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PREFACE 

Ling-zhi Chen, from the Institute of Botany, Academia Sinica, Peking, 
China, spent a year at Merlewood, under the sponsorship of the Chinese 
Government. The aim of her visit was to gain experience in research 
on productivity and nutrient cycling and in the statistical analysis 
and mathematical modelling. A research project on braken was designed 
to provide both practical and theoretical experience and the results 
of that one year study are presented here. However it should be 
emphasised that the main reason for selecting a site on Hampsfell near 
to Merlewood was one of convenience. The study has also been limited 
in replication simply because of the lack of time available and 
priority was given to providing experience in a wide range of techniques. 
Despite these limitations, and the lack of time to do further analysis, 
the study has provided results worthy of publication and Mrs. Chen is to 
be congratulated on the effort and enthusiasm which she has put into the 
work, and on the way she has overcome language difficulties in developing 
her technical understanding. 

0. W. Heal 
Senior Officer 
ITE Merlewood 



1. INTRODUCTION 

Bracken (Pteridiwn aquitinwn) is one of the most widely distributed ferns 

in the world. It appears in much of the temperate zone except desert or 

dry steppe. In Asia the bracken occurs in the temperate and subtropic 

forest zones. It is regarded as an agricultural pest in many countries 

of Europe, North America, Australia and New Zealand. 

The distribution of bracken in Britain is wide and its total area has been 

estimated at 2.76% of the land area. The area of bracken for England, 

Scotland and Wales were 0.3, 6.0, 5.8% of the land area respectively 

(Taylor 1978). The spread of bracken is remarkable. The area of bracken 

in Wales had almost doubled in about 30 years. In Scotland 200,000 ha 

of hill land are bracken infested (Williams 1980). In Cumbria, vegetation 

survey based on a land classification, has shown its main distribution in 

marginal uplands. In land class 4, which occurred at the lower altitudes, 

the coverage of bracken reached 19% with smaller amounts (11-122) in land 

classes 11 and 12 which occupied the middle and low fell respectively. There 

were 6-8% coverage of bracken in land classes 1, 6 and 10 (Bunce & Smith 

1978). The total area of bracken estimated from percentage of cover and 

total area of each class was about 5% of total area of Cumbria (Heal 

1976). 

In the past bracken supplied people with some products, fronds yielded 

potash for soap-making and bedding for stock. The young fronds were eaten 

by stock, but bracken reduces grass growth, making shepherding difficult. 

Bracken fronds can produce poisoning in cattle and horses, the trouble 

often appears suddenly, but it can cause serious losses through staggers 

in horses as a vitamin deficiency disease. In cattle the disease caused by 

bracken is much more common as an upset of the blood; sheep are seldom 

affected. Rhizomes seem to be less poisonous and pigs can consume them 



(Braid 1860). Bracken can also cause problems in afforestation by 

substantially reducing the growth of young trees. 

The spread of bracken and its relentless encroachment of grazing and 

arable land in the upland and highland areas of Britain has caused 

much concern. The ecology of bracken has been studied in detail 
I 

(Watt 1940-1976). Investigation of eradication of bracken has been 

carried out and methods of bracken control described. Use of machines * 
for cutting bracken is one of the approaches for eradicating bracken. 

The ideal for cutting is to weaken the plant to the maximum extent. 

Ploughing the land where the bracken grows is also effective, rhizomes being cr, 
thrown up by the plough, dried and killed. But mechanical means of 

control have only limited application where the greater part of infested 

land is unsuitable for the use of machinery. Another way of exterminating 

bracken is by trampling by stock. This destroys the young shoots when 

they are just unfolding or still below the surface but the weight of 

cattle could cause considerable damage in soft ground (Berry 1917; Braid * 
1947; Conway 1959; Conway & Stephens 1954; McCreath & Forrest 1958; 

Milne Home 1926; Smith & Fenton 1944; Stephens 1953). 

Bracken control by herbicides has been investigated since 1960. The 

herbicides now in use for bracken control fall into two groups: one of 

which is primarily folisge-absorbed eg asulam and glyphosphate. The 
a 

other is active through the soil eg chlorthiamid dicamba, dichlobenil 

and picloran. .Rowever soil applied with herbicides is unsuitable for 

use on agricultural land because of the persistence and effectiveness 
. 

of the herbicides against legumes. Available herbicides might be foliage- 

applied. Treatment with asulam must be carried out after full frond 

expansion but before the start of die back and maximum translocation to 

the rhizomes. It is generally agreed that bracken will recolonize in 

the absence of after treatments. The control of bracken presents difficulties 



when the cost of treatment is limited by economic considerations 

(Williams 1980). 

On the other hand, bracken, as one of the greatest potential energy 

crops is now under investigation. Annual production of bracken ranged 

from 2.4 to 60 t ha-' with total standing crops from 15 to 153 t ha-' 

(Callaghan et aZ. lgSO), As world energy requirements are increasing, 

studies on the non-nuclear energy and on renewable sources derived 

from plants are becoming very important. Intensive studies on the 

bracken ecosystem will improve our understanding of energy resource 

from plants. 

The aim of the present research was to determine net primary production, 

the main features of nutrient cycling and the rates of decomposition in 

the bracken grassland. The sites for intensive study were located on 

Hampsfell near Merlewood Research Station in Grange-over-Sands (1 and 2 on 

Map 1). 



2 SITE DESCRIPTION 

Hampsfell, situated at the south of the Lake District, is a limestone 

fell rising to a height of 238 m. The prominent scar of Hampsfell is 

chiefly an exposure of the Urswick limestone deposited in the lower 

carboniferous period. The limestones have usually been modified by 

weathering and erosion. The limestone surface consisted of grikes and clints. 

The grikes are the deep grooves which have been widened down vertical 

joint faces by weathering, clints are the resultant upstanding, flat to 

slightly round-topped blocks. Hampsfell has a relief character typical 

of carboniferous limestone with gently sloping terraces bounded by 

steeper but quite low scarp faces (Map 1). The limestone of Hampsfell 

is only thinly covered by soil at any point and there were many small 

and big exposures. The cover material is a brown, stony or silty loam 

which is seldom more than one metre thick except over deep infilled 

grikes (Ball, in prep.). 

The principal soil on Hampsfell is a brown earth. Subordinate rendzinas 

occur locally on limestone outcrops. The dominant brown earth is usually 

3-6 cm in depth with accumulations of bracken litter and a blackish 

brown humose surface horizon at depth 0-5 cm over a brown stony silty loam 

A horizon, passing into a yellow-brown to strong brown stony B horizon. 

Microrelief of the erosion surface of the limestone is one of the important 

factors contributing to the variability of the profile morphology in the 

brown earths on Hampsfell. The variable contribution of limestone to the 

soil stone content is partly a result of microrelief influence and the 

scarp-dip slope physiography of the limestone terraces, and apparently 

partly random. The nature and thickness of surface hrunic horizons are 

influenced by local variation in exposure and slope on the limestone 
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Map 1 The Study Area 



terraces, and by the quality and type of litter able to accumulate 

(Ball, in prep.). The rendzina profiles consist of a shallow blackish 

brown humose loam mixed with large amounts of rock fragments. The mean 

depth of such soil to bedrock is ZypiCally around 10-15cm, but sometimes 

can reach 25-30 cm. 

Hampsfell occupies a coastal position and its climate-is oceanic. It 

has a growing season of 7-8 months from early April to the end of October. 

0 
Annual mean screen temperatures are 9.5 C. In the midsummer (July and August) 

0 the mean monthly temperature reached 15.6.C. The mean temperature in 

0 
February declined to 3.6 C (temperature date sampled at Meathop, 3.2 gm 

from Hampsfell (White,in prep). Mean rainfall is very even throughout the 

year with a tendency for a minimum in February (7.5 cm) and a maximum in 

autumn (13.7 cm). The annual rainfall is about 120 cm. Normally no 

month has less than 5 cm rainfall with a consequent high humidity (data 

from Merlewood Research Station 1959-1979). The mean number of days 

when snow is lying is small, approximately 5.6 days at Merlewood, and 

the mean number of days with air frosts between May and October inclusive 

is zero. The windspeeds show maxima in March (3.6 m s-I) and November 

(4.1 m s-I). Annual mean windspeed is about 3.2 m s-I (White, in prep.). 

The vegetation type 26 of Cumbria is distributed widely in Hampsfell. The 

vegetation types 25 and 14 of Cumbria also occur'on Hampsfell. The 

vegetation is composed of Pteridiwn aquitinwn and grasses. The relatively 

pure bracken stands on deep soil had a coverage of 80-100% without 

other plants underneath the bracken. The sparse bra,:ken stands were 

mixed with a large amount of grasses and herbs. The major species of 

grass were Agrostis tenuis, Festuca ouina, SiegZingie denmrbens, SesZeria 

caerutea, Anthozmthwn odoraturn, Festuca rubra, Nardus s t r i c t a .  Herbs 

such as Galiwn s a m t i l e ,  Potentit la erecta, PifoZiwn repens, C v Z a  



rotundifozh were frequent. Certain areas were occupied by grasses 

without bracken. A few trees such as &uercus petraea, Emxinus excetsior, 

n e x  aquifotium, Taxus bacata, La& decidua, Acer psuedopZatanus and 

CorgZus aveztmta scattered on the rock. 



3 PRIMARY PRODUCTION 

a 
The net production by an individual plant is the amount of organic 

matter which synthesizes and accumulates in tissue per unit time. It 

is the profit remaining from the photosynthesis of the plant, or its 
4 

gross production minus its respiration. Some parts of the net production 

of the plant may be lost with the death and loss of tissues and in 

production measurement this loss must be taken into account. The sum 

of the net production by all individual plants in a unit area of the 

earth's surface is net primary production. 

3.1 Method 

There are several approaches to the measurement of primary production: 

1) Harvest techniques are based on successive harvesting of plants from 

sample plots and determining their increment. In grassland studies, 

measuring the biomass of the plant community at the beginning of a study 

period and again at the end, allowing the calculation of increment by 

subtraction, has been used to determine net primary aerial production. 

2) Net primary production can be measured by gaseous exchange techniques 

as well. Many methods of measuring net photosynthesis have been described, 

mainly based on carbon dioxide uptake including infra-red analysis 

of C02 content of air in plant communities or isolated plants or leaves 

3) Radioactive tracer techniques have increased greatly in recent years. 

c1402 has been used to study photosynthesis and the transport of carbo- 

hydrates within the plant (Milner & Hughes 1968; Whittaker & Marks 1975). 

Annual below ground production in herbaceous perennials is difficult to 

evaluate as compared with the determination of above ground production, 

mainly owing to the difficulty in separating the current year growth of 

root or rhizome from the growth of preceding years. Annual below ground 

production is usually estimated by determining the annual biomass increment 



of whole root systems. In the case of perennials, however, net increase 

in total root biomass during a one-year period may be very small since 

old rhizomes die as new rhizomes are formed. Instead of measuring 

annual change of total root biomass, the annual biomass increment of 

selected parts has been proposed to estimate annual root production in 

herbaceous perennials. This method is based on the separate determinations 

of 1) the biomass of a current year's mother rhizomes or tubers with 

attached roots and 2) that of daughter rhizomes or tubers with attached 

roots newly produced during the current growing season (Iwaki & Widorikawa 

1968). Sampling of root sytems should be made at least twice a year, 

first immediately before shooting in spring and secondly at the end of 

the growing season. 

In the present study harvesting techniques have been used with 10 quadrats, 

each 1 x 1 m2 in size. The sampling units were randomly located within 

the bracken grassland using standard statistical methods. Measurement 

of above ground biomass by harvesting has been done each month during 

the growing seasons. At each sampling the number and weight of bracken 

fronds per unit area was determined and a sub-sample of frond was selected. 

The basal diameter of petiole, height and weight of individual fronds 

were measured. The aim of these measurements was to determine relation- 

ships to be used for rapid estimation of biomass. 

Measurement of below ground biomass per unit area within soils with 

various depths, less than SO cm was carried out by harvesting in 

November 1979 and February, March, May, July and September 1980. The 

production of the below ground part of bracken was estimated by annual 

biomass increment of the whole root syatem. Above ground and below ground 

0 
parts of bracken were weighed respectively after being oven-dried at 80 C 

to constant weight. 



3.2 The growth of bracken 

Emergence of fronds was in April, temperature being one of limiting 

factors for bracken growth. Mortality of bracken is caused by spring 

frosts because of the susceptibility of young fronds. Severe winter 

frost may kill the shoots in the surface soil layer (Watt 1956). 

Bracken needs sufficient rainfall for its growth. It appears in the 

damp shady habitat but also in grassland and open hillsides where 

conditions are usually relatively dry. Thus it is a fern with the ability 

to withstand considerable degrees of water stress. The stomata1 

behaviour in bracken is different from some other ferns (Tinklin 1969), 

but it cannot grow in marshy or water-logged soil and it requires good 

soil drainage for active growth. Aeration deficiency may be one of the 

limiting factors for growth of bracken (Poel 1960, 1961). There was evidence 

that bracken disappeared in, and on the edge of,apool on Hampsfell. 

As an original woodland plant bracken seems to be adaptable to a range 

of light intensities. In woodlands it was most prevalent in those 

areas whereshadewas least, with light intensity more than 30% of full 

intensity in the open (Burke 1953). Bracken grows robustly when the 

forest cover is removed especially in grassland. It seems to grow 

more vigorously on acid brown earth, brown podzolic and sometimes on 

podzolic soils with pH 3-5.5, but occasionally it appeared on the less 

acid soil pH 7-7.8.  

On Hampsfell young shoots appeared above ground in the middle or the 

end of April and grew rapidly in the first two months (Fig. 3.1, Table 3.1). 

The maximum height of frond was reached in September, but by that time 

the weight of frond had dropped. The peak weight of fronds appeared in 

August. The diameters of petiole did not change significantly during 

the growing season. 



Table 3.1 The height, petiole diameter and dry weight of individual 
bracken fronds during the growing season 

Month Height of frond Diameter of petiole Weight of frond 11 

(cm 2 se) (ma 2 se) (g 2 se) 

May 40.57 - + 2.32 7.25 - + 0.36 2.73 - + 0.29 81 

June 79.69 2 3.01 7.29 - + 0.18 14.55 + 1.02 - 107 

July 102.33 - + 9.12 7.86 + 0.18 - 28.35 - + 1.49 95 

August 121.28 - + 4.5 8.20 + 0.22 - 29.91 - + 1.61 80 

September 127.98 - + 4.9 8.05 + 0.20 - 27.71 - + 1.33 88 

The growth of fronds was markedly affected by the depth of soil on Bampsfell 

(Fig. 3.2). The bracken was mixed with grasses on shallow soil (10-20 cm 

depth), the cover of grasses being up to 60-70s under the bracken. 

Thus competition between bracken and grasses may occur. In the shallow 

soils the growth rates of fronds were only 0.75 cm d-I in height and 

0.12 g d-I in weight. Those rates were lower than on aoils deeper than 

20 cm (1.66 cm d-l in height and 0.52 g d-' in weight). Growth rates 

declined during the season, although in the shallow soils the weight 

increment was greatest during June-July (Table 3.2). 

Table 3.2 The growth rate in height and weight of bracken fronds 

Date Soil Height (cm d-l) Weight (g d-l) 

20 May - 18 June Deep 
Shallow 

19 June - 29 July Deep 
Shallow 

30 July - 27 August Deep 
Shallow 

28 August - 30 Sept. Deep 
Shallow 





3.3 The above ground biomass of bracken 

The above ground biomass was harvested each month during the growing 

season and varied from month to month. The bracken aerial biomass 

per unit area was calculated from the weight of individual fronds and 

number of fronds per unit area. The average number of fronds per m 2 

was 28-38 and had no marked seasonal change. The height per frond made 

a great contribution to the variation in biomass of bracken as did the 

depth of soil (Table 3.3). The linear regression analysis showed that 

the aerial biomass was significantly related to depth of soil and height 

2 
of fronds, but not to number of fronds per m . Using two factors eg 

depth of soil and height of fronds the multiple correlation coefficient 

was high (Table 3.4). Combining three factors including number of 

fronds per m2, the multiple correlation coefficient was slightly higher 

than that based on two factors. It means the-soil depth and height of 

fronds were most important factors and height of fronds explains most 

of the variation because it reflects the importance of soil depth. The 

multiple regression equation varied from month to month. 

Table 3.3 Linear regression between bracken aerial biomass m-2 (y) 
and depth of roil cm (xl); number of frond. per mf (~2); 
Height of fronds cm (xg) 

Linear regression r n 



The peak biomass of bracken on Hampsfell averaged 794.20 m-2 in August 

and then declined (Fig. 3.3). The above ground biomass on deep soil 

might be 1-2.5 times higher than that on shallow soil. The maximum 

yield of bracken on deep soil reached 940 g m-2, but only 430 g m-2 on 

shallow soil (Fig. 3.4). 

Table 3.4 Multiple regression of bracken aerial biomass g (y) 
against soil depth cm (xl), number of fronds per m2 (x2), 
and height of fronds cm (xg) during the growing reason 

Date Regression equation R n 
- -- - - -  - 

Total y = -1.39~1 + 7.36~3 - 136.34 0.918** 56 

Total y = -1.33~~ + 4.95~2 + 7.43~3 - 306.18 0.938** 56 

May y 0 . 1 2 ~ ~  + 1.12~2 + 2 . 1 6 ~ ~  -65.36 0.901** 15 

June y = 0.57~1 + 5.89~2 + 6.57~3 - 389.84 O.936** 11 

July y = 0.36~1 + 5.14~2 + 8.46~3 - 390.49 O.967** 10 

August y = 4.17~1 + 18.13~2 + 7.22~3 - 792.69 0.954** 10 

September y = 1.35~1 + 4.12~2 + 5 . 9 9 ~ ~  -286.09 0.982** 10 

** P = co.01 

The results for Hampafell are similar to those published for other areas 

in Britain. Thus Callaghan et at. (in press) demonstrated that maximum yield 

of bracken above ground part at Chisworth in the Pennines and Lowick in 

the Lake District varied between 8.7 t ha-l and 8.9 t ha-l and senescent 

fronds yielded between 4.6 and 8.0 t ha-'. The mature yield in Scotland 

varied from 2.43 to 31.6 t ha-' at midsumer (Braid l96O), and in the 

Breckland in August the range observed by Watt (1964) was 4 - 1243 g m-2. 
The mean bracken above ground production in UK has been estimated at 

9.82 t ha-' yr-l (Callaghan et at. 1980). 

3.4 The below ground biomass of bracken 

The seasonal variation of bracken below ground biomass was not marked, but 

the results indicated decrease from November to February and an increase 





during the growing season (Fig. 3.5). Below ground biomass in September 

was significantly higher than that in November 1979 and May 1980 

(F ratio = 6.067, P < 0.05 and F ratio = 6.699 P < 0.05) (Table 3.5). 

During September the aerial biomass of bracken decreased suggesting 

translocation of material from aerial to below ground parts of the plant. 

Table 3.5 Analysis of variance of below ground biomass during the 
growing season 

Date Source of variation Sum of squares Degrees of Mean squares F ratio 
Freedom 

May l9SO 
Lot means 408935 1 408933 

July Individual 18275600 23 794091 0.515 

Lot means 9391010 1 9391010 
May Sept. ''so Individual 32289500 23 1403890 6.689* 

Lot means 4900500 1 4900500 
lg80 Individual Sept . 23361900 18 1297880 3.776 

Nov. 1979 Lot means 8570020 1 8570020 
Sept ,1980 Individual 25427800 18 1412650 6.066* 

* P = C0.05 

Results in the present study showed the problems of interpretating of 

biomass data when a number of processes of growth, translocation and death 

can occur simultaneously, but other techniques can be used to isolate 

particular processes. For example, Whittle (19648 8 b) used radioactive 

labelled carbon andshowedthat carbohydrates were imported from the 

rhizomes and from the lower pairs of pinnae as each pair of pinnae was 

unfolded. Import would last for a period time before export to the 

apical parts of frond began. Gradually only export took place both 

up the rachis to apical part of frond and down it to the rest of bracken. 

The velocity up the rachis was much less than the velocity down it. 

When the whole frond was unfolded, the export continued in the rachis 

only towards the rhizomes. Later spreading of labelled carbon was 

remarkably limited (Hamilton & Canny 1960). The diffusion constant in 
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bracken as in other plants, was dependent on temperature. The temperature 

optimum for the rate of mass transfer was between 25'~ and 30°c. The 

translocation system would be capable of its maximum rate of mass 

transfer during the middle of sunny days when the temperature was high 

and the level of carbohydrate in a pinnae was also at a maximum (Whittle 

1964a & b) . 

Returning to the present study, the below ground biomass was closely 

related to the soil depth and to above ground biomass. The major part 

of bracken roots and rhizomes was distributed in the soil surface layer 

of 0-15 cm and soil depth markedly affected the below ground biomass 

(Fig. 3.5). Multiple regression showed that below ground biomass was 

significantly correlated with soil depth, number of fronds per m2, 

height of fronds and above ground biomass (Table 3.6). This type of 

model may be useful in predicting below ground biomass through measurements 

of above ground parts. 

Table 3.6 Regression of below ground biomass of bracken in g m-2 (y) 
against soil depth cm (XI), number of fronds m-2 (x2), height 
of fronds cm (xg) above ground biomass in g (x,) 

Date Regression equation R n 

July y = 19.88~1 + 16.38~2 + 29.39~3 - 1.89~4 - 1108.98 0.899** 10 

September y = 1 1 . 1 7 ~ ~  + 3.50~2 + 10.95~3 + 2.49~4 - 515.83 O.989** 10 

Total Y = 25.11~1 + 16.77~2 + 35.74~3 - 3.17~4 - 863.19 0.849** 35 

Total Y = 2 6 . 7 7 ~ ~  + 28.63~3 - 2 . 1 7 ~ ~  - 211.61 0.822** 35 

** P = co.01 

The below ground biomass on Rampsfell varied from a minimum on shallow soil 

of about 250 g m-2 to a maximum on deep soil of 3825 g m-2. This compares 

with the dry weight of rhizomes in August averaged 1443 g-2 in a podsol 

and 1064 g m-2 from a brown earth in Breckland (Watt 1964). Braid (1960) 



mentioned underground parts of bracken weighed from 12.15 - 121.5 t ha-l. 

3.5 The annual primary production 

The net primary production of bracken grassland was estimated from above- 

ground and below ground biomass of bracken. The peek of bracken aerial 

biomass appeared in August but part of the matter was translocated to 

below ground part in autumn. The below ground biomass changed from February (tl) 

to September (t2). The annual production of below ground part was 

calculated by annual biomass increment (B2 - B1). The bracken losses 

by death and consumer organisms can be ignored in bracken stands. 80 

net primary production can be calculated as NPP = annual increment of 

below ground biomass during tl - t2 + Peak of above ground biomass - 
weight loss of above ground biomass in autumn. 

The annual net primary production of bracken grassland on Hampsfell 

averaged 2009 g m-' y-l with maximum yield of 2667 g m-2 f 1  on deep 

soil and minimum yield of 1023 g m-' y-l on shallow soil. The net primary 

production of bracken stand in UI( averaged 14 t ha-l y-l (Callaghan et d., 

1980). 



4 DECOMPOSITION 

The function of all ecosystems occurs within three major subsystems 

ie. plant subsystem; herbivore subsystem (including,carnivore and 

~ various groups of heterophes); and the decomposition subsystem. The 

integrity of the ecosystem is maintained by the transfers of matter 

and energy between these three compartments. The plant subsystem is 

* the basic producer of the system. Plants take up essential nutrients 

in ionic form from the soil and they return the nutrients to the soil 

as litter with compounds of high molecular weight. But the plant roots 

only can absorb the nutrients in "availabl6" form of low molecular 

weight. Decomposition processes (catabolism) are therefore essential 

to the cycling of elements within an ecosystem. The litters are broken 

down by the decomposer community which mainly consists of fungi, bacteria 

and invertebrate animals. Thus decomposer organisms play a major part in 

nutrient replenishment of soil which is accomplished by the mineralisation 

of nutrient elements and by the formation of recalcitrant soil organic 

matter (Swift, Heal & Anderson 1979). 

A variety of factors affect the decomposition processes: the chemical 

and physical quality of the plant debris and the environmental conditions 

into which the debris is deposited, especially temperature, moisture 

and the physical and chemical nature of soil. 

An investigation of the decomposition of bracken petioles on six soil 

types of woodland was carried out by Frankland (1966). The results 

showed that decomposition of bracken petioles was a slow process. The 

weight loss of petioles in the first three years varied from 28.4-72.2s. 

Information on the decomposition of bracken pinnulee has not been reported. 

The results of studies on the surface mycoflora of green bracken fronds 

were given by Godfrey (1974), conidia, microsclerotia and fungal hyphae 

were present on the frond surface. 



The aim of the present studies was to determine the decomposition 

rate of bracken petioles and pinnules in the grassland and to determine 

the effect of different environmental factors (soil depth, microclimate) 

by measuring the rate of decomposition in different microhabitats. 

4.1 Method 

Studies on decomposition of bracken petioles and pinnules on Bampsfell 

were carried out from November 1979 to September 1980. Bracken which 

was recently dead was collected from a pure bracken stand on Hampsfell 

on 8th November 1979, air-dried, made up as weighed samples before 

replacing in the field. The petioles and pinnae of bracken were treated 

separately. The petioles were cut off 10 cm above soil level. Three 

segments, each 10 cm in length (approx. 1 g) were then cut from the 

base of each petiole. The diameters of petioles were 5-9 mm. After 

0 
oven-drying at 40 C to constant weight the segments were mixed thoroughly, 

weighed and attached by nylon thread, 15 cm in length, to a numbered 

plastic label. 

The pinnae were separated into small pinnules with a rachis (< 1 mm). If 

the rachis was greater than 2 mm diameter it was discarded. The pinnules 

were mixed thoroughly, enclosed in fine mesh (1 mm) terylene bags and 

oven-dried at 40'~ to constant weight. The siee of mesh bags was 9 x 9 cm2. 

The bags and pinnulea were weighed respectively. The pinnules in each bag @ 

were about 1.4 g. Each bag was attached by a 20 cm piece of nylon line 

to a numbered plastic label. 

On 4 December 1979 the petioles aud pinnules enclosed in the bag were 

placed on the litter layer of each site along a 10 metre transect with 

20 cm between each sample. Four sites were used for,studies of decomposition, 
a 

three situated in the grassland on Hampsfell with various microhabitats 

eg. shallow soil with limestone outcrops, medium depth of soil on the 



gentle slope and deep soil in the depression. The depths of soil 

in these three sites were 6.7 cm., 21.9 cm and 36.3cm. The fourth site, 

Eggerslack Woods, was located on the lower limestone slope. These 

woods were mainly of coppice origin. The average height of the trees 

is about 8 metres. Quercus petraea, Acer pseudoplatanus, BetuZa pendula, 

F r d n u s  excetsior were present with Quercus petraea dominant and 

CoryZus avet~mur forming an understorey. The ground flora was mainly 

composed of MerncriaZis perennis. Bracken litters were placed where 

the canopy was more open and major species in the ground flora were 

Pteridiwn aquitinwn and Dryopteris filix-mas. The shallow soil with 

limestone outcrops was a kind of rendzina. The soil group in other 

three sites was brown earth. 

Samples were retrieved from the field after 20 and 40 weeks. The 

obvious extraneous material was removed from the samples, which were 

then weighed, oven-dried and re-weighed to provide an estimate of 

moisture content of litters. The weight loss of litters was obtained 

by comparison with the original weight of litters and the results were 

expressed as % weight loss. 

Respiration is a measure of the loss of carbon dioxide by catabolic 

processes in the litter and was used to estimate the proportion of 

weight loss resultingfrom microbial respiration. Oxygen uptake by 

litters retrieved from the field sites was measured at 10'~ and field 

moisture in Gilson respirometers. 

4.2 Weight loss of bracken litters 

The total weight loss was used as the measurement of decomposition which 

comprised losses due to catabolism, leaching and removal or export 

following communition. The results showed that weight loss of bracken 

petioles and pinnules was about 20-225 after 40 weeks in field (Table 4.1). 



Moisture content of the litter at the time of sampling provided some 

explanation of the variation in weight loss (Table 4.2). In the first 

four months (0-20 weeks) the loss rate Of bracken petioles was higher 

than that of pinnules. There was Significant difference in the rates 

of decomposition between petioles and pinnules (F ratio = 10.7, 

P < 0.05). During 20 to 40 weeks the loss rate from bracken petioles 

decreased but the loss rate of pinnules remained nearly constant 

from 0-40 weeks. There was no significant difference in the rate of 

decomposition between two parts of bracken after 40 weeks in field, 

although the decomposition rate of petioles was slightly higher. The 

decomposition rate of petioles on Hampsfell was greater than that in 

Roudsea Wood a few kilometers away (Frankland 19661, the average annual 

weight loss in petioles was 9.5 - 24.1% in various sites of Roudsea 

Wood, the annual weight loss in the first three years followed the same 

course. 

Table 4.1 A summarq oglthe meBn (2 se) weight loss (%), respiration 
(pt02 g h at 10 C) and moisture content <% dw) of 
bracken litters 

Weeks in Weight loss Weight loss rate Respiration Moisture content 
field % % d-l p202 g-t h-I % dw 

at 10 C 

Petioles 

20 14.4 + 1.60 0.103 7.05 + 0.40 272 + 17.7 
40 22.0 5 - 1.55 0.079 21.38 z 4.04 522 - + 26.5 

Pinnules 

20 9.9 + 0.48 0.071 13.11 + 2.87 316 + 21.2 
40 20.9 5 - 1.27 0.078 25.21 2 4.99 556 + 36.0 



Table 4.2 Analysis of correlation between X weight loss (y) and 
% dw moisture content (x) 

Weeks in Parts of 
field 

Regression equation 
bracken 

20 petioles y = 13.38 + 0.0036~ 0.102 38 

40 petioles y = 11.18 + 0.021~ 0.437** 35 

20 pimules y = 8.77 + 0.0036~ 0.252 39 

40 pinnules y = 12.87 + 0.014~ 0.408** 39 

The bracken litter showed a consistent weight loss over a number of weeks. 

The exponential regression of loge weight remaining of bracken litter 

-1 -1 
against time (t in year) indicated an annual decay rate of 0.321 g g yr 

-1 -1 
for bracken petioles, 0.317 g g yr for pinnules (Table 4.3). 

Decay rate was derived as the regression coefficient of an exponential 

regression. Jones (1978) reported that the decay rates of Cazzuna shoots 

and Eriophonun leaves in blanket bog at Moor House were 0.1087 and 0.1854 

-1 -1 
g g yr for five years respectively. 

Table 4.3 Decay rate derived from Log weight remaining of bracken 
litter against t in year e 

Part of bracken -1 -1 
Decay rate (g g yr ) Loge regression equation 

petioles 

pinnules 



The decay rate of litter in a long period showed a lower rate than 

bracken litter on Hampsfell. But decomposition rate of Rubus and 

h*iophorwn leaves in the first year on blanket bog was similar to 

bracken (Heal, Latter Q Howson 1978). It is probable that the rate of 

decomposition decreases with time as the easily decomposed components 

are rapidly lost, leaving more resistant fractions with slow decay rates. 

The similarity of the early decay rates of bracken on Hampsfell and 

Rubus and E r i o p h o m  at Moor House probably results from compensating 

effects of different factors; the soil and climate on Hampsfell will 

give faster rates than on the bog at Moor House, but the Rubue and 

E r w p h o m  probably have a higher intrinsic rate of decomposition 

because of their low lignin and high nutrient content relative to bracken. 

There are a certain number of fungi appeared in the phloem and surface 

of petioles especially in the wet habitat on Hampsfell. A small amount 

of fungi appeared on the surface of pinnulea. As Frankland (1976) reported, 

a different group of Fungi Imperfect1 predominated after the first 

three months in petioles. By the end of the first year the phloem was 

no longer recognisable. Basidiomycetes were attacking the lignified 

cell walls and became dominant in the second year. 

4.3 The respiration of bracken litters 

The measure of respiration of litters provided the data of oxygen uptake 

or carbon dioxide output from the microflora and fauna in catabolic 

processes. The contribution of microbial respiration to weight loss was 

estimated from the measured oxygen uptake over the sampling period at 

field moisture levels. 



The respiration rates of litters were significantly related to moisture 

contents of litters (Table 4.4, Figs. 4.1, 4.2). When the moisture contents 

of litters were less than 150-2008, the respiration rate was barely 

detectable, indicating that microbial activity was inhibited by moisture 

levels below about 150%. 

Table 4.4 Analysis of refjationship between respiration rate in 
p?02 g-l at 10 C (y) and qb dw moisture content (x) 

Weeks in Parts of 
field 

Regression equation 
bracken 

20 petioles y = 0.090~ - 18.49 0.906*** 19 

40 petioles y = 0.070~ - 14.75 0.687** 17 

20 pinnules y = 0.075~ - 11.67 0.944*** 20 

40 pinnules y = 0.078~ - 18.82 0.792*** 20 

20, 40 petioles y = 0.068~ - 12.00 0. 801*** 36 

20, 40 pimules y = 0.070~ - 12.16 0.838*** 40 

The relationships between respiration rate and weight loss of litters was 

significant after 40 weeks in field (Table 4.5) and the respiration rate 

increased between 20 and 40 weeks (Table 4.1). The latter result 

contrasted with Heal et aZ.(1978), who showed that respiration declined 

with time during the early years of decomposition of some litters. However 

there was no significant decline of respiration in the slow decomposing 

litters on blanket bog at Moor House in the first year. Some of the 

variation can be explained by differences in moisture content between litter 

samples and in chemical composition of various litters. 





Table 4.5 Analysis of corre1a;ion between respiration rate 
~ 1 0 2  g-I h-I at 10 C) (y) and % weight loss (x) 

Weeks in Parts of 
field 

Regression equation 
bracken 

20 petioles y = 0.64~ - 2.39 
40 petioles y = 1.54~ - 10.12 
20 pinnules y = 1.26~ - 0.046 
40 pinnules y = 1.46~ - 6.17 

When weight loss and moisture content were combined the correlation 

with respiration rate was very high and explained 50-9W of deviation 

(Table 4.6). Regression surfaces showed the relationships between these 

three factors (Fig~~4.3, 4.4). 

Table 4.6 ~egresiion of respiration rate (~102 g-1 h-1 at 10'~) 
against % weight loss (xl) and % dw moisture content (x2) 

Weeks in Parts of 
field bracken Regression equation 

20 petioles y = 0 . 4 5 ~ ~  + 0 . 0 9 7 ~ ~  - 24.81 0.918*** 19 

40 petioles y = 0.60~1 + 0.056~2 - 19.52 0.707** 17 

20 pinnules y =-0.16~~ + 0.076~2 - 10.18 0.944*** 20 

40 pinnules y = 0.89~1 + 0 . 0 6 1 ~ ~  - 28.40 0.872*** 20 

The relationship of respiration to temperature was not examined 

experimentally. However various studies on respiration of decomposing 

litters (eg Howard k Howard 1979; Bunnell et aZ. 1977; Flanagan & Veum 

1974) have shown the positive relationships between respiration and 





temperature. As an indication of the probable effect of temperature 

and moisture on respiration of bracken litters, response to temperature 

0 
was assumed to have a Q 1 0  of 2.0 ie respiration doubles with every 10 C 

rise in temperature. Figs. 4.5, 4.6 indicate the likely relationship 

between respiration rates of bracken litters, temperature and moisture 

content of litters. 

As a first approximate estimate of the annual C loss in microbial 

respiration, the weight loss was calculated from the measured oxygen 

uptake at 10'~ over the sampling period and corrected for field temperature 

assuming a Q10 of 2.0, and using monthly mean air temperatures. 

Moisture content of litter appeared unusually low in April and May 1980 

in field samples (Table 4.1, 20 weeks) corresponding with very low 

rainfall in that period. Total annual O2 consumption predicted from 

respiration was 0.2035 1 O2 g-l for petioles and 0.2358 1 O2 g-l for 

pinnules. The corresponding weight loss of petioles predicted from 

respiration in one.year was 21.0%. Due to high moisture content and 

respiration rate, a weight loss of 24.4% was predicted in pinnules 

(Table 4.7). The results indicated that 73-889 of the observed weight 

loss could be attributed to microbial respiration. The data obtained 

in Moor House indicated the similar result, the weight loss of four 

litters predicted from respiration was 74-136% of the observed weight 

loss using a Q10 of 2.0 (Heal, Latter & Howson 1978). 

Table 4.7 Weight loss of litters predicted from respiration rate 
compared with observed weight loss in a year 

Litter Weight loss % predicated Observed* 
from respiration weight loss % 

petioles 

pinnules 

* data were extrapolated from 40 weeks to 52 weeks 





4.4 The change of chemical composition during decomposition 

The bracken litters were collected in November 1979. The initial 

chemical constituents in bracken pinnules and petioles showed some 

differences, the pinnules were rich in nitrogen, soluble tannin, crude 

fat and, eurpriaingly, lignin aa compared with petiolea while the 

petiole litters contained relatively high concentrations of readily 

soluble potassium and holocellulose. (Table 4.8) 

Of the initial concentration, losses from petioles in the first four 

months of decomposition were potassium 97%, soluble tannin 779, ash 639, 

soluble carbohydrate 39% and holocellulose 5% (Table 4.8). During 

that time 20-909 of initial amount8 of above mentioned five major 

components were lost from petioles and the total loss reached 24.2 g 

per 100 g of initial petiole litters, the most important contiibution 

being loss of holocellulose. In the meantime the amount of lignin in 

petiole litters increased 7.S g per 100 g of initial litter. This 

increase is probably an artefact of the analysis, but the net amount 

lost by estimation of chemical composition in petioles was 16.7% (Table 4.9). 

The losses of the initial concentration from pinnules were soluble 

tannin 60%, potassium SO%, soluble carbohydrate 32% and holocellulose 23% 

in the first four months of decomposition. 3045% of the initial amount of 

these four components was lost from pinnule litters, their total contribution 

to loss (including ash loss) was 21.8 g per 100 g initial litters 

(Table 4.10). The holocellulose, soluble tannin and carbohydrate made 

large contributions to weight loss of pinnules. In the meanwhile the 

amount of lignin and nitrogen increased by 12.1 g 100 g initial litters. Thus 

the net amount lost, based on changes in the chemical composition 

in pinnules, was 9.7%. 





Table 4.9 The change of chemical composition amounts in petiole litter. 

Time Weight Weight Concen- Amount (g) Amount Amo-mt (loss (-) 
(veeLs) loss remaining tration remaining remaining as or gain (+:) (g) 

(%) (%I (%) per lOOg of % of initial per lOOg of 
initial amount initial litter 
litter 

Holocellulose 

Soluble carbohydrate 

Soluble tannin 

Ash 

Potassium 

Nitrogen 

Phosphorus 

Lignin (estimated by difference) 

Net loss from chemical composition 



Table 4.10 The change of chemical composition amounts in pinnule litter 

Time Weight Weight Concen- Amount (g) Amount Amount (loss (-) 
(weeks) loss remaining tration remaining remaining aa or gain (+)) (g) 

($1 (%I ($1 per lOOg of % of initial per lOOg of 
Initial amount initial litter 
litter 

Holocelluloae 

Soluble carbohydrate 

Soluble tannin 

Ash 

Potassium 

Nitrogen 

Phosphorus 

Lignin (estimated by difference) 

Net loss from chemical composition 



In the subsequent four months the rate of chemical changes in both 

petioles and pinnules slowed down. The concentration of lignin, 

nitrogen, phosphorus and calcium had increased and organic constituents 

except lignin, sodium, magnesium decreased. The increased concentration 

of nitrogen and phosphorus probably results from loss of carbon from 

litter during decomposition but some fixation of gaseous nitrogen 

could occur. The net total loss, from chemical components, was estimated 

to be 23.7% for petioles and 21.3% for pinnules, as compared with 22% 

of weight loss in petioles and 2 0 . s  of weight loss in pinnules. The 

close similarity between results from chemical change and weight loss 

is partly forced by the lignin concentration being estimated by difference 

rather than by direct analysis ie lignin is taken as the difference 

between the sum of all measured components and the actual weight. 

However the results indicate that decomposition of holocellulose is 

the main process contributing to weight loss. 

4.5 The microhabitat variation within sites 

The litter microenvironments vary from place to place on Hsmpsfell and 

the production of bracken was modified by the depth of soil and by human 

management. gimilarly the bracken litters also showed a variation 

in rate of decomposition in the various microhabitats (Table 4.11). 

The decomposition rate of litters on shallow soil with limestone outcrops 

was slower than on the deeper soils at other places. The bracken 

growth on the limestone outcrops was sparse and mixed with a great 

number of low grass, where bracken is barvested in autumn. The litters 

were thus exposed to increasedradiationand wind. The moisture content 

of the litter, used as an index of the relative wetness of the micro- 

habitats, was significantly lower on the outcrops thin at other sites. 



The relationship of weight loss and respiration to moisture (Table 4.2, 

Figs. 4.1, 4.2) indicate that the difference in moisture content of 

litters on shallow and deep soils could account for the observed difference 

in weight loss. On the other two sites in grassland dense bracken 

covered the ground, large amounts of litter were accumulated on the soil 

surface and the moisture contents of litters were high. The weight loss 

rates of bracken litters on the medium and deep soils were similar to 

each other (Table 4.12). Analysis of variance of weight loss in petioles 

in the three grassland sites gave an F ratio = 8.3145. P < 0.05, between 

shallow soil and medium depth of soil and F ratio = 10.930, P < 0.01 between 

shallow soil and deep soil. Thedecompositionrate of petioles in the 

woodland was similar to that in the sites with medium and deep soils in 

grassland. There was a significant difference in the weight loss of bracken 

petioles between the sites of shallow soil in grassland and deep soil in 

woodland (F ratio = 17.480, P < 0.01). An unexpected and unexplained 

result is that the decomposition of pinnules in woodland was similar to 

that on the grassland site with shallow soil, although the moisture 

content was much higher in the woodland. 

4.6 Accumulation of litter 

An independent estimate of the rate of disappearance of litters (I$,) can 

be obtained from the total annual input of litters (L) and the total amount 

of litters accumulated on the soil surface (XL). Considering the detritus 

entering the decomposition subsystem in the nearly pure stand of bracken 

on Hampsfell, the annual input of bracken litter was about 720 g m-'. The 

total amount of bracken litter accumulated on soil surface reached 2600-3500 g m-2 

with some variation from place to place and from time to time (Perkins et at. 

1978). The appropriate ratio was KL = L/XL, KL = 0.26. The time taken for 

95% of litter standing crop to decompose is 3/KL and is estimated at 10-13 years 

(Table 4.13). The decay constant KL = 0.26 described the decomposition of 



Table 4.11 Weight loss of bracken litter in different grassland and 
woodland microhabitats 

Depth of Weeks in Parts of Moisture 
Location Weight loss content n 

soil (cm) f ield bracken 
(%) (% dw) 

Shallow soil 6.7 + 1.58 20 petioles 11.61 + 1.11 171.77 + 4.64 9 - 
with limestone ,, 20 pinnules 9.3 5 0.8 142.62 5 11.31 9 
outcrop in 11 40 petioles 14.84 5 1.28 280.41 T 27.96 8 
grassland ,, 40 pinnules 18.44 5 0.55 254.29 5 38.88 10 - - 

Medium soil 22.5 + 1.99 20 petioles 14.24 + 1.40 330.9 + 26.76 9 - 
on gentle 1, 20 pinnules 9.5 5 2.1 369.96 ; 40.22 10 
slope in ,, 40 petioles 25.8353.33 520.06535.22 8 
grassland 11 40 pinnules 23.71 7 3.57 581.42 7 53.10 10 - - 

Deep soil 36.3 + 5.79 20 petioles 13.65 + 0.82 335.39 + 37.85 10 - 
in depression I I  20 pinnules 9.4 TO.9 390.98529.1010 
of grassland a, 40 petioles 21.89 5 1.48 623.12 5 19.65 10 

I, 40 pinnules 23.88 5 - 2.55 702.42 5 - 47.12 10 

Deep soil 48.0 + 7.96 20 petioles 17.67 + 0.74 246.1 + 28.48 10 - 
in s t  20 pinnules 11.32 5 2.3 343.5 5 24.84 10 
woodland ,, 40 petioles 25.23 T 1.89 626.93 ; 16.97 9 

,, 40 pinnules 17.08 7 - 1.33 698.59 5 - 8.34 9 



Table 4.12 The rate of weight loss of bracken litter in different 
grassland and woodland microhabitats 

Location Time Loss rate of Loss rate of • 
petioles $ d-l pinnules g d-I  

Shallow soil December-April 0.083 0.066 
with limestone April-September 0.023 0.065 
outcrop in Overall 0.053 0.066 
grassland 

Medium soil December-April 0.102 
on gentle April-September 0.068 
slope in Overall 0.092 
grassland 

Deep soil December-April 0.098 
in depression April-September 0.067 
in grassland Overall 0.078 

Deep soil December-April 0.126 
in April-September 0.054 
woodland Overall 0.090 



only the above ground components of the total organic matter in the 

system and is related only to the earlier stages of decomposition. 

However, the present decay constant can be regarded as an indication of 

broad magnitude of organic turnover in a relatively pure stand of bracken. 

Swift et aZ. (1979) summarized the constant fraction loss rate KL in 

six ecosystems types. The KL value of bracken on Hampafell is similar to 

that in boreal forest (0.21) but is lower than KL in temperate deciduous 

forest (0.77) and grassland (1.5) although the input of litter is similar. 

The rate of disappearanceof bracken litter therefore appreais to be a 

slower process than decomposition of grasses in grassland. 

4.7 Rates of decomposition Of bracken litter 

Three independent approaches have been used to estimate the decomposition 

rate of bracken litter. Despite differences in techniques, these estimates 

are all of the same order of magnitude. 1) The weight loss of litter components 

was 20-224. after 40 weeks in field from which was derived the annual decay 

rate of 0.317 - 0.321 g g-l yr-l using an exponential regression of log e 

weight remaining of litter against time. 2) The predicted value of total 

annual 02 consumption by respiration in litter components showed that 

21.04 - 24.38% weight loss were resulted from microbial respiration. 
3) The constant fraction loss rate of total surface bracken litter, 

estimated from input and accumulated standing crop, was 0;26. 

Table 4.13 Production and decomposition in a nearly pure stand of 
bracken on Hampsfell. 

Net aerial primary production (g m-') 940 + 87.9 - 
~itter input (g m-2 yr-') 719 + 55.2 - 
Litter standing crops (g m-2) April 3265 + 310.4 

July 2625 5 184.4 
September 2610 - T 412.3 

Constant fraction loss rate (KL) 

95% turnover time (3/KL years) 



5 NUTRIENT CYCLING IN BRACKEN GRASSLAND 

In the moist mild climate of Hampafell temperature and rainfall provide 

essential growth conditions for bracken, while the nutrient availability 

in soil strongly affects the productivity of .bracken. The nutrient 

cycle within an ecosystem consists of the uptake of nutrients in 

inorganic form by plants from the soil and atmosphere. Through photosynthesis 

these inorganic elements are incorporated into more complex organic 

compounds within the plants; some nutrients are retained as current production, 

but a proportion is returned to the soil by the leaching of rainfall, or 

as litter fall and through the later death of plants. After re-mineralizing, 

the nutrients in dead organic material are again available for uptake by 

the vegetation. Additionally there are subsidiary cycles via secondary 

procedures but these are not considered in the present paper. 

The depth and fertility of soil on Hampsfell Influenced the production of 

bracken. The bracken absorbed available nutrients from the soil and 

reached the maximum biomass in the mid-summer. Before death some nutrients 

were translocated into below ground parts of bracken. Bracken died in 

the late autumn, some of the standing dead was harvested and eventually 

the remainder fell to the ground as surface litter. The surface litter 

is probably the major input of nutrients to soil although the decomposition 

rate of bracken was slow. An important approach was to determine and 

evaluate the cycle of plant nutrients together with the losses and gains 

for the whole ecosystem. The plant samples for chemical analysis were 

collected four times a year (February, May, July and November). 

5.1 The nutrient budget in the soil of Hampsfell 

A soil survey in Hampsfell was undertaken in April 1980. Fifteen profiles 

were described, 47 samples including various depthsof soil profiles were 

obtained and eleven chemical variables were assessed for each sample. 
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Table 5.1 summarises the soil variables for Hampsfell. The soil which 

is a shallow rendzina, was rich in calcium, which showed large variation 

in the different profiles. The quantities of nutrients decreased from 

surface layer to deeper for each profile. 

The variation between samples and depths is considerable and, to determine 

the main patterns of variation and interrelationship between the chemical 

variables, a series of statistical analyses were used; first a correlation 

matrix, then principal components analysis and finally cluster analysis. 

The correlation matrix (Table 5.2) showed a strong positive correlation 

of acidity with calcium; loss on ignition was positively related to N, P, 

K, Mg and Na; extractable K, Na, Mg, Mn and total N were significantly 

related to most other variables; only Fe showed little correlation with 

other elements. Thus there is a strong, usually positive, relationship 

between most of the chemical variables. To determine the general pattern 

of relationships and to see whether or not there is a single common gradient 

the correlation matrix was used to derive eigenvalues and eigenvectors 

(Table 5.3, 5.4). A high proportion (51%) of the total variation was 

expressed by the first component which was dominated by loss on ignition 

and the variables identified above (N, P, K, Mg, Na). This component 

reflects the soil organic matter content and plant nutrients. The second 

component contributes an additional 24% and reflects the calcium content 

and pH. The third and subsequent components are much less important than 

the first two. 

The cluster analysis (Fig. 5.1) did not show very distinct clustering of 

the sample but some groupings can be identified, particularly the 

separation of the superficial samples within which there is a group 

containing high Ca concentration. A group of Ca-rich samples is identified 

from a variety of depths. The remaining majority of samples is mainly 

from deeper horizons and shows little clustering. 1 



Table 5.1 Summary of soil variables on Hampsfell 

Variables Mean S . D .  

PH 

ID1 (Loss on ignition) % 

Total P X, dry weight 

Total N % dry 'weight 
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Table 5.3 Eigenvalues of the first five components of soil 
variables in Hampsfell 

Component Eigenvalue Proportion of Cumulative 
variability proportion % 



Table 5.4 Eigenvectors of the first five components of soil variables in Hampsfell 

Variables 

x9 

Total 
p x10 

Total 
N X11 

Coefficient for component 

I I I11 IV 

/i -7 -0.0993 -0.6823 

-0.3866 -0.2256 -0.1224 

-0.0232 -0.3869 -0.3556 

-0.2700 0.3586 -0.0194 

- /6.88247 - -0.0820 - /-0.89777 - 
0.1632 -0.1278 0.0758 

-0.6450 ~i -7 - /Io.98617 - 
0.6322 0.3790 /-I - 7 

-0.4411 -0.6912 0.1270 
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I 
From the data on concentration, and known depths and densities of the 

horizons the total amount of nutrients per unit area was calculated 

(Table 5.5) . 

5.2 The nutrients in bracken 

e 
The chemical composition of bracken has been reported in a series of 

papers (Hendrick 1918, 1921; Ferguson 1944; Hunter 1944, 1953) which 

showed that the nutrient content varied from different parts of bracken • 
and from time to time. The nitrogen and potassium are principal 

elements in above ground parts of bracken. The major nutrient elements, 

such as nitrogen, phosphorus and potassium, in fronds changed considerably 

during the growing season, concentrations were highest in May and lowest in 

November, but relatively little variation occurred in rhizomes. In mid- 

summer the fronds had grown robustly and the large amounts of nutrients 

probably had been exported from the root system (including rhizomes and 

roots) with a decrease in the nutrient contents in the root system. The 

relatively large mass of the rhizome means that a small change in 

concentration of rhizomes could account for a large change in concentration 

of above ground parts. When the bracken fronds turned brown the nutrients 

in fronds significantly declined through translocation to the root system 

where concentration rose (Table 5.6) and also through leaching. 

In general the concentration of elements was similar In pinnules and 

petioles except that P and N were about double in pimules probably 

reflecting their higher protein content. The greater intercorrelation 

in pinnules and petioles than in rhizomes probably reflected greater 

seasonal variation (Tables 5.7-5.9). In pinnules and petioles, and to a lesser 

extent in rhizomes, N and P were strongly correlated with other elements, the 

correlation with Ca, Na, MII being negative reflecting the opposite seasonal 

trends identified from Tables 5.7,5.8. In the pinnules and petioles Na, 

K, Ca and Mg were significantly intercorrelated. The concentrations bf Na. 



Fe and Ca were remarkably higher, by up to lox, in rhizomes than in 

fronds. In contrast N, P, K were higher in pinnules and petioles than 

in rhizomes in the early part of the year but the relative position 

was reversed in autumn. 

5.3 Nutrient cycling in bracken 

The distribution and circulation of nutrients in bracken grassland is 

closely related to the dry matter of bracken. Therefore the dry matter 

cycle is described first. 

The biomass of live fronds in July was 770 g m-2 assumed to be the maximum 

biomass, of which 587 g m-' died. Therefore 183 g rn-' was translocated 

from above to below ground parts before death. The live root system increased 

from a winter minimum of 1564 g m-2 to an autumn maximum of 2986 g m-2. 

- 2 
Assuming a steady state, 1564 g m will be present at the end of the 

winter, therefore 1422 g mm2 is lost over winter presumably in respiration 

and death. Dead rhizomes decreased from 282 to 121 g m-2, a loss of 161 g 

assumed to be through decomposition ie microbial respiration which on a 

steady state assumption would be replaced by death of live rhizomes. 

The difference of 1261 g m2 is presumably lost in root respiration over 

winter. Some material from the root system will be used for above ground 

growth in spring but this will occur after the winter minimum of 1564 g mm2. 

The over-winter respiration by rhizome is a contribution to gross primary 

production but not to net primary production (Fig. 5.2). The results 

represent a first approximate of the transfer rates and cycling of the 

dry matter. 

The best estimate of net primary production assumes no change in standing 

crop from one year to the next. On this assumption NPP of 748 g m-* was 

obtained from estimated losses to dead material ie 587 g m-' to standing 

dead plus 161 g m-' to dead rhizomes. No estimate of loss by root, as 

opposed to rhizome, death was available. 



Table 5.5 The total amount Of nutrients in soil g m-2) at 
an average depth of 25 cm 

Dry weight Extractable (g m-2) Total Total 
of soil Na K Ca Mg Fe Mn P N 

An alternative estimate of net primary production assumes that the below 

ground increment from winter to autumn represents growth of the population 

ie the biomass is expanding within the site or may be expanding outwards 

with translocation. Given the assumption of growth the estimate of NPP 

was 2170 g m-2 yr-l ie 587 to standing dead plus 161 to dead rhizomes, 

plus 1422 increment in root system. This is slightly higher than the 

earlier estimate in NPP by accounting for dead rhizomes. 

NPP 
Efficiency of bracken is indicated by the turnover, 

standing crop' 
The 

standing crop varied over the year from a minimum of 1564 g m-2 in winter 

to 2766 g m-2 in summer, giving a mean value of 2165 g m-'. Efficiency 

is therefore 0.345, assuming NPP of 748 g m-2 or 1.00, BSS~ming 

NPP of 2170 g m-2. The lower estimate of turnover is similar to that of 

CaZZuna at Moor House, while the higher estimate is similar to'Erwphorwn 

at Moor House and to the Festuca-Agrostis grassland in Snowdonis (Smith 

& Forrest, 1978; Perkins et at. 1978). 

The nitrogen content of the live standing crop increased from 14.8 & m-2 

in winter to 27.1 g m-2 in autumn, an increment of 12.3 g m-2 yr-l. An 

estimated 4.1 g m-' was lost to standing dead in autumn. The loss to 

dead rhizomes was estimated as 0.07 g m-2 yr-l. The annual uptake by 

the population on Hampsfell was therefore 16.4 g N m-2. Leaching from 

the canopy is probably negligible (Carlisle e t  aZ.1967, Brown 1974). The 



observed increment in standing crop (12.3 g N m-') may be lost over 

winter if steady state is assumed and the autumn standing crop returns 

to the level of the winter, or it may be retained if the population 

is growing (Fig. 5.3). 

The annual cycle of nitrogen started with a below ground standing crop 

of 14.8 g N m-'. By spring the increase in above ground part (1.5) and 

the increment to below ground standing crop of 3.6 g m-' indicated an 

uptake of 5.1 g m-2 between February and May. During summer the further 

above ground increment was contributed from translocation from the root 

system, which although showing a decrease in standing crop, amounted to 

about 5.4 g m-2 from May to July. In autumn the senescence of live fronds 

resulted in a loss of 4.1 g m-' to standing dead and resorbtion of 

7.7 g m-' which contributed to the below ground increment, the latter 

however still required an uptake of 5.9 g m-' between July and November 

to balance. From the autumn below ground standing crop, 0.97 g m-' is 

lost to dead rhizomes, and 12.3 g m-' is either lost by leaching over 

winter or contributes to an incrementlng standing crop. Efficiency of 

utilization of nitrogen in bracken (uptake: mean standing crop) was 0.82. 

The efficiency of nitrogen uptake from soil was 0.015. 

An increment of 1.82 g m-' of phosphorus content in live standing crop 

appeared during the growing season. An estimated 0.29 g P m-' is lost 

to standing dead in autumn. The annual uptake by brscken on Harnpsfell 

reached 2.12 P m-2. Leaching caused a loss of 0.009 g m-' P per year 

(Fig. 5.4). The phosphorus in standing crop averaged 2.05 g m-'. The 

turnover rate of phosphorus in bracken stands was 1.03. The total 

phosphorus in soil was 80 g m-' but extractable phosphorus in soil was 

extremely low (0.43 g m-'1. Efficiency of total phosphorus uptake from 

soil was 0.03, but uptake was 5x the amount of extractable phosphorus. 



The potassium flow in bracken grassland shored a slightly different 

pattern from other elements, leaching caused a higher loss of 0.94 g m-2 yr-l. 

An increment of 8.6 g mm2 of potasaium content in standing crop was 

obtained from February to November. In midsummer a large amount of 

potassium wastakenup from soil, but no more uptake was required in autumn 

(Fig. 5.5). The annual uptake of potassium by bracken reached 14.9 g n-2 

giving a turnover rate of 0.59. The efficiency turnover of extractable 

potassium absorbed from soil was 0.59. 

Bracken absorbed 12.8 g m-2 of calcium from soil during growing season 

compared to the amount in standing crops of 7.5 g m-2 (Fig. 5.6). The 

turnover rate (1.71) of calcium was higher than other elements. The 

efficiency of extractable calcium from soil was 0.028. 



Table 5.0 Tbe ~ 0 ~ ~ 0 n t r a t l o n l  oi nutrient. (me..% 2 se) in bracken with t h e  

Petiole. 0.058 
+0.005 - 

S e b N u g  

U.9 

July 

November 

Rhizome. 0.30 
m d  root. z0.031 

Bhi~omes 0.21 
.nd roo ts  -4.020 



Table 5.7 Coefficients of the correlatione between nutrients in the pimules 

Ash Na 

1 

-0,674** 1 

0.938*** -0.748*** 

-0.64** 0.841*** 

0.760*** -0.501* 

0.326 -0.252 

-0.352 0.065 

0.722*** -0.671** 

0.822*** -0.682** 



Table 5.8 Coefficients of the correlations between nutrients in the petioles 

Ash 

Na 

K 

Ca 

Mg 

Fe 

Mn 

P 

N 

Ash 

1 

-0.718*** 

0.972*** 

-0.451 

0.931*** 

0.806*** 

-0.175 

0. EBB*** 

0.925*** 



Table 5.9 Coefficient of the correlations between nutrients in the rhizomes 

Ash 

Na 

K 

Ca 

Mg 

Fe 

Mn 

P 

N 

Ash 

1 

-0.074 

0.199 

0.032 

0.276 

0. 8*** 

0.386 

0.127 

0.079 
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Fig.  5 .5  Potassium flow i n  bracken stands ( g  m-2) 



Winter Spr ing  

Fig. 5 .6  Calcium flow i n  bracken stand6 (g me2) 



The maximum aerial biomass of bracken on Hampsfell averaged 794 g m-2 in 

August,the seasonal variation of below ground biomass was not marked. 

The soil depth was one of the most important factors affecting the biomass 

of bracken. The annual primary production of bracken grassland averaged 

2667 g m-2 yr-' on deep soil and minimum yield of 1023 g m-2 yr-l on shallow 

soil. 

The annual decay rate of bracken litters measured in litter bags was 0.317-0.321 

g g-' yr-'. The weight loss predicted from repiration indicated 73-88% of 

observed weight loss could be attributed to microbial respiration. Based 

on changes in chemical composition the fraction lost after 40 weeks in field 

was 0.24. The time taken for 95% litter standing crop to decompose is 

estimated at 10-13 years, calculated from an estimate of the constant 

fraction loss rate of 0.26 based on input of litter: litter standing crop. 

Thus four separate estimates of the annual loss rate range from 0.21 to 0.32. 

The nutrient flow in bracken stands during year showed an increment of 

nutrients in standing crop from winter to autumn, reabsorbing the 

nutrients from soil to balance. In autumn the senescence of live fronds 

results in a loss to standing dead and some below ground standing crop is 

lost to dead rhizomes. Annual uptakes were estimated to be 16.4 g m-2 

nitrogen, 2.1 g m-2 phosphorus, 14.9 g m-2 potassium and 12.8 g m-2 calcium. 

The turnover of elements by the bracken, in relation to mean standing 

crop,ranged from 0.59 for potassium to 1.71 for calcium. Compared with the 

standing crop in the soil, uptake ranged from 0.015 for nitrogen to 

0.59 for potassium. Although the uptake of phosphorus was only 0.03 

of the total soil phosphorus,it was 5.0 of the extractable fraction. 

i 
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