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i.  SUMMARY 

 

This study sought to identify, summarise, and interpret published research which has addressed 

three areas of concern to the angling community: 

 

(a) Physiological stress. Prolonged activation of the physiological stress response can have 

harmful effects in animals. Do the procedures associated with the capture of fish by angling; 

hooking, playing, landing, unhooking, confinement within keepnets, weighing, cause a stress 

response? If so, is the response severe enough to cause concern regarding the welfare of the fish? 

 

(b) Physical damage. Do the processes associated with the capture of fish cause damage that 

might affect the subsequent welfare and survival of the fish? 

 

(c) Pain. It has been suggested that hooked fish experience pain during capture and unhooking. 

Is there evidence that fish can experience "pain and suffering" in a manner analogous to higher 

vertebrates?  

 

The main points highlighted by the literature review are summarised below. 

 

1. The physiological stress associated with capture 

 

1.1 - Capture by angling is always accompanied by physiological disturbances typical of 

activation of the hypothalamic-pituitary-interrenal axis. Capture by angling may therefore be 

considered to cause physiological stress in fish.  

 

1.2 - Physiological recovery is complete within 24 - 72 h of capture. The stress associated with 

capture may be considered acute, rather than chronic, and unlikely to have long-term impact on 

the well-being of the fish. 

 

1.3 - Mortality of fish within 72 h of capture is rare.  

 

1.4 - Water temperature may be a significant factor in determining the severity of the stress 
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response to capture.  

 

1.5 - The stress of capture may be more severe for larger fish.  

 

1.6 - There is an overwhelming requirement for well-designed studies to examine the 

physiological effect of capture, and time-course of recovery following capture, in non-salmonid 

European fish. Such studies should encompass an examination of the effect of water temperature, 

fish size and delayed release. 

 

2. The respiratory and metabolic effects of capture by angling 

 

2.1 - Even when exposed to an exercise regime arguably more severe than that imposed by rod 

and line capture, the available data suggest that most species of fish recover baseline respiratory 

and metabolic levels within 8 - 24 h. 

 

2.2 - Fish size and water temperature both affect the severity and duration of the metabolic and 

respiratory effects of severe exercise.  

 

2.3 - Severe exercise can, under certain circumstances, cause mortality in fish. Whether this 

arises under experimental conditions because of the imposition of unrealistically extreme levels 

of activity, or because of the use of "unfit" fish is not clear. 

 

3. The impact of capture stress on post-release behaviour 

 

3.1 - Capture by angling is likely to result in some short-term modification of behaviour. In prey 

fish, this may result in an increased susceptibility to predation. 

 

3.2 - The duration of behavioural modification following stress is shorter than the period 

required for physiological recovery from stress. 

 

3.3 - There is no research in this area that has examined species native to the UK. 
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4. Physical damage associated with capture 

 

4.1 - There is a measurable level of mortality associated with hooking of fish. Most studies have 

not monitored survival beyond 72 h following capture.  

 

4.2 - Mortality is low to negligible in fish that are hooked in the jaw, but can be extremely high 

in fish hooked in the throat, gills and deep-hooked in the gut. The majority of fish caught under 

experimental conditions were hooked in the jaw. 

 

4.3 - There may be differences in mortality rate associated with natural and artificial baits and 

with hook size and type. The species and size of fish may also be factors. There are too few data 

available at present to draw firm conclusions. 

 

4.4 - Almost all the data available on hooking mortality originate from North America. The 

species studied are almost exclusively predators, captured with either lures or bait. Although this 

information may be applicable to some species of fish native to the UK (perch, pike, zander, 

salmonids), there are no data in the literature derived from studies on cyprinid fish that constitute 

the majority of species sought by freshwater anglers in the UK. 

 

5. Pain perception in fish 

 

5.1 - It is advantageous for an animal to be aware of damage to its body and to be able to avoid 

potentially damaging situations. A system that alerts the animal to damage has survival value. 

 

5.2 - Several of the anatomical and biochemical components involved in pain perception in 

mammals are present in fish. However, some key elements (e.g. unmyelinated nerve fibres) are 

absent from certain species and other elements (e.g. the forebrain/cerebral cortex) are 

considerably less well developed in fish than in mammals. 

 

5.3 - The neurophysiological mechanisms underlying pain perception in man and other mammals 

are complex and not fully understood. Many components of the nociceptive/pain perception 

system have other, unrelated, functions. Identification of such components in fish cannot be 
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considered proof that fish experience "pain". 

 

5.4 - It is the opinion of experts in the field that animals may possess mechanisms allowing them 

to avoid damage and facilitate recuperation without conscious perception of pain, in human 

terms. 

 

5.5 - Our understanding of pain perception in fish is hampered by the lack of research on this 

subject, and by the difficulties inherent in interpreting the behavioural and physiological 

responses of an animal taxonomically far removed from mammals. 

 

5.6 - There is no information available in the literature at present which provides firm evidence 

that fish perceive pain as mammals apparently do or, conversely, that they cannot perceive pain 

as mammals do. On balance, it seems unlikely that fish experience pain as understood by 

humans. However, the problem of assessing exactly what a fish perceives when exposed to 

stimuli considered to be noxious or unpleasant in human terms may prove to be intractable. 
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The aim of this review is to assess the current state of knowledge regarding two areas of key 
importance in fish welfare: physiological stress and pain perception, with particular reference to 
the relationship between angling practices and fish welfare. 
 
iv. METHODS 
 
The following resources were utilised for the literature search: 
 
(a) The library of the Freshwater Biological Association.  
 
The library of the FBA houses one of the world's finest collections of information on freshwater 
science, built up over a period of more than 60 years. The collection is made up of 7,500 books, 
l,500 journal titles and 70,000 reprints and reports, covering all aspects of freshwater ecology, as 
well as pollution, algology, microbiology, invertebrate taxonomy and ecology, sediment and 
water chemistry, aquaculture and fisheries management and hydrology. 
 
(b) Aquatic Sciences and Fisheries Abstracts on CD-ROM (1978-1994) 
 
Aquatic Sciences & Fisheries Abstracts (ASFA) covers all aspects of marine, brackish, and 
freshwater environments.  Subjects include biology; ecology; fisheries; aquaculture; 
oceanography; limnology; resources and commerce; pollution; biotechnology; marine 
technology and engineering; marine meteorology and climatology; and non-living resources (oil, 
gas, minerals, chemicals). 
 
Citations are drawn from a variety of sources, including journal articles, conference papers, 
books, monographs, theses, technical reports, and non-conventional literature.  Over 40 
languages are included, although the database is produced exclusively in English. Original, non-
English titles are given wherever possible. 
 
Information is supplied by the Aquatic Sciences and Fisheries Information System and 
maintained by research centres throughout the world, including: 
 
  FAO:  The Food and Agriculture Organization of the United Nations 
  IOC:  The Intergovernmental Oceanographic Commission of Unesco 
  UNEP:  The United Nations Environment Programme 
  UNDOALOS: The United Nations Division for Ocean Affairs and the Law of the Sea 
 
(c) Water Resources Abstracts on CD-ROM (1967-1994) 
 
The Water Resources Abstracts database is produced by the Water Resources Scientific 
Information Centre, U.S. Geological Survey, U.S. Department of the Interior. 
 
The database includes abstracts of current and earlier journal articles, monographs, reports and 
other publication formats. Records in the database cover the development, management and 
research of water resources. 
(d) BIOSIS Previews 
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BIOSIS Previews is the computer-readable version of the citations found in Biological Abstracts 
from 1969 to the present. At the end of 1993, the database contained almost nine million records. 
Nearly seven thousand serial publications are monitored for inclusion, encompassing the entire 
field of life sciences. 
 
(e) The Science Citation Index Online (Bath Information and Data Services) 
 
The SCI represents the Institute of Scientific Information’s online database that contains virtually 
every scientific article published since 1982. It is updated weekly and can be searched by author 
or keyword. In addition, the identity of articles that cite specific papers can be accessed, making 
this a very powerful search engine. 
 
Keyword in title (and where possible abstract) searches were carried out using search terms 
designed to locate relevant information on stress in fish, pain perception in fish, and the impact 
of angling practices on fish. In addition, references already available were utilised in citation 
searching to identify papers that have referred to specific key work. 
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1.  INTRODUCTION 

 

1.1  Purpose of the review 

 

Animal welfare is a subject of concern to many people. Pressure groups have for many years 

targeted the research community, and commercial organisations that employ animals for product 

testing, such as the cosmetics and pharmaceutical industries. However, in recent years, 

agricultural practices have also come under scrutiny, in particular the conditions prevalent in 

intensive rearing of animals. In addition to these areas of concern, those activities broadly termed 

"blood sports" have traditionally been the object of protest. In the past, such protest was largely 

directed at activities involving the hunting of mammals and birds. However, in recent years, the 

sport of angling has been subjected to increasing levels of criticism by a vocal minority.  

 

Anglers, for the most part and by nature, are conservationists; they want to see the development 

of well balanced, healthy and thriving fish populations. They are, therefore, just as concerned as 

others to ensure that fish are treated in the best possible way, commensurate with the pursuance 

of the sport. Anglers were, however, never wholly convinced by the conclusions of the Medway 

Report (Medway, 1980), hence their reaction to it at the time. This report was commissioned by 

the Angling Governing Bodies (the National Federation of Anglers, the Salmon and Trout 

Association and the National Federation of Sea Anglers) and the British Field Sports Society in 

order to determine whether, in the intervening fifteen years, any progress has been made in 

determining the scientific position. 

 

Most concern associated with the subject of animal welfare is focused on the likelihood of 

suffering arising through exposure of the animal to an environment, procedures, or stimuli 

perceived to invoke pain and/or stress. While methods for assessing the well-being of mammals, 

and to a lesser extent birds, receive serious discussion (Curtis, 1985), there is less understanding 

of the factors that underlie the well-being of lower vertebrates, including fish.  

 

This situation has arisen because, inevitably, most research on animal welfare, and particularly 

on pain and stress in animals, is either clinically or agriculturally orientated (Moberg, 1985). 

However, during recent years, and to a large extent as a result of the rapidly expanding 
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worldwide aquaculture industry, there has been a substantial amount of research carried out on 

aspects of the physiology of fish. Much of this research is relevant to discussion of welfare 

concerns. In addition, there has been a limited amount of research that is directly concerned with 

the impact of angling on fish and fish populations. Some of this material is also relevant to a 

discussion of the welfare of fish in relation to angling practices. Nonetheless, because of the 

comparatively limited amount of information on the factors affecting the welfare of fish, and 

perhaps as a result of the inaccessibility of these data to the general populace, there has been 

little informed debate on the subject.  

 

The intention of this report is to identify and summarise the currently available knowledge on 

aspects of fish welfare relevant to angling practices. This will permit the effects of such practices 

on fish to be considered in the context of informed scientific evidence. 

 

1.2 Possible adverse effects associated with angling practices 

 

There are three main areas of concern related to the treatment of fish by anglers that will be 

addressed within this review: 

 

1. Physiological stress. Prolonged activation of the physiological stress response can have 

harmful effects in animals. Do the procedures associated with the capture of fish by angling; 

hooking, playing, landing, unhooking, confinement within keepnets, weighing, cause a stress 

response? If so, is the response severe enough to cause concern regarding the welfare of the fish? 

 

2. Physical damage. Do the processes associated with the capture of fish cause damage that 

might affect the subsequent welfare and survival of the fish? 

 

3. Pain. It has been suggested that hooked fish experience pain during capture and unhooking. Is 

there evidence that fish can experience "pain and suffering" in a manner analogous to higher 

vertebrates?  

 

Both stress and pain are emotive words that tend to conjure up subjective images and perceptions 

in the reader. However, both phenomena comprise well-documented physiological mechanisms. 
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Although physiological stress can be accurately detected and quantified, the measurement and 

detection of pain responses in animals is fraught with difficulties (Kitchell and Johnson, 1985; 

Bateson, 1991). It is generally accepted that adverse effects on animal well-being, or the cause of 

suffering in animals, predominantly relate to these factors.  

 

Although stress and pain are often linked semantically, and can be linked causally, they are on 

the whole, completely independent physiological processes. This report will therefore consider 

each in turn.  
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2.  PHYSIOLOGICAL STRESS 

 

2.1 Terminology and concepts 

The concept of stress as it relates to animals, can be traced to the work of Cannon (1929), who 

identified mechanisms underlying the "fight or flight" response of animals to challenge, and to 

the seminal work of Selye (1936) who conceived a "General Adaptation Syndrome" which 

sought to explain the adverse effects of prolonged activation of the animals adaptive response to 

stress. Almost all reviews of the field of stress physiology in mammals draw attention to the 

possible confusion that can arise through the use of inappropriate terminology, and the fact that 

the term stress is used in many different contexts. Common to all definitions of stress is the 

concept of "threatened homeostasis" (Chrousos, 1992; Johnson et al., 1992; Dorn and Chrousos, 

1993; Sutanto and de Kloet, 1994; Tsigos and Chrousos, 1994). Homeostasis describes the 

maintenance by an animal of a stable internal environment, essential for normal function. Threats 

to homeostasis are countered by an adaptive response, the stress response, comprising 

"neuroanatomical and functional structures that function to produce the behavioural, 

physiological and biochemical changes directed towards maintaining homeostasis" (Johnson et 

al., 1992). A stressor or stress is considered to be any perturbation that disrupts homeostasis, or 

is perceived as a threat to homeostasis.  

 

In response to a stressor, the animal alters its behaviour and physiology to maintain homeostasis. 

 The adaptive measures employed by the animal to overcome the stressor have been summarised 

by Chrousos and Gold (1992) and are reproduced in Table 1. .  

 

The adaptive response to stress can be summarised as the redirection of both behaviour and 

energy (Johnson et al., 1992). The net effect is to enhance those behavioural processes likely to 

enhance survival, while suppressing those of no survival value. Similarly, only those 

physiological processes involved in increasing the likelihood of survival are enhanced, while as 

far as possible, non-essential physiological processes are shut down or reduced in activity. There 

is a general switch from an anabolic state to a catabolic state. 

 

It is worth emphasising at this point that stress is a normal component of an animal’s life, and it 

Table 1. Behavioural and physical adaptation during stress 
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Behavioural adaptation: 

 
Adaptive redirection of behaviour 
Acute facilitation of adaptive, and inhibition of nonadaptive, 
neural pathways 
Increased arousal, alertness 
Increased cognition, vigilance and focused attention 
Suppression of feeding behaviour 
Suppression of reproductive behaviour 
Containment of the stress response 

 
Physical adaptation: 

 
Adaptive redirection of energy 
Oxygen and nutrients directed to the central nervous system 
and stressed body site(s) 
Altered cardiovascular tone, increased blood pressure and 
heart rate 
Increased respiratory rate 
Increased gluconeogenesis and lipolysis 
Detoxification from toxic products 
Inhibition of growth and reproductive systems 
Containment of the stress response 
Containment of the inflammatory/immune response 

(From Chrousos and Gold, 1992) 

 

has even been argued, on behalf of domestic animals, that some degree of stress is a necessary 

part of life to ensure well-being (Curtis, 1985). 

 

2.2 The response of fish to stress 

 

There are two major differences between the study of the stress response in mammals and in fish; 

the importance placed on the emotional or psychological content of stressors in mammals, and 

the better understanding of behavioural responses to stress in mammals. These factors are rarely 

considered in the context of research on fish, although some behavioural work is now appearing 

(see Schreck, 1990). Nevertheless, there has been a considerable amount of work on the 

physiology of the stress response in fish and the available data suggests that the response of fish 

to stress is directly comparable to that of higher vertebrates. That these physiological 

mechanisms have been strongly conserved is unsurprising, given the adaptive value of the stress 

response. 

 

The stress response in fish has, for convenience, been classified into three stages (Wedemeyer et 
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al., 1990). These can be summarised as: 

 

1. Primary response. This is the neuroendocrine component of the response. Perception of the 

stressor by the fish initiates a rapid release of catecholamines from the chromaffin tissue (the 

adrenomedullary homologue in fish), predominantly adrenaline (epinephrine) and noradrenaline 

(norepinephrine) (Gingerich & Drottar, 1989). At the same time as the catecholamine response is 

initiated, the hypothalamic-pituitary-interrenal axis is activated. This hormonal cascade is 

initiated by the release of corticotropin-releasing hormone (CRH) from the hypothalamus (Fryer 

& Lederis, 1986; Okawara et al., 1992; Weld et al., 1987), which, in turn, stimulates the release 

of adrenocorticotropic hormone (corticotropin, ACTH) from the pituitary (Sumpter et al., 1986; 

Pickering et al., 1987). ACTH acts on the interrenal to promote the synthesis and release of the 

steroid hormone cortisol (Balm & Pottinger, 1993). 

 

2. Secondary responses. These comprise changes in physiology arising directly or indirectly from 

the primary response. The catecholamines act on the cardio-respiratory system, increasing the 

heart rate and stroke volume (Satchell, 1991) and causing a brief vasoconstriction followed by a 

prolonged vasodilation of the gill vasculature (Wood, 1975). The overall effect being an increase 

in the functional surface area of the gill available for gas exchange (Booth, 1979). These 

catecholamine-mediated branchial and cardiac adjustments lead to a disruption of the fish's water 

and solute balance (Gonzalez and McDonald, 1992), such that there is a net loss of ions in 

freshwater, and a net gain in seawater (Avella et al., 1991). Contraction of the spleen also occurs, 

with a resultant increase in the number of circulating erythrocytes (Hadj-Kacem et al., 1987; 

Pottinger et al., 1994b). The catecholamines also affect aspects of intermediary metabolism. 

Following the initiation of the stress response there is mobilisation of energy by glycogenolysis 

and gluconeogenesis, both of which processes result in elevated blood glucose levels (Haux et 

al., 1985; Laidley and Leatherland, 1988; Morales et al., 1990) and lipolysis, leading to elevated 

plasma free fatty acid levels (Sheridan, 1986; Waring et al., 1992). These processes are believed 

to be under the control of the catecholamines (Ottolenghi et al., 1986; Hayashi and Ooshiro, 

1977) and cortisol, although a consensus on the exact role of these hormones has yet to be 

established (Suarez and Mommsen, 1987; van der Boon et al., 1991). Elevated blood lactate 

levels are also often reported following exposure to certain forms of stress (Pickering et al., 

1982; Schwalme and Mackay, 1985) although this is less a direct effect of activation of the 



 
 15 

hypothalamic-pituitary-axis than a reflection of the metabolic consequences of exhaustive 

exercise. The physiological effects of exhaustive exercise in fish are reviewed in detail by Wood 

(1991). 

 

In addition to these adjustments, the net result of which is to provide the fish with oxygen and 

energy to fuel activity in the short term, there are effects on other physiological processes. These 

include a suppression of growth hormone secretion (Pickering et al., 1991; Farbridge and 

Leatherland, 1992), a generalized reduction of activity within the reproductive system (Pickering 

et al., 1987; Donaldson, 1990; Carragher and Pankhurst, 1991; Campbell et al., 1992; Pankhurst 

and Dedual, 1994) and suppression of components of the immune system (Anderson, 1990; 

Barton and Iwama, 1991). In addition, behavioural modification has been reported to be a 

consequence of stress, manifested as alterations in feeding behaviour and aggression for up to 24 

h post-stress (Mesa and Schreck, 1989). 

 

These responses can all be seen to have adaptive value to the fish in the context of a stressor 

which is short in duration, or which the fish can avoid or overcome. However, the stress response 

ceases to be of adaptive value, and actually becomes maladaptive, under conditions in which the 

duration of the stress or stress response is prolonged, or repeated incidences of stress occur. It is 

under conditions of chronic stress that the deleterious tertiary effects of stress become apparent. 

 

3. Tertiary responses.  Prolonged activation of the stress response results in reduction in growth 

(Pickering, 1993), reproductive success (Campbell et al., 1992; 1994), and survival (Angelidis et 

al., 1987; Peters et al., 1988; Pottinger and Pickering, 1992). It is assumed that these effects at 

the level of the individual fish can lead to adverse effects on population and community 

structure.   

 

2.3 Chronic stress and maladaptation: the role of cortisol  

 

2.3.1 Factors influencing cortisol levels during stress. It has become apparent that most of 

the adverse effects of chronic stress in fish arise due to the action of cortisol. As noted above, 

this steroid hormone is released from the interrenal tissue into the blood, within minutes of the 

onset of stress.  
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Salmonid fish first show a corticosteroid stress response within two to five weeks of hatching, 

depending on the water temperature (Pottinger and Mosuwe, 1994; Barry et al., 1995). Normal 

"resting levels" of this hormone in the plasma of unstressed fish are < 5 ng/ml, rising by up to a 

hundred-fold within 30 mins of the onset of stress (Barton and Iwama, 1991).  

 

The magnitude and duration of the elevation in plasma cortisol levels following the onset of 

stress tends to be proportional to the severity and duration of the stress, but species (Davis and 

Parker, 1986; Waring et al., 1992), strain (Woodward and Strange, 1987: Pottinger and Moran, 

1993), and water temperature (Sumpter et al., 1985; Barton and Schreck, 1987) are all factors 

which modify the response to stress.  

 

If the stress is short in duration (acute) cortisol levels return to pre-stress levels within hours 

(Pickering and Pottinger, 1989; Waring et al., 1992) whereas if the stress is continuous (chronic) 

cortisol levels may remain elevated throughout the period of stress, although evidence of 

acclimation may be observed (Pottinger and Moran, 1993; Pottinger et al., 1994a).  

 

There is also evidence that under some circumstances, fish will acclimate to a repeated stressor 

and cease to show a stress response despite initially responding with elevated cortisol levels 

(Pickering and Pottinger, 1985) while in other circumstances, repeated acute stressors may result 

in an additive stress response (Barton et al., 1986).  

 

The level of corticosteroid responsiveness to stress of a proportion of fish within a population is 

consistent with time (Pottinger et al., 1992) and corticosteroid stress responsiveness appears to 

have a genetic basis (Fevolden et al., 1993; Pottinger et al., 1994b). 

 

2.3.2 Effects of chronic elevation of cortisol levels. Prolonged elevation of plasma cortisol 

levels in otherwise unstressed fish, achieved by implanting fish with cortisol-releasing pellets or 

by administering cortisol via food, has been shown to reduce growth and condition (Barton et al., 

1987; Davis et al., 1985; Pickering et al., 1989). In addition, the administration of cortisol to fish 

has a major impact on the reproductive system. Elevated cortisol levels cause a reduction in the 

concentration of circulating gonadal steroids, reduce gonad size, reduce the circulating levels of 
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vitellogenin and reduce the levels of gonadotropic hormone in the pituitary and the number of 

hepatic estradiol receptors (Carragher et al., 1989; Pottinger and Pickering, 1990; Foo and Lam, 

1993a, b). The impact of chronic or repeated acute stress on reproductive success is severe, 

resulting in delayed ovulation, reduced egg size, lower sperm counts and a reduction in survival 

of the progeny (Campbell et al., 1992; 1994). 

 

The most profoundly damaging effects of prolonged elevation of plasma cortisol levels relate to 

the impact of cortisol on the immune system. The link between stress, elevated cortisol levels 

and immunosuppression in fish has been reviewed by Barton and Iwama (1991) and Schreck et 

al. (1993). Administration of cortisol to otherwise unstressed fish significantly increases 

mortality due to bacterial and fungal pathogens (Pickering et al., 1989; Pickering and Pottinger, 

1989) and increases the susceptibility of fish to parasitic infections (Woo et al., 1987). The 

effects of cortisol on specific components of the immune system have been highlighted in 

numerous reports. Cortisol will cause marked reductions in the number of circulating 

lymphocytes (Pickering, 1984; Ellsaesser and Clem, 1987), suppress the production of specific 

antibody-producing cells (Maule et al., 1987), reduce the mitogenic response of lymphocytes 

(Ellsaesser and Clem, 1987) and reduce immunoglobulin M levels (Nagae et al., 1994).  

 

2.4 Species limitations of stress research in fish 

 

Most research on the impact of stress on fish, including much of that cited above, has been 

carried out on salmonid fish, in particular the rainbow trout (Oncorhynchus mykiss), brown trout 

(Salmo trutta) and Pacific salmon (O. nerka, O. kisutch, O. keta and O. tshawytscha) thus the 

response to, and effects of, stress are best understood in these few species. This situation has 

arisen largely because of the economic importance of the salmonids worldwide in both natural 

fisheries and aquaculture, and the widespread use of the rainbow trout as a basic experimental 

model.  

 

For reasons related both to diversification of aquaculture, and interest in comparative physiology, 

there is an increasing body of work which has examined the response to stress of other species of 

fish, including salmonids such as the Atlantic salmon (Salmo salar, Waring et al. 1992), brook 

trout (Salvelinus fontinalis, Biron and Benfey 1994) and lake trout (Salvelinus namaycush, Barry 
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et al. 1993), and non-salmonids such as flounder (Platichthys flesus, Waring et al. 1992), golden 

perch (Macquaria ambigua, Braley and Anderson 1992, Carragher and Rees 1994), yellow perch 

(Perca flavescens; Schwalme and Mackay, 1991), channel catfish (Ictalurus punctatus, 

Limuswam et al. 1983, Mazik et al. 1994), red drum (Sciaenops ocellatus, Thomas and 

Robertson 1991), and striped bass (Morone saxatilis, Young and Cech 1993a, b).  

 

However, there has been no detailed work carried out on the physiological response to stress of 

those species of non-salmonid fish native to the United Kingdom and which represent the 

principle quarry of freshwater "coarse" anglers. Limited data are available for only four non-

salmonid fish found in British waters, the common carp (Cyprinus carpio, Canals et al. 1989, 

Dabrowska et al. 1991, Jeney et al. 1992, Kakuta and Murachi 1992, van Dijk et al. 1993), the 

perch (Perca fluviatilis, Haux and Sjöbeck 1985; Vinogradov and Klerman, 1987), the roach 

(Rutilus rutilus; Vinogradov and Klerman, 1987), and the pike (Esox lucius, Schwalme and 

Mackay 1985a, b). The effects of stress on seafish have been little studied, although some 

examples are provided in Section 2.5 below. What is apparent from the data available on those 

species that have been studied and are listed above is that, with minor exceptions, the basic 

qualitative response to stress remains the same regardless of species studied. This is unsurprising 

considering the adaptive importance of the stress response.  

 

2.5 Effects of stress in freshwater and seawater 

 

Many of the salmonid fish on which the bulk of research into stress has been carried out are 

anadramous and thus euryhaline, adapting readily to full-strength seawater. In seawater-adapted 

salmonids there is no evidence that the component parts of the stress response vary when 

compared to the response of the same species to stress under freshwater conditions. The only 

difference, which is immediately apparent, is that post-stress ionoregulatory disturbances lead to 

an efflux of ions in freshwater and an influx of ions in seawater (Avella et al., 1991). 

 

With regard to species that are permanent seawater or brackish water residents, there are few 

data, but those that are available suggest no radical differences from the established "salmonid 

model". The physiological response of flounder to a brief period of net confinement differed 

from that of Atlantic salmon only in degree; in qualitative terms the response of both species was 
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similar (Waring et al., 1992). Similarly, the red drum (Robertson et al., 1987) and European sea 

bass (Dicentrarchus labrax; Hadj-Kacem et al., 1986, 1987) show a standard "salmonid" type 

response to physical disturbance. Atlantic cod, Gadus morhua, also display a typical "salmonid" 

pattern response to handling and transport stress (Hemre et al., 1991).  

 

There may, however, be differences in the response to stress when a component of the stressor 

results in the imposition of exhaustive exercise on the fish. In particular, the degree of metabolic 

acidosis experienced by the fish may vary according to environment. Seawater-adapted rainbow 

trout recover more rapidly from the acidosis induced by exercise than freshwater-adapted trout 

(Tang and Boutilier, 1991) due to their ability to excrete more H+ equivalents to the environment 

and more rapid removal of H+ as a result of lactate metabolism in white muscle. It has also been 

suggested that recovery from exhaustive exercise may be a function of the lifestyle of the fish. 

Sluggish, sedentary fish such as flatfish may employ a different strategy for post-exercise 

recovery than active pelagic fish (Turner et al., 1983) that results in lower blood lactate levels, 

but is coupled with a slower return to normality.  

 

2.6 Angling practices and stress 

 

2.6.1 Physiological stress associated with capture. It is reasonable to infer from the data cited 

above, and from the nature of stimuli which evoke a stress response in fish (novelty, physical 

disturbance, noxious or toxic stimuli), that the process of hooking, playing, landing, unhooking 

and confining fish within keepnets is likely to elicit a physiological stress response. This also 

applies to the subsequent handling of fish associated with weighing and release. For game fish or 

sea fish destined to be humanely despatched immediately following capture, such a response may 

be considered irrelevant. For fish destined for return to the water the severity and duration of the 

response evoked by capture and related procedures is of great significance. If the process of 

capture elicits a short-term response, lasting hours, the experimental data cited above suggest 

that no lasting adverse effects on the well-being of the fish will occur. However, if the severity of 

the response to capture is such that the physiological stress response is prolonged, there is the 

possibility of adverse effects on growth, reproductive processes and the immune system.  

 

Unfortunately, there has been very little work directed at quantifying the degree of stress 
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imposed on fish by angling procedures. In the most recent study on this topic, Pankhurst and 

Dedual (1994) examined indices of stress in rainbow trout captured from a natural population in 

a New Zealand river. The fish were caught by rod and line and separated into two groups on the 

basis of time required to land the fish; those fish which were rapidly captured (time from 

hooking to landing < 5 mins) and those with an extended capture time (15 mins). Fish were 

transferred within 3 mins of capture to recovery tanks. The authors found that plasma cortisol 

levels immediately following capture in the rapidly captured group were slightly higher than 

baseline levels in comparable unstressed fish. Within 1 h of capture, plasma cortisol levels were 

significantly elevated in all groups but in some cases were lower again within 24 h of capture. 

The authors indicate that stress associated with the holding conditions may have contributed to 

high cortisol levels at 24 h post-capture in some fish and suggest that given appropriate holding 

conditions, angled trout will recover from capture as quickly as laboratory-maintained fish. 

These authors also found that plasma lactate levels, elevated within 1 h of capture, had returned 

to baseline levels within 24 h. Finally, the authors also examined plasma levels of reproductive 

steroid hormones in the fish. Within 24 h of capture they observed a significant suppression of 

plasma testosterone and 17β-estradiol levels in females, though no change in 17α, 20β-

dihydroxy-4-pregnen-3-one levels was observed. No mortality occurred as a consequence of 

capture. The authors concluded that catch and release angling results in negligible mortality but 

may have an inhibitory effect on some reproductive processes.  

 

The only other study of which the author is aware, which examined angling-related stress and 

included plasma cortisol among the determinands, was commissioned jointly by the National 

Federation of Anglers (NFA) and the National Rivers Authority (NRA) to establish the impact of 

keepnet confinement on the physiology of a freshwater fish. The plasma cortisol, lactate and 

glucose response of carp was investigated after simulated capture and either immediate release, 

or transfer to keepnets for 4 h  (Pottinger, 1995). In the course of three separate experiments, 

capture was found to elicit a significant elevation of plasma cortisol relative to levels in 

undisturbed control fish. The duration of the corticosteroid response to capture, with or without 

subsequent confinement was limited to between 4 and 24 h after the onset of disturbance. There 

was no evidence of chronic elevation of cortisol levels. The post-capture elevation of plasma 

corticosteroid levels was accompanied in some cases by disturbances in plasma glucose and 

lactate levels but, where such changes occurred, they were limited to between 4 h and 48 h after 
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the onset of the procedure. No mortality was observed following the experimental procedures. 

Similar perturbations in plasma cortisol, glucose and lactate were observed in carp caught by 

angling from a large earth pond. These results are interpreted by the author to indicate that the 

major factor responsible for stress-induced physiological perturbations in angled fish is capture; 

post-capture confinement does not appear to contribute substantially to the degree of 

physiological stress experienced by the fish. 

 

A similar comparison between captured and released, and captured and restrained fish formed 

the basis of a North American study, in which a number of indices of stress were determined in 

walleye (Stizostedion vitreum vitreum) subjected to hooking, playing and restraint on "stringers" 

(Sobchuk and Dawson, 1988). The study was carried out to establish the likely impact on 

walleye released after capture and a period during which the fish are retained on stringers. 

Although walleye are normally killed after capture, anglers may retain a number of fish on a 

stringer during the session, smaller fish being released from the stringer as larger fish are 

captured and replace them. The procedure is therefore broadly analogous to the practice of 

retaining fish in keepnets before release, although keepnet confinement does not involve the 

physical restraint associated with attaching the fish to a stringer; fish in keepnets remain free-

swimming. The authors of this study employed mean blood clotting time as an index of the 

physiological stress response, citing earlier work on fish which described effects of capture on 

this parameter (Bouck and Ball, 1966; Casillas and Smith, 1977). Stress appears to enhance the 

rapidity of clotting, an advantage under situations in which physical trauma may occur, but a 

disadvantage in that the occurrence of intravascular clots may result in mortality (Smith, 1980). 

The formation of intravascular clots is opposed by the stress-induced enhancement of the 

fibrinolytic system (van Vliet et al., 1985). The authors found that mean blood clotting time 

decreased significantly with 1 min of playing; increasing the length of playing the fish did not 

further reduce clotting time. A marked hyperglycemic response was also observed with 1 min of 

playing and there was a significant increase in haematocrit. These changes were maintained for 

up to 4 h during retention on a stringer. In fish subject to capture only, clotting time and 

haematocrit had returned to pre-stress levels within 72 h of capture. Plasma glucose levels 

required between 48 and 72 h post-stress to return to normality. For those fish retained on a 

stringer for 4 h following capture, clotting time and haematocrit again required up to 72 h to 

approach pre-stress levels. Plasma glucose levels also returned to pre-stress levels within 72 h of 
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capture.  

 

Although the authors suggest that the lack of difference in the duration of the response to 

hooking and playing alone, and hooking and holding, may reflect an inadequacy in the severity 

of the procedures, compared to angler-inflicted stress, or an ability of the walleye  "to 

compensate for a greater level of stress", this presupposes that capture and retention are more 

stressful than capture and immediate release. The results of Pottinger (1995), cited above, 

suggest this is not necessarily the case.  

 

In addition, the authors speculate that the lack of post-stress mortality in these experiments may 

be accounted for by the relatively restrained nature of their handling and hooking procedures. 

They suggest that "rougher" treatment by anglers may result in a greater degree of physical 

injury and more severe physiological responses. These assertions are not supported by evidence. 

However, the authors make the valid point that low water temperatures and favourable dissolved 

oxygen levels during the experiment may have reduced the overall level of stress experienced by 

the fish. 

 

The effects of water temperature on the severity of capture-related stress was among the factors 

considered by Wydoski et al. (1976). In this study hatchery-reared rainbow trout were blood-

sampled after being hooked and played for 0, 1, 2, 3, 4, or 5 mins, ten fish per time period. In 

addition, a second group of forty fish were played for 5 mins and transferred to a separate 

recovery tank where they were sampled at intervals following transfer. Wild rainbow trout were 

captured by angling from a lake and either blood-sampled after being played for specific time 

periods, or transferred to a recovery tank after 5 mins playing, and blood-sampled at intervals 

following transfer. Significant elevation of plasma glucose and reduction in plasma chloride 

levels was observed in all captured fish after 5 mins playing. The magnitude of these changes 

was more pronounced in hatchery than wild trout. Estimation of time to recovery was 

complicated by the possible additional stress of confinement following capture. The onset of 

hypochloremia and hyperglycemia was delayed in wild trout caught at 4oC when compared to 

trout caught at 12oC, and the magnitude of changes seen in hatchery fish at 20oC was slightly 

greater than that observed at 10oC. Larger hatchery-reared fish (43-48 cm) showed a more severe 

response to capture than smaller fish (20-25 cm). The authors reported no mortality associated 
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with the experimental procedures and suggested that, overall, recovery from hooking and capture 

required up to 72 h. 

 

In a study closely patterned on that of Wydoski et al., (1976) the physiological response of 

largemouth bass (Micropterus salmoides) to angling stress was examined (Gustaveson et al., 

1991). This study was more comprehensive in design than many of those cited in this review. 

The authors captured bass by rod and line, from one site (Lake Powell) at three different water 

temperatures (11-13, 16-20, 28-30oC) and at a second site (Mantua Reservoir) at one water 

temperature only (23-26oC). The fish were either immediately landed (within 15 secs, controls) 

or played for 1, 2, 3, 4, or 5 mins. To establish recovery times, groups of captured bass were 

released into net pens and sampled at intervals.  

 

Overall, a similar response to capture, in qualitative terms, was seen in all groups. There was a 

significant elevation of blood glucose (except at the coolest water temperature) and blood lactate 

levels, within 1 - 5 mins of hooking. Curiously, a marked hyperchloremia was apparent in all 

groups together with a progressive increase in plasma osmolality during capture. Post-stress 

osmoregulatory dysfunction is usually characterised by a hypochloremia in freshwater (Avella et 

al., 1991). These effects were more pronounced at warmer temperatures, although no mortality 

was observed. The authors interpreted changes in blood parameters observed during the recovery 

period, in which fish were confined in net pens, to indicate continued stress, associated with the 

confinement rather than the capture event. They observed that physiological disturbances were 

minimal in fish played for less than 1 min, and within limits of tolerance even in fish played for 5 

mins. They concluded that hooking and playing stress alone could not be responsible for acute or 

delayed mortality following capture. 

 

The influence of capture method on selected blood parameters, and on survival, in rainbow trout 

was studied by Bouck and Ball (1966). Included in the comparisons was a group of fish caught 

by lure from their holding tank. Each fish captured was played to exhaustion, and transferred to a 

holding tank. The authors measured a number of haematological parameters (haemoglobin 

concentration, total protein, erythrocyte numbers and erythrocyte length) and examined the 

influence of capture on various plasma protein fractions. Unfortunately, there are several areas in 

which this study is open to criticism. The experimental fish were provided with only 6 days 
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acclimation to holding conditions before the onset of the experiment. All the fish captured by 

angling were removed sequentially from the same holding tank, inevitably leading to additional 

stress as the fish in the tank were disturbed by each successive capture event (sixteen in all). For 

the estimation of post capture mortality, the fish were maintained within a tank which was 

drained to within 3" of empty every three days, again a procedure likely to result in additional 

stress. Finally, the effect of capture procedures was assessed, not against control, unstressed fish, 

but by comparison with groups of fish caught either by electronarcosis or seine net. Significant 

reductions in total protein concentration, and in the abundance of various protein fractions, were 

observed in all groups of fish. The only result clearly related to capture by angling was an 87% 

mortality within 10 days of capture. However, given the inadequacies of the experimental design, 

it is impossible to attribute this to capture by angling alone. The study contributes little to our 

understanding of effects of capture. 

 

One of the authors cited above was also involved in a subsequent study on the effects of capture 

stress on plasma enzyme activities in rainbow trout (Bouck et al., 1978). The aim of the study 

was to establish whether certain enzymes, of possible diagnostic value, could be measured in fish 

without changes due to capture method obscuring the underlying baseline value. In this study, 

baseline controls were included. Although the methodology is not clearly described, it is 

assumed that hooked fish were captured by lure from their holding tanks. They were allowed to 

struggle for approximately one minute before being sampled. The authors found that within one 

minute of capture, no changes in the selected enzyme levels could be detected in fish caught by 

angling, compared to the control fish, caught with a minimum of disturbance. However, 

haematocrits were significantly elevated within this time period. 

 

The levels of plasma lactate, glucose, and cyclic adenosine monophosphate (cAMP) were 

measured in rainbow trout at intervals following simulated capture by angling (Perrier et al., 

1978). This procedure involved the manual insertion of a hook in the upper jaw of hatchery- 

maintained rainbow trout, which were then "played" on rod and line for 90 secs. The authors 

observed a significant increase, in all three parameters measured, within minutes of capture. 

There was a complete recovery of cAMP and glucose levels within 16-64 h of capture and of 

lactate within 4-16 h of capture. The authors are not clear regarding the physiological 

significance of plasma cAMP, suggesting it reflects general metabolic activity. Lactate 
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production undoubtedly arises as a consequence of the enforced exercise and consequent 

anaerobic metabolism in white muscle, while the rise in plasma glucose levels can be presumed 

to indicate the occurrence of a classic stress response.  

 

Despite the limited amount of information available in the literature, several generalisations can 

be made arising from the studies described above:  

 

1. Capture by angling is always accompanied by physiological disturbances typical of activation 

of the hypothalamic-pituitary-interrenal axis. Capture by angling may therefore be considered to 

cause physiological stress in fish.  

2. Physiological recovery is complete within 24 - 72 h of capture. The stress associated with 

capture may be considered acute, rather than chronic, and unlikely to have long-term impact on 

the well-being of the fish. 

2. Mortality of fish within 72 h of capture is rare.  

3. Water temperature may be a significant factor in determining the severity of the stress 

response to capture.  

4. The stress of capture may be more severe for larger fish.  

5. There is an overwhelming requirement for well-designed studies to examine the physiological 

effect of capture, and time-course of recovery following capture, in non-salmonid European fish. 

Such studies should encompass an examination of the effect of water temperature, fish size and 

delayed release. 

 

 

2.6.2 The respiratory and metabolic effects of capture. In addition to the activation of the 

pituitary-interrenal axis by the process of capture and handling, which is evident from the studies 

cited above, an additional important factor to be considered is the effect of what may, in some 

cases, amount to exhaustive exercise as a consequence of struggling during "playing" and during 

handling. Therefore this section will examine the literature pertaining to the 

metabolic/respiratory effects of the exercise associated with capture. 

 

The effects of capture by angling on the metabolic and respiratory physiology of a sedentary fish, 

the muskellunge (Esox masquinongy), were examined by Beggs et al. (1980). Unfortunately, the 
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experimental procedure employed by these authors is open to criticism. The fish were not blood-

sampled until approximately 22 mins following capture. During this period the fish were 

captured, anaesthetised, transported, unhooked and subjected to cannulation, an invasive surgical 

procedure. A series of blood samples was then collected at intervals up to 72 h following capture. 

The authors noted a reduction in blood pH, elevated lactic acid levels and a drop in total carbon 

dioxide and bicarbonate concentrations. Recovery from this acidotic state required 12 - 18 h. 

Thirty percent of the experimental fish died during the procedure. Although the authors claim 

that the changes in blood variables observed following capture arise primarily from angling 

stress and not anaesthetisation and cannulation, this is open to some debate. The anaesthetization 

and cannulation procedures were "controlled" for by monitoring the effects of these procedures 

on fish already cannulated and confined, not on fish that had not been subjected to capture stress. 

Therefore it is not really established what effect the surgical procedures would have on otherwise 

unstressed fish, nor is it established what resting levels of the parameters examined are in 

uncannulated unstressed fish. In addition, only parameters associated with respiratory stress were 

examined, despite apparent recovery of these variables within 18 h, it is conceivable that the 

pituitary-interrenal axis remains activated for longer. In a subsequent study by Schwalme and 

Mackay (1985b), in which pike (E. lucius) were caught by angling and blood sampled without 

cannulation, mortality level was less than 3% more than 48 h after capture. These authors suggest 

high mortalities in other studies may arise because of inter-species differences, the use of more 

severe exercise regimes, or effects of cannulation. In this study indices of respiratory disturbance 

had returned to baseline within 6 - 48 h, although plasma glucose levels remained elevated up to 

96 h after capture. 

A more recent, and better-designed, study has examined in detail the respiratory effects of 

exhaustive exercise and brief air exposure on rainbow trout (Ferguson and Tufts, 1992). In this 

study, rainbow trout were exercised to exhaustion and exposed to air for 60 secs. This group of 

fish were compared to a group that were exercised but not exposed to air. The recovery of both 

groups was monitored for 4 h. The authors examined the severity of disturbances to acid-base 

balance in the fish. Plasma (or extracellular) pH was more markedly reduced, and blood lactate 

levels were more than twice as high, in air-exposed fish than in exercised-only fish. In fish 

exposed to air, gas transfer across the gills was impeded, because of the collapse of the delicate 

lamellar structure of the gill surface, and the blood CO2 concentration rose while blood O2 levels 

declined. The authors highlight the reduction in blood O2 as the most critical effect of exposing 
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exhausted fish to air. There was significant mortality among the exercised and air-exposed fish, 

compared to the exercised only fish. Of those fish that were exposed to air for 60 secs, 28% 

survived the 12 h following exercise compared to 88% survival among the exercise-only group. 

Even in those fish that subsequently died, the extracellular acid-base balance of the fish appeared 

to be returning to normal although death occurred between 4 and 12 h later. The authors did not 

report the time required for complete recovery of the surviving fish. The possible mechanisms 

underlying fish death after exercise are discussed by Wood (1983) who suggests that it is 

intracellular acidosis which is the crucial factor leading to mortality. 

 

The authors acknowledge that their experimental regime; in particular their use of hatchery-

reared fish and repetitive blood sampling, may have influenced their results but conclude that the 

brief air exposure which occurs in catch and release fisheries is an important additional stress in 

an exhausted fish and may have a significant impact on the number of released fish which 

survive. One factor that undermines the immediate applicability of these results to fish captured 

by angling, and is common to almost all the exercise studies described here, is the severity of the 

exercise protocol employed by the authors. Fish were exercised by manual chasing until they 

failed to respond to further chasing. This required about 10 minutes. Arguably, most fish landed 

by anglers are unlikely to experience such prolonged and severe exercise, being brought to the 

net within a shorter period of time and probably before complete exhaustion has occurred. 

However, the authors regime may be appropriate when considering fish caught on 

inappropriately light tackle, where the angler is unable to exert sufficient pressure to land the fish 

rapidly. 

In addition, the authors use of hatchery-reared fish may have been a factor of more significance 

than they acknowledge. In a previous study by one of the authors (Tufts et al., 1991), "wild" 

Atlantic salmon were exhaustively exercised by exactly the same method as employed in the 

study described above. However, despite a physiological response almost identical to that 

observed in the hatchery-reared rainbow trout employed in the later study, no mortalities 

resulted, full recovery of the parameters occurring within 24 h. The authors conclude that wild 

salmonids may be better adapted for exhaustive exercise though what the nature of such an 

adaptation would be is not clear. Young and Cech (1993b) have demonstrated that the rate of 

recovery from handling stress in striped bass is increased in fish which have been "exercise 

conditioned", a phenomenon the authors attribute to higher capillary density in the muscle of 
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exercise-conditioned fish enhancing the clearance of lactate and cortisol. Conversely, Woodward 

and Strange (1987) reported that stress-induced plasma cortisol elevation was more extreme in 

wild rainbow trout than in hatchery-reared fish, a feature that may arise from generations of 

selection leading to "domesticated" strains of trout. These observations suggest that it may be 

inadvisable to assume that results obtained with fish reared under aquacultural conditions for 

many generations are wholly applicable to wild fish. 

 

The effect of water temperature on the metabolic response to exhaustive exercise was recently 

examined  (Kieffer et al., 1994). These authors employed manual chasing of trout for 5 mins at 

one of two temperatures (5oC or 18oC) to induce a state of exhaustion in the fish. Interestingly, 

although there was a more severe acidosis in the fish exercised at 18oC than at 5oC , and blood 

lactate levels post-exercise were two-fold greater in the fish at the warmer temperature, the time 

required for recovery to pre-exercise levels was similar at the two temperatures, about 8 h. This 

result is perhaps contradictory to the intuitive assumption that higher temperatures result in more 

severe physiological disruption following stress and suggests that the effect of water temperature 

on the metabolic response to capture may not a major consideration.  

 

Further to the observation by Wydoski et al. (1976) that larger fish may experience a more 

severe stress response following capture, Ferguson et al. (1993) examined the effects of size on 

the metabolic status of rainbow trout exercised to exhaustion. By examining the relationship 

between fish length and the response of a range of metabolic indices to exhaustive exercise, they 

demonstrated that in rainbow trout, size has an important influence on the storage and utilization 

of the metabolic fuels required to sustain anaerobic exercise and on the acid-base status of white 

muscle following severe exercise.  Exercise to exhaustion resulted in higher lactate 

concentrations in large fish than in small and in higher metabolic H+ production in large fish. 

However, because larger fish did not possess a greater buffering capacity than smaller fish, 

intracellular pH dropped to a greater extent than in small fish. Time to recovery was not reported. 

The authors make the point that these observations may be of significance to consideration of 

catch and release angling in that larger individuals may experience a greater physiological 

disturbance than smaller fish following similarly exhaustive exercise. The likely reasons for 

constraints on anaerobic capacity increasing with size are discussed by Goolish (1991). 
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In addition to the substantial body of work on the exercise physiology of salmonids there has 

been limited work on the response of certain non-salmonid fish to exhaustive exercise that is of 

relevance to this review. The effect of acclimation temperature on the metabolism of roach 

(Rutilus rutilus) has been examined (Dalla Via et al., 1989). These authors measured the whole-

body concentrations of certain key metabolites in roach prior to, during and following subjection 

to exhaustive exercise (chasing). Total tissue lactate levels rose rapidly following exercise, the 

increase being two-fold greater at 20oC than at 4oC. Recovery to pre-exercise values after 

exhaustive exercise required between 2 and 8 h. The authors also noted that peak lactate levels 

were reached within minutes of the cessation of exercise, in contrast to trout in which peak levels 

may not be observed until several hours following exercise. The authors do not discuss whether 

this is of adaptive significance to the fish. The authors do not report any mortality following the 

experimental procedure. In a similar study on the effects of forced exercise on roach longer 

recovery times of up to 24 h were reported (Wieser et al., 1986). The reasons for this disparity 

are not apparent. 

 

The impact of exercise training on the metabolic recovery from handling stress has also been 

examined in chub (Leuciscus cephalus; Lackner et al., 1988). Although the authors describe the 

stress procedure as handling, effectively the fish were exercised to exhaustion by mechanical 

chasing and sampled at intervals before, during and after exercise. Overall, the authors found the 

metabolic response of untrained chub to exercise to be similar to that of untrained roach (Dalla 

Via et al., 1989). The recovery time for return to physiological normality following exercise was 

found to be significantly reduced in the exercise-trained chub, compared to the untrained chub 

although in both cases recovery was complete within 2 h of exercise. The authors speculate that 

the aerobic capacity of the swimming muscle has been improved via hypertrophy and 

hyperplasia of red muscle fibres rather than an increase in the activity of oxidative enzymes.  

 

These data, and the data cited above for the effects of training on recovery from exercise in 

salmonids and bass, raise an interesting point regarding the possible importance of the 

environment from which a fish is caught. Is tolerance of the physical activity imposed by rod and 

line capture in a given species likely to be a function of whether the fish inhabits, at one extreme, 

a still water or, at the other extreme, a rapidly flowing river? 
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Overall, a number of generalisations may be made regarding the effect of severe exercise on fish: 

 

1. Even when exposed to an exercise regime arguably more severe than that imposed by rod and 

line capture, the available data suggest that most species of fish recover baseline respiratory and 

metabolic levels within 8 - 24 h. 

2. Fish size and water temperature both affect the severity and duration of the metabolic and 

respiratory effects of severe exercise.  

3. Severe exercise can cause mortality in fish. Whether this arises under experimental conditions 

because of the imposition of unrealistically extreme levels of activity, or because of the use of 

"unfit" fish is not clear. 

 

2.6.3 The impact of capture stress on post-release behaviour. Although none of the studies 

discussed in this section refer directly to the imposition of stress by angling, it is nonetheless 

appropriate to consider their results as indicative of the likely effects of capture by angling.  

 

In a study designed to determine the effect of electrofishing, a common fisheries management 

tool, on the behaviour and physiology of cutthroat trout (Oncorhynchus clarki) Mesa and 

Schreck (1989) observed marked behavioural alterations in fish following release. Fish captured 

from a stream by electroshock and marked before being released were observed to display 

lethargy and cover-seeking behaviour. These wild fish required at least 24 h to recover normal 

behaviour and activity patterns. The authors noted that aggressive behaviour declined, and 

feeding, although observed within 4 h of release, did not reach precapture intensity until 24 h 

after capture. The authors found there was a significant inverse correlation between plasma 

cortisol levels and behaviour in fish post-capture; feeding and aggressive interactions increased 

as plasma cortisol levels declined.  

 

In a study in which the stressor employed was a 1 min period of air exposure, juvenile coho 

salmon were observed to attain control levels of predator avoidance within 90 mins of release 

(Olla and Davis, 1989). However, plasma cortisol levels remained significantly elevated for at 

least 240 mins after release suggesting that basic behaviours may not be strictly dependent on, or 

correlated with, physiological alterations arising from stress (Olla et al., 1992).  
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A more recent study (Mesa, 1994) also failed to demonstrate a significant correlation between 

the recovery of physiological indices from stress and the return of behaviour patterns to 

normality. Juvenile chinook salmon were exposed to multiple handling (brief netting and air 

exposure) or a more severe "agitation" stress in which fish were poured from one bucket to 

another for a period of 5 mins. The stressed fish, and a group of control unstressed fish, were 

then transferred to a tank containing a group of northern squawfish (Ptychocheilus oregonensis). 

Juvenile salmon subjected to multiple handling were lethargic and were more vulnerable to 

predation in the first hour after release than unstressed controls. salmon that experienced multiple 

agitation stress were also more vulnerable to predation. In longer term tests, differences in 

predation levels between controls and stressed fish were not apparent, probably, the author 

suggests, because the salmon congregated within the tank to form a tight school. The author 

concludes that juvenile salmon are capable of avoiding predators soon after experiencing a 

stressful event. 

 

 

In a study designed to assess the effects of physical damage incurred during hatchery release and 

dam passage on vulnerability to predation, Gadomski et al. (1994) exposed control and descaled 

(10-20% of body area) juvenile chinook salmon to a predator. Despite the severe physical 

damage and associated stress response in the descaled fish, there was no difference in the 

predation risk experienced by either control or descaled salmon.  

 

Overall, it can be concluded that: 

 

1. Capture by angling is likely to result in some short-term modification of behaviour. In prey 

fish, this may result in an increased susceptibility to predation. 

2. The duration of behavioural modification following stress is shorter than the period required 

for physiological recovery from stress. 

3. There has been no research on species native to the UK. 

 

2.6.4 Physical damage. There is little or no information on the general physical consequences 

of the handling associated with capture of fish by angling. However, there is a considerable body 

of work that specifically addresses the effect of hooking on survival of fish, almost all of which 
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originates from North America. In general, most of the work has been carried out to establish the 

impact on undersized fish caught and then returned to the water by anglers, although the 

increasing prevalence of catch-and-return and no-kill fisheries in North America has also led to 

research in this area. An excellent review of work in this field was recently published (Muoneke 

and Childress, 1994) but it is nonetheless appropriate to examine a range of studies in detail for 

the purposes of the present review, including many that have been published since Muoneke and 

Childress's review was completed. It is striking that no work of European origin on this subject 

could be located. The following summary is not intended to be exhaustive, but focuses on the 

more recent studies. 

 

In a 4-year study on hooking mortality in land-locked Atlantic salmon, 18% of hooked fish died 

compared to 4% of control (trapped) fish during the spring season during the 5-day post-capture 

period. In autumn the figures were 8% and 2% respectively (Warner, 1978). No differences in 

mortality were observed between single and treble hooks, or between fly and spinner. 

Unsurprisingly, mortality was higher among fish hooked in the gill area (63%) than those hooked 

in the mouth, and fish which bled following hooking (35%) were more likely to die than those 

that did not (10%). As will be apparent from the work cited below, these observations are typical 

of the results obtained by many authors on a variety of fish species. 

A higher mortality among Atlantic salmon caught on worm (35%) than fly (4%) was attributed to 

the fact that nearly 37% of worm-caught fish were hooked in the oesophagus whereas most fly-

caught fish were hooked in the mouth or jaws (Warner and Johnson, 1978). The authors relate 

this difference to feeding behaviour; if not hooked immediately, fish will reject a fly, whereas 

fish accepting the worm bait ingest it even if not hooked rapidly. As in the study described 

above, the mortality of fish that bled after hooking (86%) was significantly greater than mortality 

among fish that did not bleed (15%). Size appeared to have no effect on hooking mortality.  

 

In a study of the effect of hooking on brown trout beneath the legal size limit, the effect of hook 

size was examined (Hulbert and Engstrom-Heg, 1980). Hatchery-reared brown trout were 

captured by angling with worm-baited hooks from a large artificial pond. After capture, the fish 

were transferred to large aquaria and monitored for 14 days. Post capture mortality was 13.5%, 

and of this 77% occurred within 24h of capture although losses continued throughout the 14-day 

holding period. Approximately 67% of the fish captured were lightly hooked and mortality 
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among these fish showed no significant difference from that of control fish. The overall mortality 

of deeply hooked fish was 38.7% but this was markedly improved by clipping the leader 

(mortality 17.5%) rather than attempting to remove the hook (mortality 59%). The authors 

emphasise that hooking and rapidly landing a fish is a minor source of mortality and that lethal 

injuries most often occurred when hooks were removed from the upper digestive tract and gills. 

They suggest that if leaders had been clipped on all the deeply hooked fish in this study, overall 

short-term mortality would have been approximately 7%.  

 

These authors also found that fish caught with the larger hook size employed (no. 4) had a 

greater rate of mortality than those caught on other hook sizes (6, 8, 10). This they attributed to a 

greater number of gill-hooked or deep-hooked fish caught with this hook size. Larger hooks were 

also less efficient than small hooks; the time taken to catch 50 fish with worm-baited large hooks 

was greater than the time required to catch the same number of fish with smaller hooks. A 

greater occurrence of eye hooking was also noted with the large hooks. Hook size as a factor in 

post-capture mortality was also considered by Titus and Vanicek (1988) who found that at least 

under high temperature conditions, lower mortalities were observed with barbless treble hooks, 

compared to barbed treble hooks and barbless single hooks. This was not ascribable to the 

anatomical site of hooking, as almost all fish caught with each hook type were jaw-hooked. 

These data are in accordance with the conclusions of Klein (1965) who suggested that treble 

hooks are less often swallowed as deeply as single hooks. 

 

In a detailed study, Dotson (1982) determined mortality among cutthroat trout following capture 

with fly or spinning tackle employing three hook types (no. 10 barbed, no. 10 barbless, no. 12 

treble). Fish were captured from hatchery raceways, reeled in as quickly as possible, and after 

capture, released into adjacent raceways where recovery was monitored for 30 days. The 

proportion of fish caught on single hooks and clean-hooked in the upper jaw was approximately 

75%. Of those fish caught on treble hooks 79% had only one point penetrating the flesh. Only 

one mortality was observed among the caught fish, although the author may have biased the 

result by including in the study only those fish hooked in the jaw. Mortality rate for the 25% of 

fish not hooked in the jaw is not provided. The data from other studies cited here suggest it 

would be high. 
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In a second part of this study, rainbow trout were caught on fly (no. 10 barbed hook) and played 

to exhaustion. In six experiments (388 fish) an overall mortality of 6.7% was observed within 30 

days of capture, most deaths occurring within the first few days. Higher mortality was noted in 

those groups caught at higher water temperatures but mortality did not appear to be size-related. 

 

The survival of wild-caught lake trout (Salvelinus namaycush) after hooking was examined by 

Loftus et al. (1988). Fish were caught by anglers, and post-capture mortality was established by 

returning hooked fish to the lake after tethering them to a line-buoy system. This system 

involved clipping a line to the lower jaw of the fish and attaching the fish to a horizontal tether of 

45-70m in length. Attaching the tether to a weighted line descending from a buoy via a two-way 

swivel permitted vertical movement. The fish were inspected after 48h had elapsed. During the 

two-year period in which the experiment was conducted overall hooking mortality was 14.9%. 

The time required to land fish during the study ranged from 53 secs to 5 mins 3 secs. No effect of 

time to landing was observed on mortality. Three types of lure were employed by anglers, plugs 

with treble hooks, spoons with treble hooks and spoons with single hooks; no statistically 

significant relationship between the type of lure and post capture mortality was observed. 

Approximately 72% of the fish in the study were hooked in the upper or lower jaw and these fish 

experienced a mortality of 6.9% while fish that were hooked internally displayed a mortality rate 

of 71.4%. In contrast to some of the studies reported here, these authors observed that smaller 

fish experienced a higher mortality than larger fish.  

 

In a study in which the post-capture mortality of walleye (Stizostedion vitreum) was monitored 

for 12 days after capture, mortality was determined to be 1.1% (Fletcher, 1987). The fish were 

caught on baited lures and transferred to large net pens to recover after unhooking. The author 

notes that mortality may have been greater if water temperatures had been higher, citing a 

number of studies in which a relationship between post-capture mortality and water temperature 

was recorded (e.g. Pelzman, 1978). The author also highlights the possibility that type of tackle 

may influence mortality level, suggesting that for example trolled spinners are ingested more 

deeply than the jigged lures employed in his study. 

 

Several factors affecting the mortality of largemouth (Micropterus salmoides) and smallmouth 

bass (M. dolomieui) during angling matches were examined by Bennet et al. (1989). These 
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authors monitored 15 tournaments over a four year period in which fish were transferred to 

holding cages and mortality for up to 36 h after capture was recorded. Overall, mean mortalities 

of 4.6% were recorded. Although initial mortalities (within 1 h) were higher for largemouth bass 

than smallmouth bass the authors suggest this may be related to the fact that smallmouth bass 

tournaments tend to be held earlier in the year when water temperatures are lower. There was a 

strong overall correlation between water temperature and initial mortality and also a positive 

relationship between the number of bass caught in a tournament and initial mortality. This latter 

result may be related to the crowding of fish within live wells before transfer to observation pens. 

Hartley and Moring  (1993) demonstrated that oxygen is rapidly depleted from live wells when 

large numbers of fish were confined, or aeration systems were not run continuously. The authors 

also noted additional mortality of between 0.8% and 9% for largemouth bass held for up to 36 h. 

They conclude that fish mortalities associated with tournaments do not represent a significant 

impact on populations in large waters, although this may not be the case in smaller waters, and 

suggest that restricting tournaments during periods of warmer water may be advisable. 

Significant effects of temperature on hooking mortality were also reported by Titus and Vanicek 

(1988) who observed mortality among lure-caught cutthroat trout to be less than 1.5% at water 

temperatures below 15.5oC but nearly 50% as water temperature rose to 21oC. 

 

A more recent study which considered the mortality of walleye during live-release angling 

tournaments found higher levels of mortality (mean 21.7%) than the study above, during two 

matches (Fielder and Johnson, 1994). Mortality estimates were subdivided into fish at the weigh-

in and fish monitored in cages for 3 days after capture. Mean mortality at the weigh-in stage was 

15.8% while that occurring during the 3-day observation period was 7%. These authors also 

summarise the results of previous studies that suggest that weather-related variables and water 

temperatures influence weigh-in and delayed mortality for walleye. They suggest that survival of 

fish caught by "pleasure" anglers may be greater because these are released immediately and not 

retained in live wells on board boats and propose that tournaments be restricted to periods of 

water temperature lower than 21oC.  

 

The role played by different types of lure/bait in causing post-capture mortality was studied by 

Clapp and Clark (1989). These authors examined hooking mortality in smallmouth bass caught 

on either live minnows or spinners. The study was carried out under controlled conditions in 
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artificial streams. The authors employed an experimental design in which the streams were 

fished for several periods (duration unspecified) and captured fish were returned to the channel 

after unhooking and noting the tag number on the fish. Forty-eight hours after the end of the test 

period the channels were drained and dead fish were counted. No control population was 

maintained; instead the authors compared the mortality of hooked fish to that of fish not caught 

from within the same channel. The authors found that the mortality of bass hooked on live 

minnows (11%) was significantly greater than that of bass hooked on spinners (0%) or those not 

hooked at all (4%). There was no statistically significant difference between mortality among 

spinner-caught and control fish. Interestingly, the authors noted marked differences in the 

"catchability" of individual fish, 35% of the fish were never caught, while 18% of the fish were 

caught three or more times including one individual caught on nine occasions. The authors 

acknowledge that implicit in their experimental design is the assumption that mortality within a 

test period occurred as a result of the last hooking event, and that cumulative effects of hooking 

did not influence the mortality figures. They also draw attention to the possibility of long-term 

sublethal effects of catch and release, a factor rarely addressed by other studies that consider the 

effects of hooking. 

 

The contrast in mortality rates following capture on either artificial or live baits was also noted 

by Payer et al. (1989) who examined the post-capture mortality rates of walleye captured on 

either leeches or artificial lures. The mortality rate of fish caught on leeches (10%) was 

significantly greater than that of fish caught on lures (0%) and appeared to be primarily related to 

the tendency for leech-caught fish to be hooked more deeply in throat and gut. Bluegills caught 

on natural bait (worms) also display a higher post-capture mortality rate (88%) than fish caught 

with flies (32%) or lures (28%) and this again appeared to be related to deeply ingested hooks  

(Siewert and Cave, 1990). However, less severe mortality rates for bluegill caught on natural 

baits were reported by Muoneke (1992) who recorded 1% (winter) and 25% (summer) mortality 

within 72 h of capture on live hook bait. A distinct difference in the mortality of superficially 

hooked and deep-hooked fish was also observed in lake trout caught on live minnows (Dextrase 

and Ball, 1991). There was no mortality among fish hooked superficially in the mouth whereas 

18.5% of fish hooked in the gills, deep in the buccal cavity, or in the stomach, died within 48 h 

of capture. Persons and Hech (1994) reported that lake trout caught by jigging showed much 

lower mortality rates than trout captured on static dead baits (9% cf. 32%) and that mortality was 
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closely related to the position of hooking. Fish hooked in the gills or gut showed a 36% mortality 

rate compared to 0% mortality among fish that were lip-hooked. 

 

The likelihood that mortality related to lure type may also be species dependent is highlighted by 

the very low mortality (4.7%) observed during the 48 h post-capture period in black sea bass 

(Centropristis striata) caught on natural baits (Bugley and Shepherd, 1991). All these mortalities 

were, however, deep-hooked fish. The authors suggested that hook ingestion might increase 

mortality by increasing the degree of damage incurred during hook removal and by increasing 

the handling time necessary for hook removal. These authors also raise the question of depth of 

capture as a contributory factor to post-capture mortality, noting that displacement of the swim 

bladder through cloaca or mouth may result in severe trauma. Matlock et al. (1993) also failed to 

observe pronounced differences in the mortality of red drum (Sciaenops ocellatus) and spotted 

seatrout (Cynoscion nebulosus) caught with either single or treble hooks or on natural baits or 

lures. Mortality within 3 days of capture was 4.1% and 7.3% for the two species respectively. 

Several factors examined by other studies were included in an experiment by Nuhfer and 

Alexander (1992) who monitored mortality for 48 h post-capture in angled brook trout. All the 

fish were captured using artificial lures. Overall the mortality rate was 4.3% but there were 

nonetheless significant differences in mortality associated with lure type, ranging from 0% to 

10.9%. The authors attribute these differences to the frequency with which the gill arch and 

oesophagus were damaged. The effect of elevated temperature on mortality was most 

pronounced in fish that were bleeding when unhooked. These authors also make the interesting 

point that the lack of correlation between fish size and hooking mortality reported by others may 

arise because of the limited size range of fish employed in some studies. They suggest that larger 

fish can more easily engulf multi-hooked lures deeply because of their larger gape. This fact may 

also account for some studies finding single hooks more damaging than treble hooks (Klein, 

1965; Warner, 1976). 

 

The few studies to examine the hooking-related mortality of a non-salmonid fish native to the 

UK focus on the capture of pike (Esox lucius). DuBois et al. (1994) describe the short-term (48 

h) hooking mortality of pike captured by live fish on treble hook mounts or dead bait on large 

pike hooks (Swedish hooks). The authors found that mortality associated with capture on live 

bait was low (<1%) whereas capture on the Swedish hook rig resulted in 33% mortalities. In 
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accordance with many of the studies cited here, mortality was particularly pronounced for deeply 

hooked fish. Perhaps surprisingly, 84% of fish noted to be bleeding at the time of hook removal 

survived. Nor was the length of time the fish were allowed to run with the bait related to 

mortality or hooking location. Lower levels of mortality (<10%) than those observed for capture 

on Swedish hooks were reported for pike and muskellunge (E. masquinongy) caught on artificial 

lures (Falk and Gillman, 1975; Weithman and Anderson, 1978). 

 

Muoneke and Childress (1994) have reviewed the information available on hooking mortality up 

to 1993, confirming that most studies have dealt with salmonids, centrarchids (particularly black 

basses) and percids (in particular walleye). They report that differences in mortality have been 

linked to bait type (artificial versus natural), hook type (number of hooks, hook size and barbs) 

season/temperature, depth at which fish were hooked, anatomical location of the hook wound, 

and fish size, and emphasise the variability in results obtained by various studies.  

In recent years there have been several studies utilising more sophisticated means of addressing 

the problem of hook-related mortality in angler-caught fish. Bendock and Alexandersdottir 

(1993) employed radio telemetry to track the movements and fate of chinook salmon captured by 

angling for 5 days after release into the river at the point of capture.  By these means they were 

able to overcome the problem common to almost all other studies on this subject, the fact that 

fish must be confined following capture for observation. They observed a mean post-capture 

mortality of 7.6% over a three-year period and found that mortality was highest among small 

males (<75 cm) compared to larger males and all females. Location of the hook wound and 

whether or not bleeding occurred were identified as the main factors associated with mortality. 

Most deaths (80%) occurred within 48 h of release. 

 

Gjernes et al. (1993) employed a complex recursive causal model to analyse their data on 

hooking mortality in chinook and coho salmon during their first year of ocean life. They were 

able to demonstrate that hooking mortality is a two-stage process; injury location is a function of 

hook type and barb type (first stage) and mortality is a function of injury location and species 

(second stage). They estimated that overall mortality following release by anglers was 

approximately 30% for chinook and 14% for coho salmon. 

 

A meta-analysis of hooking mortality in nonanadromous trout was carried out by Taylor and 
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White (1992) in which the data from 18 published studies was integrated and factors of 

significance in determining mortality were identified. The authors found that trout caught on bait 

had higher mortality rates than those caught on flies or lures, that barbed hooks caused greater 

mortality than barbless hooks, that brown trout had lower mortality rates than other non-

migratory salmonids, and that wild trout showed greater mortality than hatchery-reared fish. 

Other variables (size of hooks, number of hooks and water temperature) did not show a 

statistically significant relationship to hooking mortality. The average mortality rate in the 18 

studies was <12%, and if only barbless flies or lures are considered, was <3%. The authors 

suggest that because most studies required the holding of fish for monitoring and this may have 

exacerbated the mortality rate, actual figures may in practice be lower. 

 

In summary, the effect of hooking on the subsequent survival of rod-caught fish represents the 

most-studied aspect of angling in relation to fish welfare. However, the data available deal 

almost exclusively with salmonid fish or non-salmonid fish native to North America and even 

here the range of species is limited. No data on hook-related mortality in British freshwater fish, 

other than the pike, could be located during the preparation of this review. To some extent it can 

be assumed that the general conclusions reached may be applied to other species. However, there 

are several aspects of the studies that make this less than satisfactory. First, in most studies 

involving wild-caught fish, fish were held for period following capture to allow the 

determination of mortality rates. No account was taken by most authors of the additional stress 

this may have caused. Mortality is ascribed throughout to "hooking damage". The possibility that 

mortality may occur due to other factors such as those discussed in preceding sections is not 

considered. Most, though not all, of the studies did not monitor the released fish much beyond a 

few days, therefore delayed mortality, or sublethal effects of capture and release were not 

discernible. 

 

The main points that are apparent from consideration of the studies above are: 

 

1. There is a measurable level of mortality associated with hooking of fish. Most studies have not 

monitored survival beyond 72 h following capture.  

2. Mortality is low to negligible in fish that are hooked in the jaw, but can be extremely high in 

fish hooked in the throat, gills and deep-hooked in the gut. The majority of fish caught are 
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hooked in the jaw. 

3. There may be differences in mortality rate associated with natural and artificial baits and with 

hook size and type. The species and size of fish may also be factors. There are too few data 

available at present to draw firm conclusions. 

4. Almost all the data available on hooking mortality originate from North America. The species 

studied are almost exclusively predators, captured with either lures or bait. Although this 

information may be applicable to some species of fish native to the UK (perch, pike, zander, 

salmonids), there are no data in the literature derived from studies on cyprinid fish that 

constitute the majority of species sought by freshwater anglers in the UK. 
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3.  PAIN PERCEPTION 

 

3.1  Background 

 

While it is possible to quantify stress in fish by measuring changes in physiological indices 

known to be involved in the response to stress, and to directly assess the physical damage caused 

by hook penetration or handling, and even to assess behavioural modification arising from 

stressful procedures, determining whether fish perceive pain as a result of procedures associated 

with capture by angling is far less straightforward. 

 

The perception of pain by animals is a much-studied subject, largely because of the clinical 

importance of pain relief. Short and Van Poznak (1992) emphasise the extensive research effort 

expended on the control and prevention of pain by the medical, basic science and veterinary 

research communities. These authors consider pain to be a "natural" response, and that the 

existence of pain in animals other than man need not be debated, because of the evident benefits 

of possessing a pain response (see below). However, all workers in this field do not share this 

undiscerning and simplistic view. Bateson (1991, 1992) in particular, considers that the question 

of whether or not animals other than humans feel pain is far from being answered.  

 

It is in laboratory animals, such as the rat and mouse, in which the best mechanistic 

understanding of pain has been formulated. Analogous anatomical and physiological features are 

inferred in humans but may be erroneous (Cross, 1994). In a useful overview of pain in animals 

(The Report of a Working Party of the Institute of Medical Ethics; Smith and Boyd, 1991) it is 

emphasised that discussion of pain in humans deals with a subjective state, that the neural 

mechanisms responsible for the production of pain sensation are complex, and that pain 

perception, even in humans, has yet to be fully understood. 

 

3.2 The role of pain 

 

Clearly, pain has a role in promoting survival of the organism, by alerting the organism that 

damage to its body has occurred or is likely to occur, and to encourage the avoidance of similar 

situations in the future. Bateson (1991) lists a number of attributes that would provide significant 
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survival advantages to the animal in possession of them. They are reproduced in full below: 

 

1. Distinguish at the peripheral level between potentially harmless stimulation and that which is 

intense but, nevertheless, is harmless and carried further information that might be useful.  

2. Learn to avoid conditions previously associated with potentially harmful stimulation. 

3. Give top priority to escape from or removal of potentially dangerous stimulation and to 

avoidance in conditions previously associated with such stimulation. This feature would involve 

inhibiting other competing activities. 

4. Inhibit activities that might delay recovery from disease or injury. 

5. Inhibit the inhibition of all other activities under special conditions. Despite the need for 

limiting further damage, inhibition of all activity while some parts of the body signal injury 

might increase the risk of an even quicker death through exposure or predation. So peripheral 

mechanisms that shut out powerful input to the central nervous system and central control of the 

damage avoidance system would be advantageous. 

 

However, Bateson points out that identifying the functional advantage of possessing a 

mechanism to detect damage does not reveal why a subjective sense of pain has evolved in 

humans. Can the system not work successfully without the self-consciousness or awareness of 

the animal? Bateson argues that it should be possible for an individual without an evolved 

consciousness to avoid damage and recuperate efficiently without feeling pain, in human terms. 

He suggests that caution should be employed in assuming on evolutionary and functional 

grounds that conscious perception of pain in all animals is a foregone conclusion. 

 

3.3 The physiology of pain perception in mammals 

 

Two components to the pain response can be identified (Smith and Boyd, 1991):  

 

1. Nociception: the physiological perception of and response to painful stimuli that can be an 

automatic, reflex process not involving the higher centres of the brain. 

2. Pain proper: the conscious emotional experience of pain, which involves nerve pathways in 

the highest part of the brain, the cerebrum. 
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Several review articles provide a good introduction to the physiology of pain perception and the 

description that follows was taken from Edmeads (1983), Greer and Hoyt (1990), Smith and 

Boyd (1991), and Cross (1994).  

 

3.3.1 Receptors and the ascending nociceptive pathways. The pain pathway comprises of a 

chain of three neurons transmitting pain signals from the periphery to the cerebral cortex. The 

first-order neuron has its cell body in the dorsal root ganglion, and two axons, one projecting 

distally to the tissue, the other extending centrally to the dorsal horn of the spinal cord. This axon 

synapses with the second-order neuron, the axon of which ascends in the spinothalamic tract to 

the thalamus. Here it synapses with the third order neuron, which terminates in the cerebral 

cortex.  

 

The first event in the generation of pain is the stimulation of nociceptors. These are free nerve 

endings that are sensitive to specific stimuli; mechanoreceptors respond to strong mechanical 

stimuli and thermoreceptors respond to heat. In addition, there is a third group of receptor cells 

which are polymodal and respond to a number of stimuli including strong heat, strong 

mechanical stimuli and chemical factors. When the stimulus exceeds a certain threshold level, 

electrical activity in the nociceptor evokes nerve impulses that are transmitted along the nerve 

fibre to the spinal cord. Two types of nerve fibre are associated with nociceptors; A-delta axons 

which are myelinated and characteristic of high-threshold mechanoreceptors, and C fibres, which 

are unmyelinated, and characteristic of polymodal nociceptors. The presence or absence of the 

myelin sheath radically alters the speed with which nerve impulses are transmitted. The A-delta 

axons transmit impulses at 15 metres per second, in contrast to the rate of transfer along C fibres 

that is approximately 1 metre per second (Edmeads, 1983).  

 

Following a stimulus, the nociceptor initiates a train of impulses which ascend the C and A-delta 

fibres to the dorsal horn of the spinal cord and thence to the lower parts of the brain, the brain 

stem and thalamus. The frequency of the impulses encodes the severity of the pain perceived by 

the individual and a sufficiently high frequency of nerve impulses is necessary to pass a 

threshold and be recognised as pain (Edmeads, 1983). 

 

High-threshold mechanoreceptors transmit "first pain", a well-localised sensation (in human 
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terms, sharp, stinging, pricking) that lasts only as long as the acute painful stimulus. This system 

permits the individual to analyse the nature of the stimulus, and the location, intensity and 

duration of stimulation. Polymodal receptors are recruited as a result of strong nociceptive 

stimulus and carry the sensation of "second pain" which is a more diffuse and persistent burning 

sensation that lasts beyond the termination of an acute painful stimulus, giving rise to the 

unpleasant character of painful sensation (Cross, 1994).  

 

3.3.2 Gate control theory. The perception of pain takes place in the brain, but this is governed 

by a neural mechanism known as the action system (Melzack and Wall, 1965; Greer and Hoyt, 

1990). Within the dorsal horn of the spinal cord there are controlling neurons that are activated 

by large myelinated nerve fibres, carrying non-noxious input, and are inhibited by C fibres, 

carrying noxious input. Impulses from the large fibres keep the "gate" partially closed and 

diminish the sensation of pain by causing the controlling neurons to inhibit the transmission of 

stimuli from both the large and small fibres to the pain transmitting neurons in the posterior horn 

of the spinal cord. Descending impulses from the brain exert an overall control over this 

mechanism. Thus the sensation of pain is modulated by a descending efferent system that enables 

the control of nociceptive thresholds.  

 

3.3.3 Neurotransmitters associated with pain perception. Certain endogenous substances can 

facilitate or inhibit the firing of neurons involved in pain transmission (Edmeads, 1983). The 

undecapeptide, substance P, appears to be the neurotransmitter of first order pain afferent 

neurons. Administration of the compound will induce the firing of pain transmitting neurons, and 

compounds that reduce the amount of substance P in tissue also reduce the reaction to painful 

stimuli. Substance P is widely distributed within the central and peripheral nervous system but is 

particularly localised in the dorsal horn of the spinal cord that receives terminals from primary 

sensory neurons (Abrams and Recht, 1982). It should be noted that substance P is also known to 

have a diverse range of functions outside the immediate sphere of nociceptive activity; being 

involved with blood pressure regulation and associated phenomena, peristalsis of the gut, 

salivation, and immune regulation (Bost and Pascual, 1992; Walsh et al., 1993). 

 

The neurotransmitter, 5-hydroxytryptamine, is believed to be involved in the modulation of 

nociception. The precise effects are dependent on the receptor sub-type involved, but, on the 
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whole, 5-HT appears to reduce nociceptive sensitivity by reducing the concentration of substance 

P (Eide and Hole, 1993).  

 

A number of other endogenous compounds possess opiate-like characteristics, binding to opiate 

receptors and displaying analgesic qualities similar to morphine. These compounds (including 

enkephalin, β-endorphin and dynorphin) act as part of an internal antinociceptive system and 

receptors for the compounds are found in areas of the brain known to be involved with the 

modification of pain perception (Smith and Boyd, 1991; Cross, 1994). They constitute a negative 

feedback system that is activated by nociceptive stimulation and produces inhibition of 

nociceptive signals. This system is also believed to be involved in stress-induced analgesia. In 

some cases pain may be insensitive to modulation by opioids, for example where damage, 

disruption or disorder of peripheral nerves are concerned (Dickenson, 1991). β-Endorphin has a 

two-fold action, functioning as both a peripheral hormone and as a neuroregulator via 

interference with the production of other neurotransmitters (Dalayeun et al., 1993). 

 

3.3.4 Pain associated with tissue damage. Tissue injury results in the rapid accumulation of a 

number of chemical factors that can cause nociceptors to fire, or, in lower concentrations, lower 

the threshold of nociceptors to other stimuli. These factors include bradykinin, prostaglandins, 

serotonin, histamine and hydrogen and potassium ions (Edmeads, 1983; Dickenson, 1991).  

 

3.4  Pain perception in non-mammals and fish 

 

3.4.1 The comparative approach. The question addressed by this section is "what evidence 

exists to support the contention that fish feel pain?". The most obvious approach, to consult the 

literature and identify previous research carried out in this area, is not enlightening. The Institute 

of Scientific Information Science Citation Database identifies 18411 scientific publications as 

having been published between 1982 and 1995 containing the word "pain" in the title. Of these, 2 

publications contain the terms "pain" and "fish" (Stoskopf, 1994; Peters, 1988), one of which is 

wholly in German.  

 

An alternative approach to answering this question is to identify the anatomical and biochemical 

correlates of pain perception in higher vertebrates and determine which of these are present in 
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fish. However, there are difficulties inherent in this approach.  

 

It might be assumed that the mechanisms underlying pain perception, and the assessment of pain, 

are fully understood in mammals and that it is therefore a question of applying this knowledge to 

lower vertebrates. Inspection of the literature reveals this to be a fallacy. For example, the 

understanding and study of pain in man is aided immeasurably by the ability of the subject to 

convey sensation verbally. Wall (1992) highlights the difficulties inherent in assessing pain 

without access to the subject’s perceptions by reference to the newborn human infant. If a blood 

sample is removed from a prematurely born infant by heel lancing, without a local anaesthetic, 

the infant shows a grossly exaggerated flexion reflex for days afterwards. If a local anaesthetic is 

employed, the flexion reflex does not display prolonged exaggeration. But Wall suggests that this 

tells nothing regarding the baby’s ability to feel pain, only that it has a mechanism in its spinal 

cord, associated with tenderness in adults. He concludes that the assessment of pain in babies and 

animals is so difficult that wrong conclusions are often drawn. He also suggests that these 

difficulties extend beyond the lack of verbal communication for four reasons: 

 

1. There is no reason to associate pain with the possession of any one neural component. 

2. Reflex responses are parts of overall behavioural responses and may be uncoupled in 

particular situations. 

3. Overall behavioural responses require, for their observation, an intimate familiarity with each 

species, which is rarely achieved and might be unachievable. 

4. Animal responses to analgesic therapy designed for humans can be an excellent criterion when 

the animal responds, but the failures that mark the intractable pains experienced by humans could 

be more common in animals. 

 

The problem of assessing pain in animals is considered at length in a persuasively argued paper 

by Bateson (1991). One of his central themes is the necessity or otherwise of a reflective, self-

aware, consciousness for perception of pain. In the absence of self-awareness, can a damage-

avoidance system operate successfully without a subjective feeling of pain? Bateson concludes 

that this should be possible. However, he also notes that the choice is not a simple one between 

the animal as an automaton and the fully self-aware animal; different species may possess 

differing levels of self-awareness and, if it can be established that an animal possesses some 
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degree of self-awareness, then the grounds for supposing that that animal can "suffer" are 

strengthened.  

 

Bateson considers the possibility that pain perception may be assessed in animals by comparison 

with what is known of the human condition, in terms of behaviour and physiology. In mammals, 

behavioural indices of suffering can be misleading. The lack of a reaction in a severely injured 

animal can represent high levels of neural inhibitory gating. In addition, quite complex 

behavioural patterns can be the result of simple neural mechanisms that do not require conscious 

self-awareness on the part of the animal. Although Bateson acknowledges that the similarities 

between mammals are more remarkable than their differences he points out that fish are 

particularly refractory to understanding "even though there are strong grounds for supposing that 

these complex, long-lived animals possess highly efficient mechanisms for avoiding injury.".  

The presence of damage-avoidance mechanisms proves nothing regarding the higher perception 

of pain - animals even further removed from mammals than fish, such as insects, show some 

damage-avoidance mechanisms.  

 

It has been proposed that there are several possible criteria, which, if fulfilled together might be 

grounds for accepting that a species can experience pain (Smith and Boyd, 1991). These are: 

 

1. Possession of receptors sensitive to noxious stimuli, located in functionally useful positions on 

or in the body, and connected by nervous pathways to the lower parts of the central nervous 

system. 

2. Possession of higher brain centres (especially a structure analogous to the human cerebral 

cortex). 

3. Possession of nervous pathways connecting the nociceptive system to the higher brain centres. 

4. Receptors for opioid substances found in the central nervous, especially the brain. 

5. Analgesics modify the animal's response to stimuli that would be painful for a human; the 

animal chooses to take analgesics in "painful" situations. 

6. The animal's response to stimuli that would be painful for a human is functionally similar to 

the human response (that is, the animal responds so as to avoid or minimize damage to its body). 

7. The animal's behavioural response persists and it shows an unwillingness to resubmit to a 

painful procedure; the animal can learn to associate apparently non-painful with apparently 
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painful events. 

 

The authors suggest that mammals conform to all these criteria, whereas fish can be 

demonstrated to conform to only numbers 2, 4, and 7. Insects also conform to criteria 4 and 7.  

The authors cite evidence for the existence of nervous pathways from thalamus to the cerebral 

cortex in amphibia, reptiles and birds, as well as mammals, but note that although similar 

pathways have been found in shark (cartilaginous fish), the situation in teleost (bony) fish is not 

known.  

 

Assuming that sensory information can reach the higher brain centres, the authors consider 

whether this necessarily equates with the capacity to experience pain proper. The fish forebrain 

possesses "space" for higher-level processes other than the olfactory role it has been considered 

to be largely concerned with. The authors cite Walker (1983) as suggesting that higher 

psychological functions are present in animals roughly in proportion to the extent of 

development of the forebrain. He suggests that fish, amphibians and reptiles have small cerebral 

hemispheres and therefore little cognition. 

 

The authors cited above might be interpreted as taking a conservative view on pain perception; 

assuming fish do not possess a reflective consciousness, and that the area of the brain in fish 

which is known to be involved with the processing of pain signals in higher vertebrates is small, 

the likelihood that fish experience pain as we do is minimal. However, some authors take a 

different stance. Stoskopf (1994) highlights the dearth of work on pain in fish but emphasises the 

similarities between fish and mammals. He notes the presence of various nociceptors, substance 

P, and antinociceptive mechanisms and suggests that the presence of these in fish argues in 

favour of the existence of nonmammalian pain perception. This conclusion could be queried on 

the grounds raised by Bateson (1991). Although mechanisms known to be involved with the 

conscious perception of pain in mammals are present in non-mammals, could they not equally 

well be involved in "automatic" damage avoidance systems involving no conscious perception of 

painful sensation?  

 

This conscious or unconscious confusing of nociception and pain as being equivalent is 

highlighted by Kavaliers (1988; 1989). He points out that "descriptions of postures, movements 
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and vocalizations that are associated with nociception can be quantitative and objective, but 

interpretations of these behaviours are in words with connotations of human experience". This 

author also suggests that comparative studies of nervous systems have "rendered it unreasonable 

to assume that all animals should have conscious feelings and suffering comparable to that of 

humans in either degree or kind". However, in common with Bateson (1991), he points out that 

many animals have some level of "feeling" and "awareness" and that there is probably a 

gradation of sentience between species. In an examination of the evolutionary and comparative 

aspects of nociception, Kavaliers (1988) reports that even primitive, single celled, animals 

display "behavioural" changes in response to adverse changes in their environment and cites data 

which suggest that true nociceptive responses probably evolved in the Cnidaria; anemones in 

particular display sophisticated behaviours strongly suggestive of the presence of a functional 

nociceptive system. Insects possess complex nervous systems and also show avoidance and 

escape responses to aversive stimuli but these are probably pre-programmed responses, and not 

indicative of  "pain" (Eisemann et al., 1986). Kavaliers (1988) also cites a number of studies 

suggesting that molluscs possess functional nociceptive mechanisms and that neuromodulation 

of nociceptive responses can be shown in many diverse animal groups. It has recently been 

demonstrated (Woolf and Walters, 1991) that the mollusc Aplysia displays many similarities with 

mammals in the manner in which noxious stimuli generate persistent changes in the nervous 

system. These authors suggest that mechanisms fundamental to injury-induced behavioural 

modifications are widespread in the animal kingdom. Kavaliers (1988) overall conclusion is that 

most animals display nociceptive responses and that the expression of such responses is 

modulated by the anatomical, morphological, physiological, neural and behavioural 

characteristics of the animal. 

 

3.4.2 Specific evidence for pain perception in fish. While the evidence above suggests that 

mechanisms for detecting tissue damage and avoidance of such damage are widely distributed 

throughout the animal kingdom, there are very few studies to have examined nociception and 

pain perception in fish, in a scientific and rational manner.  

 

3.4.2.1 Anatomical. It is well established that fish possess complex nervous systems (Northcutt 

and Davis, 1983; Davis and Northcutt, 1983) but most studies on sensory function have focused 

on olfaction and gustation (Finger, 1983; Tucker, 1983; Hara, 1992), vision (Nicol, 1989; 
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Fernald, 1993), and the lateral line system (Popper and Platt, 1993). Nociception has not been 

considered and does not appear even in the most recent summaries of the fish sensory and 

nervous systems (Bone et al., 1995). The extent to which pain perception in fish has been 

ignored or sidestepped is exemplified by the complete absence of the subject from a detailed 

review of the brain and sensory systems of cyprinid fish (Kotrschal et al., 1991). 

 

The search methods employed for this review found only one publication that deals specifically 

with nociceptive apparatus in fish (Snow et al., 1993). These authors assessed the ability of 

sharks and rays (cartilaginous fish; elasmobranchs) to sense pain (their definition) by examining 

the proportion of myelinated and unmyelinated sensory fibres in the dorsal roots of the spinal 

cord. Their rational was that in mammals most unmyelinated axons represent nociceptors that are 

only excited by stimuli intense enough to cause tissue damage. The authors found that 

unmyelinated fibres were virtually absent from the dorsal roots of long-tailed stingray 

(Himantura sp.) and large shovelnose ray (Rhinobattus battilum). In the smaller specimens of 

shovelnose ray a substantial proportion of the fibres were unmyelinated. However, the authors 

suggest that these may represent fibres destined to become myelinated, as they were all found to 

be associated with a single Schwann cell, a characteristic of mammalian myelinated cells during 

early development.  The authors conclude that it is likely that mature sharks and rays lack 

unmyelinated sensory fibres and thus have a very rudimentary system for encoding mechanical 

stimuli that are potentially damaging. They also note that elasmobranchs, although possessing 

substance P, lack the ascending system that in mammals is responsible for transmitting 

nociceptive information to the brain (Cameron et al., 1990). They suggest that "perhaps, in the 

aquatic environment, a well-developed system for perceiving specific forms of pain is of little 

adaptive value, particularly when one considers that in lower vertebrates, fixed action patterns 

such as swimming, feeding and flight more completely specify the organisms entire behavioural 

repertoire than do similar activities in higher vertebrates" and go on to elaborate that to marine 

fish, being able to perceive and evade potential threats of injury is more important than being 

aware of injury once it occurs. 

 

It should be emphasised that the cartilaginous fishes, or elasmobranchs, are taxonomically 

distinct from the bony fishes (teleosts) that comprise most species sought by anglers. There have 

been no similar studies carried out on teleost fish. 
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3.4.2.2 Biochemical. Three substances known to be involved in nociceptive perception in 

mammals are also found in both bony and cartilaginous fishes.  

 

Substance P has been isolated from rainbow trout brain and intestine (Jensen et al., 1992, 1993a). 

The compound has also been detected indirectly via immunoreactivity with antibodies raised 

against the mammalian form, or specific receptors have been identified, in the brain of the 

electric fish (Apteronotus leptorhynchus; Dulka et al., 1995; Weld et al., 1994) in areas of the 

brain concerned with intraspecific electrocommunication (Weld and Maler, 1992) and in the 

brain of dogfish (Scyliorhinus canicula; Rodriguez et al., 1993) sea bass (Dicentrarchus labrax; 

Moons et al., 1992) and green molly (Poecilia latipinna; Batten et al., 1990), in neuromasts and 

electroreceptors of some teleosts (Zaccone et al., 1994), in cardiac nerves, lung and gut of the 

lungfish (Neoceratodus forsteri; Holmgren et al., 1994) and in the cardiac axons and nerves 

supplying the stomach of Atlantic cod (Jensen et al., 1993b; Davies et al., 1994). Distension of 

the stomach in rainbow trout results in the release of substance P-like material into the gastric 

vasculature (Jensen and Holmgren, 1992). Substance P has been demonstrated to have effects on 

the abundance of eosinophilic granule cells in rainbow trout intestine (Powell et al., 1993), on 

the electrical activity of ganglion cells in roach retina (Downing and Djamgoz, 1993) and on 

dorsal aortic pressure, heart rate and vascular resistance in the dogfish (Holmgren et al., 1992). 

From these results it is clear that substance P is found in many fish tissues and its physiological 

role may be varied. For example, substance P has been found in areas of the brain concerned 

with sexual behaviour and endocrine function in mammals and fish (Weld and Maler, 1992). 

Considerable weight was attached to the presence of substance P in fish in evidence presented to 

the Medway Inquiry into Shooting and Angling (Medway, 1980) in which it was asserted that "it 

is now possible to ascertain, with a higher degree of probability than hitherto, whether or not an 

animal possesses the capacity to feel pain". However, at the time the Medway Report was 

prepared, the extent of involvement of substance P in systems unrelated to pain perception was 

not apparent. There has been no work specifically demonstrating a role for substance P in 

nociceptive processes in fish and its presence alone does not attest to such a function.  

 

There has been less work carried out on the opioid peptides. Leu- and met-enkephalin have been 

identified in the brain of the dogfish (Vallarino et al., 1994) and enkephalin-like 
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immunoreactivity has been found in the central nervous system of rainbow trout (Vecino et al., 

1992) and in the visceral sensory area of various elasmobranchs (Stuesse et al., 1992). It is 

suggested that the distribution of enkephalins in specific hypothalamic nuclei, visual areas, and 

in the brainstem of rainbow trout indicate a role for these peptides in neuroendocrine modulation, 

and visual and somatosensory functions (Vecino et al., 1992).  

 

The opioid peptide β-endorphin is implicated in a wide range of actions in mammals, including 

pain modulation (analgesic effects), behaviour, and memory (Dalayeun et al., 1993). In fish, little 

is known of the role of β-endorphin except that its levels in the blood are altered by stress. In 

trout, β-endorphin levels have been shown to both increase (Sumpter et al., 1985), remain 

constant (Sumpter et al., 1985) or decline (Balm and Pottinger, 1995) following stress. The 

implications of these results have yet to be understood. 

 

3.4.2.3 Behavioural. It is generally accepted that the well-being of mammals can be assessed by 

examination of observed behaviour. Sanford (1992), in a review of methods for the detection and 

assessment of pain and distress in laboratory animals, identifies four particular responses that 

might be observed in an animal experiencing pain. These are (from the Association of Veterinary 

Teachers and Research Workers guidelines): 

1. Modification of behaviour 

2. A protective response 

3. A response designed to minimize pain 

4. A response designed to convey the experience to others. 
 

The author notes that the assessment of pain in an animal also requires that a range of 

contributory factors be taken into account. These include (from the Association of Veterinary Teachers 

and Research Workers guidelines): 

 

1. Details of the animal 

2. History of the animal and its environment 

3. Clinical examination 

4. Physiological measurements 

5. Biochemical measurements 
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6. "Mental" status 

7. Activity 

8. Posture, gait, facial expression 

9. Reaction to handling 

10. Vocalization 

11. Response to analgesics 

 

It is clear that the application of most of these criteria to fish is difficult or likely to be 

unenlightening. The author notes that "for the common domesticated animals and for primates, 

for example, there seem to be some well-recognised signs associated with pain, but for reptiles 

and fish, the association is much less certain. It is not clear whether these differences are solely 

attributable to our lack of knowledge of the behaviour of these lower vertebrates or whether pain 

sensations are quantitatively or even qualitatively different." (Sanford, 1992). As is implied by 

this statement, although much research is carried out into the behaviour of fishes (see Pitcher, 

1986) there has been no research explicitly designed to identify behavioural correlates of "pain" 

in fish, and little which has examined behaviours which might be considered related; for 

example, fear and avoidance (Colgan, 1986).  

 

There is a single study that has been quoted, and perhaps misrepresented, to justify the assertion 

that fish feel pain (Verheijen and Buwalda, 1988). As there are aspects of this study that are 

unsatisfactory, and because its conclusions have been given prominence in some quarters, it will 

be discussed in detail. It should be noted that this work was not published in a peer-reviewed  

journal, in contrast to the majority of work cited in this review. The study was designed to "find 

responses indicative of pain and fear, to differentiate responses indicative of pain from responses 

indicative of fear, and to investigate whether fish find pain or fear the more unpleasant 

experience" (Verheijen and Buwalda, 1988). In addition, the authors undertook "to estimate 

whether or not pain and/or fear make the fish suffer according to recent definitions of suffering 

(in mammals)....".  

 

The experiments were carried out using a number of cyprinid fish. Fish were caught by hook and 

line in aquaria and were treated as follows:  
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1. Hooking, followed by immediate relaxation of the line 

2. Electrical stimuli administered via an electrode implanted within the roof of the mouth 

3. Hooking followed by maintained line tension 

4. The introduction of alarm substance from damaged skin of conspecifics into the aquaria 

5. Confinement within a small jar 

 

The authors identify procedures 1 and 2 as causing "pain" and procedures 3, 4 and 5 as invoking 

"fear". However, these descriptions appear to have been decided arbitrarily. It is clear that, in the 

absence of other information, there are no physiological or behavioural grounds for classifying 

these procedures in this way.  

 

The authors describe the response of carp to being hooked as including "rapid darts", "spitting" 

and "head-shaking". They also noted that some carp on slack lines almost immediately resumed 

feeding, despite the continued presence of the hook. The fish held on taught lines after hooking 

are described as showing behaviour classed as "fleeing", "spitting of gas", "sinking" and "lying". 

The fish which were exposed to alarm substance, and which were confined in jars showed all 

these behaviours, except "spitting" and head-shaking". The authors suggest that most of these 

observed responses correspond to the natural alarm reaction of fish, but that "spitting" and "head-

shaking" constitute a response to possible "painful" stimuli. However, they also note that these 

two responses are observed in fish that inhale innocuous but unwanted material while ventilating, 

or feeding. They conclude "that spit and shake head do indicate low-level pain unless, of course, 

these responses are also reflexes.".  

 

The authors go on to describe the results of experiments in which local electrical stimulation was 

employed.  In this case, they observed responses that were similar to those noted following 

hooking and playing of carp. These responses they conclude, could be a response to intense pain, 

or the result of fear associated with the expected continuation of the strong (electrical) stimulus. 

The authors observe that the level of electrical stimulation required to evoke a pronounced 

behavioural response in fish, and that detected by a human subject as painful, is similar. The 

authors suggest that because the fish show a distinction in the response to weak or strong 

electrical stimulation, this is evidence for a non-reflex pain-based reaction. The validity of 

comparing the conscious perceptions of a human subject with the behavioural response of a fish 
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to stimuli in anatomically unrelated tissues might be questioned. 

 

The authors go on to suggest that the pain, if any, "produced by impalement on the hook 

contributes less to the unpleasantness of the catching procedure than fear". They conclude that 

the pain level is low and that the carp cannot be considered to be suffering.   

 

The main criticism that may be levelled at this study is that the authors have attributed qualities 

(pain, fear) to the procedures used, and to the response of the fish, on what amounts to 

anthropomorphic grounds. The response of the fish employed in their experiments to the stimuli 

applied can be described purely in terms of reflex behavioural actions with no necessity to 

invoke the terms "fear" and "pain". Even if the stimuli are processed at a higher level of 

consciousness, it is plausible to suppose that this could occur without the sensations and 

emotions associated with pain in mammals. Fear is a complex emotional state and although the 

terms "arousal" and "fright" are frequently employed in behavioural studies involving fish (e.g. 

Laming and Ebbesson, 1984) these are used to describe behaviour patterns, not to ascribe a "state 

of mind" to the fish. The results of this study do not prove the absence of pain perception in fish, 

neither do they prove the existence of such a system. 

 

In a subsequent publication (Verheijen and Flight, 1992) the authors summarised the results of 

their previous study as follows: 

 

1. The reactions of fish to impalement by the hook are not indicative of severe pain. 

2. The hooked fish in play shows the natural cyprinid-type alarm reaction, which includes 

disturbance of the hydrostatic equilibrium (buoyancy) as a result of the spitting of gas from the 

swim bladder. 

3. After being unhooked and returned to the water the fish terminates the alarm reaction by 

sinking, then calms down while lying on the bottom; this behaviour is in accordance with the 

schedule of the natural alarm reaction. 

4. Under favourable conditions the fish does not suffer; the moderate unpleasantness of being 

caught is the result of fear rather than pain. 

 

The authors also indicate that a similar study carried out on trout (in preparation) produced 
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similar conclusions.  

 

In summary, a number of points regarding pain perception in fish can be made: 

 

1. It is an advantage for the animal to be aware of damage to its body and to be able to avoid 

potentially damaging situations. A system that alerts the animal to damage has survival value. 

2. Several of the anatomical and biochemical components involved in pain perception in 

mammals are present in fish. However, some key elements (e.g. unmyelinated nerve fibres) are 

absent from certain species, other elements (e.g. the forebrain/cerebral cortex) are considerably 

less well developed in fish than in mammals. 

3. The neurophysiological mechanisms underlying pain perception in man and other mammals 

are complex and not fully understood. Many components of the nociceptive/pain perception 

system have other, unrelated, functions. Identification of such components in fish cannot be 

considered proof that fish experience "pain". 

4. It is the opinion of experts in the field that animals may possess mechanisms allowing them to 

avoid damage and facilitate recuperation without conscious perception of pain, in human terms. 

5. Our understanding of pain perception in fish is hampered by the lack of research on this 

subject, and by the difficulties inherent in interpreting the behavioural and physiological 

responses of an animal taxonomically far removed from mammals. 

6. There is no information available in the literature at present that provides firm evidence that 

fish perceive pain as mammals apparently do, or that they cannot perceive pain as mammals do. 

The problem of assessing what a fish perceives when exposed to stimuli considered to be noxious 

or unpleasant in human terms may prove to be intractable. 
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4. CONCLUSIONS 

 

Capture of fish by angling methods undoubtedly causes significant physiological disruption and 

may be accompanied by behavioural effects following release. Some mortality may be expected, 

associated with a small proportion of fish that are not hooked cleanly in the jaw. However, there 

is no evidence for chronic, long-term, adverse effects of capture and release. Fish appear to 

recover from the effects of capture within 24 - 72 h.  

 

There is no substantive evidence within the literature that suggests that fish experience pain as 

mammals appear to. However, the possibility that fish "suffer" as a result of angling practices 

cannot be categorically discounted. Because of difficulties in understanding the subjective 

perceptions of a taxonomically distant animal, irrespective of physiological similarities and 

dissimilarities, it is possibly a question that will never be satisfactorily answered in scientific 

terms. 

 

Much of the research assimilated for this review concerns salmonid fish, or species that are not 

native to the UK. There is a requirement for fundamental research on the impact of angling 

procedures on those cyprinid fish that comprise the quarry of the UK freshwater angler. 
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