bridge	A	297 25 D			. 504
73011	MINE	Mint Bridge	A	65.8	60 40		. 180
73803	winster	ropph Bridge	M	20.7	60.48	4	
73804	Bratnay	Bratnay Hall	M	5/.5	61.31	13	
74001	Duadon	Duddon Hall		85.66	61.22	/	.278
74002		Galesyke	0	44.2			.458
74003	Enen Bh	Ennerdale weir	U D	44.2			. 321
74005	Enen	Braystones	D	125.5			. 39
74007	LSK	Cropple How	A	70.2			.279
75002	Derwent	Camerton	A	663			.474
/5003	Derwent	Ouse Bridge	A	363			. 493
75004	Cocker	Southwaite Bridge	D	116.6		_	. 422
75006	Newlands Beck	Braithwaite	A	33.9	66.88	7	.317
75007	Glenderamackin	Threlkeld	A	64.5	48.58	8	.295
75009	Greta	Low Briery	A	145.6			.347
75010	Marron	Ullock	Α	27.7			.484
75017	Ellen	Bullgill	D	96			.481
76002	Eden	Warwick Bridge	D	1366.7			.483
76004	Lowther	Eamont Bridge	D	158.5			.413
76005	Eden	Temple Sowerby	A	616.4	64.97	1	.368
76007	Eden	Sheepmount	A	2286.5			.5
76008	Irthing	Greenholme	Α	334.6	54.47	2	.318
76009	Caldew	Holm Hill	A	147.2			.487
76010	Petteril	Harraby Green	A	160			.463
76011	Coal Burn	Coalburn	A	1.5	69.05	26	.175
76014	Eden	Kirkby Stephen	Α	69.4	66.82	16	.236
76805	Force Beck	M6 Shop	Α	4.1	52.11	11	.27

I.

NWA_NO	RIVER	LOCATION	Q	AREA	SPR	EVENTS	BFI
77001	Esk	Netherby	А	841.7			.366
77002	Esk	Canonbie	A	495	51.07	7	.383
77003	Liddel Water	Rowanburnfoot	A	319			.325
77004	Kirtle Water	Mossknowe	А	72			.287
77005	Lyne	Cliff Bridge	A	191			.266
78001	Annan	St Mungos Manse	D	730.3			.411
78002	Ae	Elshieshields	D	143.2			.353
78003	Annan	Brydekirk	A	925			.43
78004	Kinnel Water	Reanall	А Х	220			354
70002	Nith	Bridgemuit Friers Carso	Δ	799			. 383
79002	Nith	Hall Bridge	Ď	155			.269
79004	Scar Water	Capenoch	Ā	142			.313
79005	Cluden Water	Fiddlers Ford	A	238			.375
79006	Nith	Drumlanrig	А	471			.343
80001	Urr	Dalbeattie	A	199			.351
80004	Greenburn	Loch Dee	A	2.6	,		.451
80005	Dargall Lane	Loch Dee	A	2.1			.279
81002	Cree	Newton Stewart	A	368			.2/2
81003	Luce	Airyhemming	A	1/1			234
81004	Bladnoch	LOW MAIZIE Robetone	A 1	245 5			. 329
82001	GIIVAN Stipchar	Balnowlart	л А	341			.299
83002	Garnock	Dalry	Ŷ	88.8	50.1	1	.211
83003	Avr	Catrine	Â	166.3	· ·		.294
83004	Lugar	Langholm	Α	181			.244
83005	Irvine	Shewalton	Α	380.7			.269
83006	Ayr	Mainholm	A	574			.301
83007	Lugton Water	Eglinton	A	54.6			.247
83009	Garnock	Kilwinning	A	183.8	CO 40		.234
84002	Calder	Mulrshiel	I D	1002.0	00.40	4	406
84003	Clyde	Gille	D D	741 9			.519
84004	Clyde	Blairston	D D	1704.2			.444
84006	Kelvin	Bridgend	Ā	63.7			.437
84008	Rotten Calder Wtr	Redlees	D	51.3	57.76	7	.32
84009	Nethan .	Kirkmuirhill	A	66			.339
84011	Gryfe	Craigend	А	71		_	.304
84012	White Cart Water	Hawkhead	A	227.2	56.72	6	.357
84013	Clyde	Daldowie	D	1903.1			.45
84014	Avon Water	Fairnoim Drufiold	A A	205.2			134
84015	Keivin Luggio Wetor	Dryfieid	л 1	233.4			207
84018	Clyde	Tulliford Mill	A	932.6			.524
84020	Glazert Water	Milton of Campsie	A	51.9			.311
84022	Duneaton	Maidencots	А	110.3	31.18	7	.446
84023	Bothlin Burn	Auchengeich	. А	35.7			.507
84025	Luggie Water	Oxgang	D	87.7			.408
84026	Allander Water	Milngavie	D	32.8			.333
84029	Cander Water	Candermill	A	24.5			.272
85002	Endrick Water	Gaidrew	A	219.9	56.17	4	.311
85003	Falloch	Glen Falloch	A	80.3			.1/4
85004	Luss water		A *	120.2			256
85002	Lachalg	inteke	л 2	3 1			. 145
80801	Alle Daine Abhainn A Bhealaich	Breevallich	Δ	24.1			.232
90007	Creran	Taraphocain	D D	66.1			.212
90003	Nevis	Claggan	Ď	76.8			.263
93001	Carron	New Kelso	Ā	137.8			.27
94001	Ewe	Poolewe	A	441.1			. 67
95001	Inver	Little Assynt	A	137.5			.625
96001	Halladale	Halladale	A	204.6			.26
96002	Naver	Apigill	A	477			.416
97002	2 Thurso	Halkirk	p	412.8			.457
101001	L Eastern Yar	Alverstone Mill	D	57.5			. 594
101005	e Eastern Yar	Budbridge	D	22.5			.632

.

1

|

1

Appendix D

ī

Maps showing the distribution of the 29 HOST classes

i''

i

· ·

Distribution of HOST Class 28

Distribution of HOST Class 29