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ABSTRACT 

We present a semi-analytic method based on the propagation matrix formulation of 

indirect boundary element method to compute response of elastic (and acoustic) 

waves in multi-layered media with irregular interfaces. The method works recursively 

starting from the top-most free surface at which a stress-free boundary condition is 

applied, and the displacement-stress boundary conditions are then subsequently 

applied at each interface. The basic idea behind this method is the matrix formulation 

of the propagation matrix (PM) or more recently the reflectivity method as wide used 

in the geophysics community for the computation of synthetic seismograms in 

stratified media. The reflected and transmitted wave-fields between arbitrary shapes 

of layers can be computed using the indirect boundary element method (BEM, 

sometimes called IBEM). Like any standard BEM, the primary task of the BEM-

based propagation matrix method (thereafter called PM-BEM) is the evaluation of 

element boundary integral of the Green’s function, for which there are standard 

method that can be adapted. In addition, effective absorbing boundary conditions as 

used in the finite difference numerical method is adapted in our implementation to 

suppress the spurious arrivals from the artificial boundaries due to limited model 

space. To our knowledge, such implementation has not appeared in the literature. We 

present several examples in this paper to demonstrate the effectiveness of this 

proposed PM-BEM for modelling elastic waves in media with complex structure. 

INSTRUCTION 

Computation of elastic wave propagation in layered media with arbitrary shapes of 

interfaces has found applications in many areas, such as engineering, geophysics, 



underwater acoustics, etc. Traditionally, domain-based finite difference or finite 

element methods are used. For stratified flat layered media, the propagation matrix or 

more recently reflectivity method can be used (Fuchs and Muller, 1971). Chen (1990, 

1995, 1996) has extended the propagation matrix method to multi-layered media with 

irregular interfaces using the so-called global generalized reflection/transmission 

formulations. Recently the indirect Boundary Element Method (BEM) has been 

extended to model wave propagation in multi-layered media with arbitrary interfaces 

(see for examples, Bouchon et al., 1989; Bouchon & Coutant, 1994; Pedersen et al., 

1996, Vai et al., 1999, and cited references in those papers). Note that BEM has been 

extensively used to study topographic effects using exact Green functions by 

Sanchez-Sesma and his co-authors (e.g. Sanchez-Sesma and Campillo, 1991). This 

method has a distinct advantage over domain-based methods in that only boundaries, 

or in the case of multi-layers interfaces, need to be discretized. This method is based 

on the matrix formulation of propagation matrix method (Fuchs and Muller, 1971; 

Kennett, 1981) and essentially works recursively to match boundary conditions at 

each successive interface (Pedersen et al., 1996). Reflection and transmission at 

internal interfaces are computed using the BEM. We shall refer to this method as PM-

BEM. We have tested extensively the validity and limitations of the PM-BEM and its 

stability in a variety of situations, examining in particular dependence on source 

frequency, distance of the source from boundaries and separation of two boundaries. 

Comparison with results from the reflectivity method shows that this PM-BEM is 

very accurate. The method can be potentially used to perform large scale seismic 

modelling. 

INDIRECT BOUNDARY ELEMENT METHOD 

For simplicity, we shall consider 2D here. In the absence of body forces the 

displacement ur  at any point xr  in an area V surrounded by the boundary S (Figure 1) 

can be expressed as follow, i.e. mathematical description of Huygen's principle (Liu et 

al. 1997; Liu & Zhang, 2001; Pointer et al., 1998): 

,')',()'()( ∫= S ijji dSxxGxxu rrrr ϕ                                      (1) 



where )',( xxGij
rrr

 is the ith displacement Green's function at xr  due to a point source in 

jth direction at 'xr  (the variable with an arrow above implies vector, matrix or tensor). 

)'(xj
rϕ  is the force density at 'xr  in jth direction. 
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Figure 1. A scattering object S bounded by the curve L with outwards normal n. 

Upon an incidence of u0 located at source the total wave-field received at receiver is 

the superposition of the incident wave-field u0 and the scattered wave-field us.  

 

The corresponding expression for traction, for a smooth boundary, is given by: 

,')',()'()()( ∫+=
S ijjii dSxxTxxcx rrrrr ϕϕτ                     (2) 

where c is 0 if xr  is outside S, c is 0.5 if xr  tends to S from the inside V, and c is -0.5 if 

xr  tends to S from the outside V  (Pointer al., 1998). )(xi
rτ  is the ith component 

traction on S at xr  and ijT is the traction Green's function. The BEM based on 

equations (1) and (2) is known as the indirect BEM (Liu & Zhang, 2001; Pointer et 

al., 1998). 

     The total wave field total
iu at receiver point xr  is the superposition of the direct wave 

0
iu from the source (called free field) and the scattered waves s

iu , i.e. 

.0 s
ii

total
i uuu +=                                                        (3) 

If we discretize the boundary S into N elements and combine equations (1) and (2) 

with (3) we obtain the following expressions for displacement and traction: 



,),()()()(
1

''0 ∑
=

+=
N

n
nijnjii xxGxxuxu rrrr ϕ                         (4) 

where 
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nSΔ  is the length of the nth element. If the surface forces densities ϕr  are known then 

displacements and tractions can be computed for any source. 

THE PROPAGATION MATRIX METHOD 

We consider a model with of M+1 interfaces (refer to Figure 2 for the model 

configuration). Layers are numbered m=0 to m=M+1, where layer 0 is the free surface 

and layer M+1 is the last interface. N is the number of boundary points on each layer. 

We define the following four displacement-traction matrices 1,mA
r

, 2,mA
r

, 

1,mB
r

and 2,mB
r

of the form (Pedersen et al., 1996): 
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.  

ijg and ijt are N x N matrices containing the ith components of the displacement and 

traction Green's functions from the jth component of the source. mA ,1

r
contains the 



Green's functions for receivers on interface m from sources on interface m. 

mA ,2

r
contains the Green's functions for receivers on interface m from sources on 

interface m-1. mB ,1

r
contains the Green's functions for receivers on interface m-1 from 

sources on interface m. mB ,2

r
contains the Green's functions for receivers on interface 

m-1 from sources on interface m-1. mQ
r

, a 4N vector, contains secondary sources for 

every segment on interface m, including the two components of the secondary 

sources. mQ
r

 can be split into two vectors mQ ,1

r
and mQ ,2

r
: mQ ,1

r
being the secondary 

sources heading downwards into the layer from interface m and mQ ,2

r
 the secondary 

sources heading upwards into the layer from interface m. mF ,1

r
is the free-field at 

interface m from the layer above. mF ,2

r
 is the free-field at interface m from the layer 

below. 
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Figure 2. A multilayered model configuration.  

    Continuities of displacement and traction on the mth interface give us the following 

recursive relation: 
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We can write this equation in the form: 
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where MD
r

and ME
r

are defined as follows: 
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For the deepest interface (m = M+1) these expressions become: 
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If MD
r

 and ME
r

 are computed and propagated upwards using equations (11) and 

(12) mD
r

and mE
r

matrices can be found for any layer. At interface m=0 (the free surface) 

the traction is equal to zero, we can obtain the following equation: 
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Solving equation (16) yields the force distributions 2,0Q
r

, 1,1Q
r

and 2,1Q
r

. We can then 

compute the force distributions for every interface working from top to bottom using 

equation (10). The displacement at any point xrwithin the mth layer can be found by 

convolving the Green's function with the appropriate force distribution. The 

contribution to the displacement is found in this way for all the boundary points lying 

on the interfaces above and below layer m, and all the contributions are summed to 

give the displacement. In the case where the source and the receiver lie in the same 

layer the displacement from the incident wave should be added. 

     The coefficient matrix of the linear equations (equation 15) is a fully populated 

complex matrix and is non-symmetric. This is often regarded as the disadvantage of 



BEM in comparison with finite element methods. Nevertheless, this matrix can be 

easily manipulated as the number of elements is not exceedingly high and the system 

of equations is only solved once for each frequency. A standard method such as the 

Gaussian elimination or LU decomposition can be used, and for large M, a conjugate 

gradient method can be used. In this paper we only use a standard LU decomposition 

method to solve the linear equations. The maximum number of elements is restricted 

by the power of current computers and it also depends on the specified accuracy. In 

general, the number of elements depends on the particular frequency considered. At 

low frequencies, a minimum number of elements is required, while at high 

frequencies this number should be chosen such that at least three surface elements are 

sampled per seismic wavelength to give satisfactory results (Bouchon & Coutant, 

1994). 

ABSORBING BOUNDARY CONDITIONS 

Spurious waves will be generated from the edges of the models as a result of the 

truncation of layers. A simple way of reducing this effect is by introducing an 

absorbing zone at the edges of the models. We weight the Green's functions by an 

exponential function for segments within the absorbing zone (Cerjan et al., 1985). 
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In other words, the displacements generated by the secondary sources in the absorbing 

zones are weighted by the above function to reduce its contributions to the overall 

displacements outside the absorbing zones. This is very similar to the application of 

Cerjan’s et al. (1985) method for conventional finite difference methods (e.g. Vlastos 

et al. 2003). The variables a and W are the absorption factor and the absorption zone 

width respectively. L is the model size. a=0.001 is suggested. maxx  is the model size 

(i.e. the maximum horizontal distance of our 2D models concerned). This simple 

technique was first proposed for FD method, and our tests show it can also be 

effectively used for PM-BEM.  



 

Figure 3. Variations of absorbing weight w with the distance from the model 

area/space for different parameter a. 

     Figure 3 shows the variation of absorbing function w with the distance from the 

boundary (of the model area or space) for different variations of parameter a. As we 

can see that the choice of parameter a is crucial for the effective elimination of the 

boundary effects. If a is too large, the absorbing area can be chosen to be small, but 

this will cause additional spurious reflections; if a is too small, a large absorbing area 

has to be used to allow the boundary reflection to arrive much later (as the reflected 

wave amplitudes are only slightly reduced). 

IMPLEMENTATION AND NUMERICAL EXAMPLES 

We implement our method in the frequency, that means that the frequency-domain 

displacements are computed for a range of frequencies (for the examples below, we 

typically consider the frequency ranges up to 200 Hz). The inverse FFT is then 

performed to calculate the time-domain response. Like any BEM cited in the 

Introduction, the memory requirements to store the layer matrices are quite large 

depending on the number of discretization needed for each layers. The basic 

requirement is that at least 3 elements are required for the minimum frequency used 

(see Sanchez-Sesma and Campilo, 1991). To speak up the computation, we divide the 

computational domain into 3 equal areas and then match the boundary conditions 

(continuity of stress and displacements) between each domain – this is called the 

domain decomposition (see Dobson et al., 2003).  The adapt of the domain 



decomposition is effectively reduce the size of layer matrices (used in equations 8-18) 

to one-third so that matrix inversions can be performed much fast. 

Here we shall present two examples. We first consider a simple model 

containing only the flat free surface. This simple model is used to demonstrate the 

accuracy of the proposed PM-BEM. The source is located at a distance of D from the 

free surface. The receiver is fixed at 600m from the free surface and is immediately 

below the source (i.e. no horizontal offsets). We compare the vertical components of 

synthetic seismograms from PM-BEM presented in this paper using a vertical force 

source and results from the reflectivity method (Kennett, 1981). The results are shown 

in Figures 4 and 5 for different source depths and different frequencies. We see that 

there is a very good agreement between the two results except when the source is too 

close to the free surface (Figure 4), in which condition, very fine discretization grids, 

i.e. at least less than one-third of the distance between source and the free-surface, has 

to be used. This is understandable as the in our implementation of the PM-BEM, we 

only use the far-field Green’s function and the near field terms have been ignored 

(same to the implementation of BEM by other authors cited in the Introduction). 

 

Figure 4. Comparison of synthetic seismograms for different source depths.  



 

Figure 5. Comparison of synthetic seismograms for different frequencies. 

 

     Figure 6 shows a three-layer model. The top interface is a rough interface 

generated with a sine function (sine function has a period is 100m and the height of 

10m). The parameters for each layer are given in the table next to Figure 6. The 

explosive source is located at the origin with a range of receivers along the flat free 

surfaces. We use a Ricker wavelet with a dominant frequency of 50Hz which gives 

the wavelengths of 66m for P-waves and 38m for shear-waves (using the velocities 

for the first layer). The horizontal and vertical synthetic seismograms are shown in 

Figure 7. We can clearly identify reflections from the top and lower interfaces. The 

reflection from the top sine interface shows periodical amplitude variations, while the 

reflection from the lower interface shows almost continuous variations. In general the 

amplitude variations will depend on the interface roughness (period and height of the 

sine in our case) and the wavelength. Our studies have revealed some interesting 

features, such as the interference patterns resulting in the periodical loss or 

enhancements of amplitudes as in light scattering - this feature is known as the 

localization of lights, and in our case, localization of seismic waves [see more 

discussion about the coherent backscattering or localization of seismic waves in 

Schultz and Toksoz, 1994; Larose et al., 2004).   



CONCLUSIONS 

We have presented results of modelling elastic wave propagation using the indirect 

BEM for layered media. This method uses the idea from the propagation matrix 

formulation and computes recursively the secondary source distributions at each 

interface. The BEM is very accurate as long as certain factors are taken into 

consideration. An absorbing boundary condition, developed for FD method, can be 

applied to effectively eliminate spurious waves due to interface truncations. The PM-

BEM has a potential to be used as a tool to perform large scale seismic modelling, 

using, for example, the domain decomposition method (Dobson et al., 2003; 

Ziolkowski et al. 2003). 

 

 

Figure 6. A three-layer model consisting a rough interface (modeled using a 

sine function). The parameters for each layer are shown in the table on the 

right side. 
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Figure 7. Horizontal and vertical synthetic seismograms corresponding to the 

model geometry shown in Figure 6.  
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