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i. INTRODUCT'ION

Clasaification involves the recognition of similarities between} and
the grouping of, objects and organisms. As a mental activity, this is
probably considerably older than the writings of the ancient Greeks,
the source of the science of classification. Indeed, in the form of
pattern recognition, it may be fundamental to the way in which human
beings and living organisms perceive the world arocund them.

In all sclences, as data accumulate, the necessity for simplification
becomes apparent., A classification may have more than one purpose,
but the paramount purpose is to describe the relationships of cbjects
to each other, and to simplify the relationships so that general state-
ments can be made about classes of objects. An important distinction
is between monothetic and polythetic classifications. Monothetic clas-
sifications are those in which the classes established differ by at
least one property which is uniform among the members of each class, N
In polythetic classifications, taxa are groups of individuals or ob=~ °
jects that share a large proportion of theixr properties, but do not
necessarily agree in any one property. A corollary of polythetic
classification is the requirement that many properties be used to
classify cbjects. However, once a classification has been established,
few characters are generally necessary to allocate objects to the
proper taxa. Classifications based on many properties will be general,
they are unlikely to be optimal for any single purpose, but might be
useful for a great variety of purposes. By contrast, a classification
~based on few properties might be optimal with respect to those proper-
- ties, but would be unlikely to be of gerieral use (Sckal, 1974).

Hence, classification of a data set results in a reduction of the amount
of information that is necessary to describe the data, but, if the ¢las-
sification is efficlent, there is little or no reduction in the amount

of information contained in the data. Furthermore, classifications that
describe relationships among objects in nature should generate hypotheses,
possibly the main scientific justification for the exercise.

Much classificatory work in various branches of science has aimed to des-
cribe what is known as the 'natural system'. This is a difficult and
controversial concept involving a variety of philosophical considerations
which will not be pursued here (see e.g. Jardine and Sibson, 1971; Sneath
and Sokal, 1973; sSokal, 1974).

Attempts to find satisfactory breaks in continuous data have led to
similar principles and procedures being developed independently in varicus
fields, and a body of general classification theoxy and methodology has
been rapidly developing. Sokal (1974) stated that, in classification,
theory has fregquently followed methodology, and has been an attempt to
formalize and justify the classificatory activity. Inh other instances,
classificatory systems have been set up on a priori logical or philo-
sophical grounds, and the methodology has been tallored subsequently

to fit the principles. Both approaches have thelr advantages and draw-
backs; modern work tends to reflect an interactive phase in which first
one and then the other approach is used, but neither principles nor
methodology necessarily dominates,




It is eagy to perceive structure in data when the structure and dis-
continuities are obvious, but such a situation is not typical. IMuch
of what we cbserve in nature changes continuously in one property or
another, but not necessarily with equally steep gradients for each
property. It is such cases which give the taxonomist (or ecological
classifier) the greatest problems in deciding where or how to draw
boundaries, or even whether boundaries should be drawn at all.

The development of numerical methods in taxonomy has had several
effects. What used to be an intuitive art has been formalized into
a quantitatxve science, The increasing availability of digital
,computers means that it has become practicable to explore the use of
a wide range of numerical techniques, and this has attracted the
_attention of statisticians and mathematiciansg, with the consequent
development of a wide variety of methods and their application to a
variety of problems in different fields. This has not been an unmixed
blessing, as there now exists a hewildering variety of numeérical
techniques, the properties of many being not fully known. Numerical
methods can help the taxoncmist investigate the structure of his
data, but the results of the analyses still need to be interpreted,
It is perhaps worth bearing in mind the three questions: why do it?
How do you do it? tvhen you have done it, what doas it mean?

(Dr. A. J. Wilmott, pers. comm.).

The aim of-this paper is_to clarify some of the issues involved in the
use of numerical methods in classification, particularly with regard

to the search for structure in ecological data. A theoretical approach

is taken because it is necessary to understand the theory of the metheods
in order to understand how they should be used and what their limitations
are. Indeed, the same is true for multivariate methods in general.

It is assumed that the reader is familiar with some multivariate theoty,
at least for the more widely used ordination techniques. Ecological
classification is much less well-developed than is the taxonomy of
organisms, This is due partly to the diversity of interests ‘of ecologists,
and partly to the nature of ecological data, which do not lend themselves
to easy classification. Furthermore, the appropriate methods in
taxonomy of organisms are not necessarily the most appropriate fdr
ecological use (Clifford and Stephenson, 1975).




2, THE NATURE OF THE DATA

2.1 Types of data

Data consist of attribute scores, and there are many different kinds of
_attributes, These are discussed by, e.g. Clifford and Stephenson (1975},

The most common kinds of attributes are: (i) Binary, e.g. presence=-

absence; (ii) Disordered multistate, e.g. colour; (iii) Ordered multistate,
e.d. rare, common, abundant; (iv) Meristic, e.g. number of petals;

(v} Continuous, i.e. measures on a continuous scale.

These attribute categories are not distinct, they depend to some extent on
the sampling procedure, and data in one form can he converted to another.
Differences of opinion exist on the value of binary data in ecological work,
but the consensus of opinion seems to be that other data are preferable
(Clifford and Stephenson, 1975, p. 39). 1In most branches of ecclogy, the
tendency is to regard dominance (by some measure} as important. Results of
analyses using data with numerical values are more informative than those
using binary data. For example, Williams et al (1973) found that while
plant species presence-absence was adequate in a simple study involving
only eight sites, for ten sjtes there was "some advantage® in using numbers,
while for B0 sites, gquantitative data were distinctly preferable. Barkham
(1968} found quantitative data to be more informative than presence-absence
data in a study of the vegetation of Cotswold beechwoods. '

The use of binary data in ecology can only be justified if it is difficult
to obtain anything else, or if there is a declared lack of interest in the
information which is lost by using binary data instead of, say, continuous
data. Similarly, the conversion of meristic or continuous data to binary
data is usually unsatisfactory.. Thinking of this in texms of a normal
distribution being arbitrarily divided into two sections, division along
the mean leads to all entities on either side having identical binary
scores. However, there may be instances when continuous data have
properties which make conversion to another form logical. One example

is if a variable can take a wide range of values, but has a concentration
at one value (usually zero), as in counts of parasites on a host. It is
usually better to regard such a variable as discrete, and to score it as if
it were a few groups, such as .zero, low, medium, high. It should be noted
that if the aim of the analysis is to find a useful or meaningful grouping
of the data, a coarsely-grouped variable may exert a disproportionate in-
fluence on the result (Marriott, 1974).

2.2 Selection of attributes

In ecological studies, there may or may not be a priori grounds for
selecting attributes, and some attributes may be selected intuitively.
There is likely to be some limitation on the types of attribute which
can be used, due to practical difficulties in thelr measurement.

However the attributes are chosen, it is necessary to recognize that
certain kinds of attributes are regarded as inadmissible in a numerical
study  (Jardine and Sibson, 1971; Sneath and Sokal, 1973). The different
kinds of correlated attributes are particularly important in this respect.
It is thus necessary to make some sort of initial check on the data,




Marriott (1974) discussed the problems of binary variables in cluster
analysis. He noted that the selection of variables, important in any
miltivariate procedure, is paramount in the case of binary variables,
If there is any inherent structure in the data, it should reveal itself
in the dependencies between the variates. As a corollary, any variates
that are non-independent for reasons not connected with an underlying
grouping should be excluded from the analysis. For binary variables,
the problem of deciding if there is more than one group, and if so how
many and how they should be divided, is not easy. The justification
for multimodality as a criterion is less clear in the case of binary
variates than in ‘that of continuocus variates. In general, multimodality
depends in a Blicated way on the probabilities associated with each
dichotomy in a 2¥ contingency table for p binary variates.

2.3 Weighting of the attributes

The question of whether, or how, to weight data ‘is an 1mportant problem
in taxonomy, and specialists in different groups of organisms will have
their own ideas about the importance of different attributes. One
solution to this problem is to state the basis of weighting, so that the
reader may judge the merits of the case (Clifford and Stephenson, 1975).
Sneath and Sckal (1973) considered that equal weighting is desirable;

it can be defended on several independent grounds, and is prabably the
only practical solution.

Jardine and Sibson (1971) concluded that certain kinds of welghting which
taxoncmists use intuitively are, in fact, incorporated in the calculation
- of K~dissimilarity, while certain of the other kinds of weighting and core
relation which taxonomists have discussed were shown'to be relevant to the
selection of attributes, rather than to the calculation of dissimilarity

- and analysis of dissimilarity coefficients once attributes have been
selected.

2.4 Possible structure in the data

~ As the underlying theme in numerical classification is the search for
discontinuities in the data, it is important to think about what types
of structure may be present in the data.

' The first possibility is that there is only one group and all the in-
dividuals belong to it (e.g. Fig. 1). We may or may not know the nature
of the distribution, but we cannot assume that it is normal. The data
may contain more than one group. 1f there are real discontinuities, the
. groups will be separate and distinct. This situwation presents no
problems, the problems occur if the tails of the frequency distributions
overlap (e.g. Fig. 2). Examples with a greater degree of overlap can
he visualized, with the centres of the distributions moving closer
together. In the extreme, this leads to a complex distribution which
may appear to be unimodal.

This type of structure is visualized by plant ecologists. Sgrensen
(1948) suggested that the various types of vegetation are often so in-
sensibly merged as to form a sliding scale, but that in‘'a limited area
under investigation it can be considered to-be homogeneocus with as much
approximation to that mathematical concept as can be found in nature,
Whittaker (1970, 1972) developed the continuum theory and showed that one
might expect each species to find a different niche on an énvirommental
gradient (e.g. Fig. 3). If the distribution patterns of species are
completely continuous, it becomes impossible to delineate communities or




£ (x)

Figure 1.

There is only one group, and all the OTU’s belong to it.

A is the graph of the continucus frequency (probability
density) function ¥ (x) of the data. This function is
zero outside some finite interval (a, b). For con-
venience, it is shown as univariate and 5ymnmtzical.'

B represents a slice through a bivariate version of A,

at right angles to the paper, to show the density gradient.




£ (x)

Figure 2.

A bimodal sample with the tails of the .frequency (probability
density) distributions slightly overlapping.
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associations, and most difficult for the human brain to comprehend
the data in totality. Where gradients are involved, ordination may
be the best way of handling the data, although that, too, has its
problems. The concept of such a unimodal continuum is not unique to
ecology, examples can be found in other sciences (Clifford and
Stephenson, 1975). The possibility that such a continuum may be
divided into groups on the basis of so-called homogeneous areas led
to the development of a variety of methods for this purpose, usually
based on some sort of variance constraint. These methods, and the
problems associated with them, will be discussed later.

2.5 Scaling, standardisation, and transformation of the data

In ecolegical studies, the raw data may not be uniform, because

some species are more abundant than others for example, or because
attributes measured on different scales differ in both range and
variability. The importance of such differences in the analysis of

the data needs thinking about, particularly in relation to the objectives
of the investigator. In one context, it may be useful to exclude rare
gpecies (cf. Barkham, 1968). For gome purposes, it may be judged that
attributes should contribute equally regardless of their variation.

On the other hand, the investigator may consider the variation itself

to be an important feature to be retained.

We can recognize three ways in which the data may be modified: (1) Scaling;
(2) standardization; (3) Transformation. Scaling may be done in a variety
of ways, the simplest being to add or subtract a constant from all values
of a given attribute., Another method is to multiply or divide by a constant.
Standardization means that the value of each attribute for each individual
is expressed as a deviation from the mean of that attribute and divided by
the standard deviation. This has the effect of reducing all attributes to
unit standard deviation, and of reducing the magnitude of each attribute.
Other methods are ranging {Gower, 1971) and rankits (Sokal and Rohlf, 1969).
There appears to have been no employment so far in numerical taxonomy of
standardizations that equalize the variability while leaving gross size un-
changed (Sneath and Sckal, 1973).

The texm 'transformation' is used of methods which seek to change the

shape of the frequency distribution of the data, usually in the hope of
obtaining an approximately normal distribution. In univariate statistics,
for example, transformations may be used to satisfy the theoretical
requirements of the analysis of variance, Classical multivariate theory has
been based largely on the multivariate normal distribution, and although in
some multivariate methods multivariate normality is not essential except for
the sampling theory (e.g. in canonical correlation), not much is known about
the rcbustness of the methods and the effects of large departures from
normality. Some methods are sensitive to non-normality, for example

cluster methods based on the asgsumption of a mixture of multivariate normal
distributions. In numerical classification, dissimilarity measures may be
sensitive to certain types of data. Thus, Euclidean distance types of
measures, lncluding variance measures, are particularly sensitive to data

in which there are occasional very large values (Clifford and Stephenson,
1975).

Various types of transformation have been used (Sneath and Sokal, 1973;
Ciifford and Stephenson, 1975). Andrews et al (1971) discussed the problem
of transformations in which the transformed variables are functions of the
original variables collectively rather than separately, and suggested some
techniques which might be useful. Clifférd and Stephenson (1975) stated




that it remains uncertain whether the transformation required to produce
normality of data is also the transformation which will produce optimal
ecological 'sense', and that optimal ecological classificatory 'sense’

is generally cobtained by using a weaker transformation than that required
to transform data to normality In any multivariate analysis, careful
thought needs to be given to the nature of the data and how this relates
to the methods to be used.

3. NUMERICAL METHODS

3.1 General

Two types of method have been found useful to describe the object-space;

these are ordination and cluster analy51s. There has been some discussion

on the relative mérits of these two typés of method, as if they represented
alternative ways of examining the data whereas they are, in fact, complement—
ary. ' If there are natural groups, this should be apparent in the results

of the ordination. If there are no such groups, ordination may still throw
some light on the relationships between the individuals, and it is particularly
useful if the individuals are distributed along gradients. rurthermore,
ordination may show that a clustering method has been used ‘for data to which

it is not suited. Do
Many methods of cluster analysis break down for particular types of cluster

- that are, nevertheless, obvious to the eye. For example, elongated clusters
are not well suited to Wishart's modal analysis, nor to methods .that minimige
Wl (see below); clusters with different dispersion matrices and outliers
are not suited to methods which assume, explicitly orrimpiicitly, homogeneity
of within~group dispersions. Many methods tend to give clusters of approxi-
mately equal size, and failure to detect and eliminate an outller can distort
the procedure (Marriott, 1974).

Cluster analysis may involve searching for discontinuiﬁiéélin the object~
space, or, more usually perhaps, the groupings are likely to be based on
multimodality (Marriott, 1974). A totally different problem cccurs if the
data are unimodal; then the question ig what is the best way of dividing the
individuals into a given number of groups. This was called 'dissection' by
Kendall and Stuart (1968, p. 314). It is important not to confuse this pro-
cess with classification; there is no implication that the resulting groups
represent in any sense a 'natural' division of the data, they are merely a
matter of convenience and the only real criterion is their utility.

In both taxonomic and ececlogical classifications, it‘ﬁs_possible to classify
the entities by the attributes (previocusly called Q classifications, now
called normal classifications) or the attributes by the entities (formerly
called R clasgifications, now called inverse classifications). It is im-
portant that the models and principles on which the mathematics are based
should be biologically well-founded and the conclusions reached tested
against further experience, In the majority of cases, there are no
absolute criteria against which to test the structure of a classification,
and so it is important to be clear about the steps taken in its derivation.

3.2 Ordination

Initially, the positions of the entities in a multi-dimensional object-
gpace are defined by their properties or some measure of their dissimilarity.
Ordination procedures aim to preserve the relationships between the entities
as accurately as possible and in a few dimensions. The reduction in
dimensionality makes the data easier to handle mathematically: (1) it makes
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graphical representation easier; (2) it removes difficulties which might
arise from variables which are linearly related, or nearly so; (3) the
variables resulting from the reduction may lend themselves to reification
(i.e. the interpretation of the mathematics in terms of the original problem)
and give a useful insight into the structure of the data (Marriott, 1974).

Principal component analysis

Possibly the best-known and most widely used ordination technique is principal
component analysis (Anderson, 1958; Morrison, 1967; Seal, 1968; Blackith
and Reyment, 1971). This involves a linear transformation of the attribute
scores; the principal components are expressed in terms of linear combinatio
of the original variates,

The positiong of the individuals can be plotted on pairs of right Cartesian
éomponent axes. Such plots will show discontinuities if they exist in the
data (e.g. Blackith and Reyment, 1971), but it must be remembered that any
such two~dimensional representation is distorted in that other dimensions

are not taken into gccount. Gower and Ross {1969) showed how such distortions
can be illustrated by superimposing the minimum spanning tree {see helow) of
points in the total dimensionality .on to their representation in the reduced
space. .

Holland (1969) pointed out that the vectors of the principal components

are not the only ones capable of defining a space, and it is only a matter
of geometrical manipulation to determine the extent to which the vectors
of other components corresponding to biological hypotheses, or derived
from other bodies of data, lie within such a space. Hence, it is possible
to carry out the initial process a stage further and to transform principal
components into other components which are either consistent with other
results or more meaningful in the biological sense, giving a more general
approach. ‘ ' :

There has been much discussion about the use of principal component analysis
and other ordination techniques in plant ecology; too many papers have been
written for detailed discussion here. See, for example, Bray and Curtis

"(1957), Austin and Orloci (1966), Beals (1973), Noy-Meir (1973), whittaker
{1973), Orloci (1975).

Pringtpal co-ordinate analysis

Principal component analysis is a special cqsé of principal co-ordinate
analysis, which operates on a matrix of some form of coefficient of as-~
sociation between all pairs of individuals (Blackith and Reyment, 1971).
In principal component analysis, it is necessary to standardize the data
unless all the variables are measured on the same scale. Hence, all
attributes contribute equally to the total variance. The ability to
ordinate a set of entities given only their dissimilarities can be use-
ful in ecological studies, and therq are some circumstances in which a
particular dissimilarity measure might be preferred. For example,

one might wish to emphasize dominance and thus use the Bray-Curtis
measure, or, perhaps, be more concerned with relative properties and

so0 use the Canberra metric (Clifford and Stephenson, 1975).

Principal co-ordinate analysis is particularly useful when there are
missing values or missing variates. 3In such a case, a correlation type
of simi}arity measure is reasonably yobust and reliable, whereas re-
placing the missing values by estimates or guesses is not very satis-
factory (Marriott, 1974).
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Factor analysis

Blackith and Reyment (1971) stated that it is very hard to discuss
factor analysis without generating more heat than light; it is the-
most controversial of the multivariate methods. Factor analysis was
proposed originally as a model for a well-~defined problem in educational
psychology, but it acquired a bad reputation among mathematicians and
was largely ignored outside the field of psychology, where it still
finds most of its applications. The method and criticisms were dis-~
cussed by Cattell (1965), Blackith and Reyment (1971) and Marriott
(1974), and a book was written by Lawley and Maxwell {1971).

Factor axes may be rotated to determinable positions in which they

are not necessarily, or even generally, orthogonal. Sneath and

Sokal (1973) considered that this makes scientific sense in that the factors
underlying the covariation pattern of the characters in nature are themselves
undoubtedly correlated, but they pointed out that there are problems, Clifford
and Stephenson (1975) went so far as to state "It is likely that in the future
factor analysis will play an increasingly important role in ecological studies”.
On the other hand, Gower (iS67b) considered it doubtful if factor analysis
really is a helpful way of viewing biological data, and Blackith and Reyment
(1971) asked: "Could it not bhe that factor analysis has persisted precisely
because, to a considerable extent, it allows the experimenter to impose his
preconceived ideas on the raw data?"

‘Canonical variates and canonical correlation

Allied to the above methods are two other multivariate technigques which
investigate relationships in multi-dimensional space, but which operate on
data which are already grouped either on the basis of individuals (cancnical
variate analysis) or variables (cancnical correlation analysis). In canonical
variate analysis, the relationships of the groups to each other in wulti-
dimensional space are investigated. As with the above procedures, the
canonical variate space usually has a lower dimensionality than the original
object-space. In canonical correlation analysis, the aim is to select pairs
of maximally correlated linear functions from the two batteries of variables.
Again, this reduces the dimensionality.

3.3 Cluster analysis

In cluster analysis, little or nothing is known about the category structure,
all that is available is a collection of cbservations whose category
memberships are unknown. ‘The operational objective, therefore, is to discover
a category structure which fits the cobservations., The partitions of the
category structure should have various .desirable properties (Jardine and
Sibson, 1971; Anderberg, 1973; Sneath and Sokal, 1973; Clifford and
Stephenson, 1975). In seeking structure in the data, two possibilities
should be borne in mind: (a) the data may contain no clusters, i.e. the
points are uniformly distributed in the measurement space and lack cohesion;
(b) the data may contain only one cluster, i.e. there is a high mutual
association among all points. Clearly, these two possibilities are ex-
tremes, with all other possibilities falling between them. Again, in
searching for structure in the data, it should be borne in mind that any
given set of data may admit of several different but meaningful classifi-
cations, each of which may pertain to a different aspect of the data,
Furthermore, cluster analysis is a method for generating hypotheses. There
is, as yet, no satisfactory definition of a cluster, and a classification
obtained from a cluster analysis procedure has no inherent validity, its
worth and its underlying explanatory structure is to be justified by its
consistency with known facts. Cluster analysis methods involve a mixture
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of imposing a structure on the data and revealing that structure which
actually exists in the data. To a considerable extent, a set of clusters
reflects the degree to which the data set conforms to the structural forms
embedded in the clustering algorithm (Anderberg, 1973).

Jardine and Sibson (1971) pointed out that it has gradually been realized,

in the last few years, that some of the variety of clustering algorithms
which have been proposed, despite superficial differences, implement the

same method, and that diffexent methods differ very widely in their
properties and results. ‘They also stated that the development of a general
theory of cluster analysxs has been hindered by two widespread confusions.
The first of these confusions is between algorithms and the methods which
they implement. --Thus, Lance and Williams (1967) have suggested as a general
theoxry of hierarchic clustering what ls, An. fact, a- generalized agglomerative
algorithm, for thedistinction is’ correCtly appliéd to algorithms rather than
methods. The second confusion concerns the role of models in data simplifi-
cation. The term 'model' may be used in two quite different ways. One

use covers the mathematical framework w1th1n which it is possible to

analyse the properties of the methods of data simplification. The other

use covers descriptions of algorithms in texms of their applicatLOns to

some interpretatlans of the data. The latter may be called 'analogue
models'. :

Two kinds of analogue model have been widely used in cluster analysis.
First, there are models which treat the ocbjects as points or unit mas-

ses in Euclidean space (e.qg. Gower, 1967a; Wishart, 1969a). Secondly,
there are models which treat the Oh]eCtS as vertices of a graph, and

values of the dissimilarity coefficient’ less than or equal to some threshold
as edges (e.g.‘Estabrook, 1966; Jardine and Sibson, 1968a) . Geometrical
models can be applied only if the data are metric. Even when the data

are naturally metric, a plausible geometrical intexpretation for an
-algorithm does not necessarily provide any justification for the method
which it implements. Thus, the various average-link and centroid

algorithms which have simple gecmetrical interpretations suffer from

very serious defects (Jardine and Sibson, 1871). The graph-thecoretic models
. are more generally applicable, since any dissimilarity coefficient and any
. stratified clustering can be characterized by a sequence of graphs.

Before going on to consider in detail some of the more common clustering
methods, we need to define some terms. A taxon is-.a taxoncmic group of
any nature or rank. ' Operational Taxonomic " Units (OTU's) “axe the lowest
ranking taxa employed in a given study; they way be. indlviduals, averages
representing species, exemplars of genera., For hierarchic cluster methods,
the end-point of the process is a dendrogram, pr tree-diagram in which
numerical levels are associated with the branch points. The clusters
specified at a particular level in a dendrogram have .the property that
they are pairwise disjoint, i.e. distinct clusters-dc not meet, and

every OTU bhelongs to some cluster,_possibly'consisting of that OTU alone.
A dendrogram is numerically stratified, i.e. it fulfils certain con-
ditions (Jardine and Sibson, 1971). Non-hierarchic cluster methods may

produce clusters which overlap, and ‘the latter may be numerically
stratified.

Stmilarity and dissimilarity measures

oot
In talking of groups or clusters, we have the concept of nearness . .
{similarity) of entities within a cluster, and of distance (dissimilarity)
between entities in different clusters. iiost cluster analysis methods start
with some kind of similarity or dissimilarity measure, and a wide variety of
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measures has been proposed (Jardine and Sibson, 1971; Sneath and Sokal,
1973; Clifford and Stephenson,; 1975). Some reflect the need to accommodate
particular forms of data, as, for example, those restricted to binary

data. Others allow for unevenness in the frequencies of attributes, and
minimize the influence of large or small values. .Yet others are based

on prior ideas concerning the statistical distributions of the properties
measured. For a wide range of data, most of the -indices. axe: -menotonic with
respect to one another, but not all indices are 1nterchangeable. Many of
the indices have become neglecteu because they are mere varlants of others,

- or because they have undesmrablﬁ propertles.

A dissimilarity measure is regarded as a y tmetrie’ if it possesses four
properties: (1) symmetry; (2) triangular dnequality; (3) distinguishe-
ability of non-identicals; (4) indistinguishability of identicals. These
properties are clearly useful, and measures which fail to satisfy any of
these criteria should be regarded with caution. For example, Euclidean
distance D is fully metric, but D“ is not. It is worth noting that measures
which are fully metric for comnlete data may beccme nonmetrxc if there are
missing data.

The choice of a distance measure may be dictated by the nature of the

data or by the special interests of the user. For the highly-skewed

binary data obtained from presence/absence records of plant species, it
would be usual to use.an information statistic; the standardized Euclidean

' measure is unduly sensitive to the presence of rare species or the absence
of common ones. On the other hand, for data with no strong outliers and

no extreme skewness, Euclidean distance would be preferred. If the data were
everywhere non-negative, with few zeros, but with occasional extreme outliers
which the classifier 'does not wish to dominate the analysis, the Canberra
thetric is 1ndlcated (Wllllams, 1971).

As*EUclidean distance depends on the scale of the variables, it is un-

© likely to have much meaning if some variables have a much greater range
of values than others. ~ Hence, it is generally used only when all the
measurements are of the same type or when they liave beefi standardized in
“some way (Marriott, 1974). Detailed dlscussioﬂs of the different measures
can be found in Jardine and Sibson (1971),° Sneath and qual {1973}, and
Clifford and Stephenson (1275)," S S '

Stratified hierarchic cluster methods

Most available stratified cluster methods are of hierarchic type, and the
end point of the process is a dendrogram. Jardine and Sibson (1971)
defined a dendrogram as a function involving a distance coefficient and
satisfying certain conditions. One of the criterxia for a dlstance co—
efficiernit to'be a metric was the trlangular 1nequa11ty. If this crlterion
is relaxed so that: '

- d (A. C) i max § a (a, BY, 4 (B, c)%
this. condltion 1% known as the ultrametric inequality, and dlstance
coefficients satlsfylng it are called ultrametric. The ultrametric
inequality insures that the pair-function 1mplied by the dendrogram
is moﬂctonlc. ‘Lack of monoton;cxty is a serious defect.

In stratifled hierarchic cluster methods, the smallest distance between
‘distinct groups is found, and taken as the current level, all, pairs between
i which this distance occurs are listed, The resultant graph, w1tn ‘groups

as vertices and smallest distances corresponding to links, is dlvi¢ed

into' its connected components, an’ groups lying in thé same connected




component are united to form a smaller number of larger groups. N?w inter-
group dissimilarities are calculated in some way, and the process is o
repeated. The methods differ in the way in which the intergroup dissimi-
larities are calculated. The methods most commonly used are: {1} single
link (nearest neighbour); (2) complete link (farthest neighbour); (3} un-
weighted pair~group using arithmetic averages, called by Lance and

Wwilliams {1967) the group-average method; (4). weighted pair-group using
arithmetic averages; (5) unweighted pair-group centroid method, called

by Lance and Williams (1967) the centroid technique; (6) weighted pair-
group centroid method, called by Lance and Williams (1967) the median
method. In pair-group methods, only one OTU or cluster may be admitted
for membership at one time. This constraint may be relaxed to give variable-
. group methods . :

In the singlemlink (nearest neighbour) method, new inter-group dissimilaritie
are not calculated. Instead, the original dissimilarities are retained, and
clustering is based on the smallest distance from a point outside the group t
a point inside the group. As a cluster expands, its outside members are near
to the outside members of other clusters, and are thus more likely to link wi
them. Lance and Williams (1967) described this method as 'space contracting
and it is this property that is responsible for the well=-known defect kncwn
'chaining', if.e: OTU's connected by intermediate OTU's are clustered together
Howewver, it may well be that the chaining is simply an indication of the lack
of any.real discontinuities in the data. Certainly, the single-link method
is conceptually and computationally very simple, and it has a large number of
- satisfactory mathematical properties. " In particular, it does not suffer from
discontinuwity; Jardine and Sibson (1971) criticized alternative hierarchic
methods (below) for their lack of continuity, which was regarded as being a
far more severe defect than chaining in many applications. Jardine and Sibso
(1971) proposed an axiomatic framework for cluster methods within which the
single~link method is unigquely acceptable, and in that context its defects
mist be viewed as those of hierarchic classification itself. Sibson (1973)
stated that since the defects of the single-link method are well-enough under:
stood. and of such a nature as to cause it to be misleading only rather rarely
the method itself should generally-be acceptable.

Complete~link (farthest neighbour) clustering is.the direct antithesis of
the single-link technique. When two clusters join, their similarity is that
existing between the farthest pair of members, one in each cluster. The
method generally leads to tight, spheroidal, discrete clusters that join
others only with difficulty and at relatively low overall similarity
values,  Lance and Williams (1967) called this method 'space-~dilating',

~-Sneath and Sokal (1973) listed it as monotonic, but Jardine and Sibson

- {1971) pointed out that in this method the output dissimilarity coefficients
are not continuocus functions of the inputs. The effects of this discontinuit
are not predictable in practice, and can lead to completely misleading result

To avoid the extremes of chaining on the one hand, and, on the other, small,
tight, compact clusters that leave out many of the less easily affiliated
OTU's, other clustering methods were developed. The average~linkage methods
“"“may ‘be divided into the arithmetic average and the centroid methods.

-Arithmetic average clustering computes the arithmetic average of the
dissimilarity coefficients between an OTU candidate for admission and
members of an extant cluster, or between the members of two clusters about
- to fuse. The arithmetic average may be unweighted, as in UPGMA {unweighted
pair-group method using arithmetic averages) also called the unweighted
average-link method or the unweighted pair-group method, in which each OTU
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Centroid pair~group clustering. B and C are centroids

of groups having n and m members respectively (n>m).

BC is less than AB or AC. When B and C Jjoin, the centroid
of the new group is D. In UPGMC, the ratio BD:DC is as

m:n. In WPGMC, BL=DC, In either case, the point now
representing B is nearexr to A than was the original point,
and the point representing C is farther away. The magnitude
of this effect depends upon the relative positions cf the
points, it is more pronounced if A is in the position a'.
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in a cluster is weighted equally. Or it may be weighted, as in the WPGMA
{weighted pair-group method using arithmetic averages), also called the
weighted average~linis method or the weighted pair-group method. This
differs from UPGMA by weighting the member most recently admitted to a cluste
equal with all previous members, and distorts the overall taxonomic relation-
ships in favour of the most recent arrival. Details of these methods are
given by Gower (1967a), Sneath and Sokal (1973), and Jardine and Sibson
(1971). The general taxonomic structure produced by UPGHA is similar to
complete linkage analysis, but there are some fine distinctions. WPGHMA
shares the properties of UPGHMA but distorts the overxall taxonomic relation=-
ships in favour of the most recent arrival in a cluster. Sneath and Sokal
(1973) listed both of these methods as monotonic, but Jardine and Sibson
(1971) pointed out that the output dissimilarity coefficients are not
continucus functions of the inputs.

Centroid clustering finds the centroid of the OTU's forming an extant
cluster, and measures the dissimilarity (usually Euclidean distance)

of any candidate OTU or cluster from this point, Centroid clustering
hag a simple geometrical interpretation, but no similar geometrical
interpretation can be found for arithmetic average clustering. UPGMC
(unweighted pair«group centroid method) weights each OTU in a cluster
equally. When two clusters join, the resulting centroid is nearer to
the centroid of the larger of the parent clusters (Fig. 4). Lance

and williams {1967) considered this method to be space conserving,

but the ultrametric inequality requirement is not met and the out=-

puts are not monotonic. The WPGMC (weighted pair-group centroid
method) has been called the wedian method by Lance and Williams (1967)
from its linear combinatorial formula first developed by Gower (1967a).
This method weights the most recently admitted OTU in a cluster

equally to the previous members., When two clusters join, the resulting
centroid is midway between the centroids of the parent groups. This
method shares the properties of UPGMC, including a lack of monotonicity.
There are some differences in the resulting taxonomic structure caused
by the heavier weight accorded to the late joiners of clusters (Sneath
and Sckal, 1973).

Because of the lack of monotonicity, and consequent reversals in the
dendograms, the centroid methods have been largely avoided, and the
strategy may be regarded as obsolete (Clifford and Stephenson, 1975).
There is a slight confusion in the literature over the use of the terms
'weighted' and 'unweighted'. The usage of Sokal and iiichener (1958),
used in this section, tends to be following in spite of the fact that

it is the reverse of what might normally be used. This is because they
fixed attention on the original individuals and not on the clusters which
may have been derived from them (Gower, 1967a).

Non~hierarchic cluster methods

Non~hierarchic classifications are those that do not exhibit ranks in
which subsidiary taxa become members of larger, more inclusive, taxa.

The relative merits of hierarchic versus non~hierarchic classifications

are difficult to evaluate. For traditional biclogical taxonomy, hierarchic
classifications are required, and even in related fields it seems desirable
to have higher ranking taxa that summarize common information about the
majority of the members of the (polythetic) taxa. Non-hierarchic
representation may be preferred when emphasis is placed on a faithful
representation of the relationships among the OTU's rather than on a
summayization of those relationships,

Jardine and Sibson (1971) discussed cluster methods which, by generalizing
to allow stratified systems of overlapping clusters, succeed in avoiding
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the defects of the methods outlined in the previous section, and also
recover more information than does the single-link method, although this

is achieved at the cost of greater complexity in the resulting classifi-
cation. They proposed two sequences of non-hierarchic stratified cluster
methods, Bk and Cu, which were shown to be satisfactory within Jardine and
Sibson's axiomatic framework. Bk operates by restriction on the size of

the permitted overlap between clusters, Cu operates by a restriction on

the diameter of the permitted overlap between clustexs, which is proportional
to the level of the cluster. Bk is likely, in certain civcumstances, to be
more unstable under extension of range than is Cu. VWhenever there are well-
marked groups with intermediates, Cu is likely to produce clusterings which
are more gtable as the range is extended, because it is less vulnerable to
alteration in the number of OTU's intermediate between clusters. Cu pays

for this greater stability by requiring stronger assumptions about the signi~
ficance of the vnderlying dissimilarity coefficient than does Bk.

Other clustering methods
A variety of clustering methods has been proposed. Most have not been

widely taken up because they are mere variants of already established
methods, because they have undesirable properties, or because they are

" impracticable in programming terms. These methods may be found in the

text-books already cited.

Lance and Williams (1967) proposed a flexible clustering strategy, the
characteristics of which could be changed by altering the value of a
parameter, However, there is some danger in adjusting parameters until
one obtains a result which is pleasing (but see below).

Edwards and Cavalli-Sforza (1965) suggested dividing the points into
sets such that the sum of squares of distances between sets is a maximum.
This defines what they mean by a cluster, Gower (1967a) drew attention
to the collossal computational labour involved in the direct examination
of all the possible partitiong of N points. On a computer with 5 p sec
access time, it would take 100 hours for N = 21 and 54 000 years for

N = 41. Orloci (1967) devised a criterion for overcoming this heavy
computational lovad, but this is not monotonic, and-reversals in its
value can occur {Sneath and Sokal, 1973).

It has been pointed out by several workers (see Wishart, 1969b} that
methods of this kind may divide dense clusters in an unacceptable manner.
Gower (1967a) raised the question of whether the method should maximize
intergroup sums of squares of the distances between group centroids.

The sum of squares method takes into account the sample size of each
cluster, and since some samples of equal importance in the overall clas-
sification in certain cases will be based on greatly unegual numbers

of OTU's, the method based on maximizing distances between centroids

may be preferable. However, the centroid method has the disadvantage
that there may be points in one cluster which are nearer to the centroid
of another cluster. With well-separated clusters, the maximum sums of
squares and maximum distance between centroid methods will yield the
same results, but so will most other methods. 'The xreal test of a method
lies in its ability to deal with more challenging cases (Sneath and
Sokal, 1973).

Various methods have been proposed which seek to minimize some function

of the root mean square pairwise dissimilarity within elements of the
partition and maximize the root mean square pairwise dissimilarity between
members of different elements of the partition. They are sometimes called
sun of squares or variance methods (Jardine and Sibson, 1971, Sneath and
Sckal, 1973, Clifford and Stephenson, 1975). The properties of these
methods are not well known, but Jardine and Sibson (1971) noted that there
is not, in general, a unique partition on which the measure is optimized.
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One example of such a method is that of Beale (1969), for which an algorithm
was given by Sparks (1973). 1In this method, the user specifies the number
of clusters regquired and the initial cluster centres. Initially, each
cbgervation is allocated to its closest cluster centre. The means of the
clusters are then calculated and are taken te be the new cluster centres.
The cbservations are then checked in turn to see if a move to a different
cluster results in a decrease in the total sum of squares. Beale (1969)
pointed out that this method may not find the best grouping (glcbal

optimum) but it does find one that could not be improved by moving any
single observation to another cluster (local optimum). Sparks {1973)

drew attention to the importance of the choice of initial cluster

centres, although it is not clear how this choice is to be made. He

also pointed out that the results obtained with different numbers of clusters
are not necessarily hierarchic.

Friedman and Rubin (1967) proposed a method based on minimizing the
generalized variance within the groups {i.e. the determinant of the pooled
within-groups sums of squares and products matrix). This idea seems
attractive at first sight, because it is equivalent to minimizing

Wilks' criterion. However, it was criticized by Marriott (1974), who
peointed ocut that 1f the data consist of samples from a mixture of unimodal
distributions, the groups defined by this procedure will be the truncated
centres of these dispersions mixed with the tails of other distributions.
The dispersion matrix estimated within groups will not be an estimate of
the dispersion matrix of the underlying distributions even if these are
identical, anc¢ there is no reason to expect that it will be the same within
the artificial groups found by the clustering process.

Marriott (1971) attempted to overcome the difficulties experienced by

other workers using the generalized variance approach by assuming a uni-

form distribution as a null hypothesis. If the null hypothesis is true,

the effect of an cptimum subdivision on the generalized variance can be
predicted. If subdivision of data into g groups reduces the generalized
variance by much more than that predicted, it is reasonable to suppose

that it corresponds to an inherent grouping in the data., 'The method

appears to work reasonably well, although when the modes are near to-

gether and the distributions overlap considerably, separation may be
impossible even for very large samples. On the other hand, some

peculiar unimodal distributions of an extremely leptokurtic type may

be subdivided. It is necessary to test each pair of groups in isolation

to see whether they should be recombined. Advantages of this method are:

(1) great flexibility in the data that can be handled and in the use of concom
itant observations; (2) independence of scale and of linear transformations.
Its disadvantages are: (1) the mathematical basis is not altogether solid,

in particular the criterion for subdivision is rather arbitrary; (2) a signi-
ficance test, though theoretically possible, does not vet exist; (3) the
computational load is heavy (Marriott, 1974).

Some cluster methods assume that the individuals in the groups are multi-
variate normally distributed, and the problem is then one of separating
mixtures of normal distributions. Beale (1969) noted that attempting to
minimize the sum of squares of the deviations of the observations from
their respective cluster centres is equivalent to maximum likelihood if
all clusters are assumed to be (spheroidally) normally distributed with a

common variance. Two methods based on a maximum~likelihood approach have’
been suggested.

Marriott (1974) considered the method of Day (1969) to:'be almost the
only classification technique that is entirely satisfactory from the
mathematical point of view. It assumes a well-defined mathematical
model (that the underlying distributions are multivariate normal with
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equal dispersion matrices), investigates it by well-established statistical
techniques, and provides a test of significance of the results. The fact
that it is difficult to apply, and in many situations is unreallstlc;
reflects the complexitv of the question that cluster analysis is trying

to -ansver. :

The other maximum-likelihood method is that of Scott and Symons (1971},
Their approach was to make maximum-likelihood estimates of the means,
variances and covariances, and the identifying parameters that assigned
the sample points to the groups. The resulting estimates indicated.
that the identifying parameters should be chosen to minimize the
generalized variance. Marriott (1974) considered their conclusions

to be misleading, and could not justifv the method of minimizing the
generalized variance used in this way. However, he~also'pointed out
(Marriott, 1275) that the assumption of underlving normal distributions
with equal dispersion matrices is seldom strictly true in practice, and
in many practical situations, when the proportions in the underlying
distribhutions are approximately ecual, minimizing the generalized
variance gives a sensible and reasonably robust clustering nrocedure,
although it is better regarded as a heurisgstic approach rather than.an
estimation process applied to a particular model.

Harriott (i1271) noted that the smallest increase in the genéraiized
variance occurs vhen an individual is added to the group for vhich
Mahalanohis' generalized distance of the individual from the group

- . mean is minimum. This suggests that once the cores of the grouns

are known, .allocation by multinle discriminant or wanonical variate
analysis. could be used to the same effect, provided that the theo-—
retical requirements of these methods are satisfied.

Other. cluster methods not involving a dissimilarity measure include
assoc1atlon analysis and related methods. . These methods were devised.
primarily for the classification of individuals described by binarv
discrete-state attrihutes. wWilliams and Lambert's well-known mono—
thetic. technicque of association analysis (see e.g. Sneath and Sokal,
1973) divides a set of CTU's into two subgroups based on the two states
of a single character chosen to maximize chi-scuare. The subsets are
similarly divided and the process ends vhen a predetermined number of
groups is reached or vhen the measure of homogeneity asz expressed by
chi~square, has. fallen below a critical level. Other authors (e.q.

see Jardine and Sibson, 1971) determine the fit of each martition

in terms of the information loss induced bv the partition. . Lance

and williams (1968) have adapted the association analysis method to
the information statistic 2I. So-called polythetic analyses seek
that bisection which minimizes the information loss or some cther
related function regardless of whether bisection corresnonds to the
range of the states of any of the selected binary attributes (Jardine
and Sibson, 1971), see, for example, !lacNaughton-Smith et al (1964)

and Maclaughton-Snith (1965). -

Methods. of monothetic association analysis have been used in ecology,

but Jardine and Sibson (1971) stated that the available methods are
unsatisfactorv in several respects: (1) they are ill~defined, data.
minimum lnformatlon loss, {(2) partltlon into two suhsets at each stage

is an arbltrary choice; (3} their application in taxonomy is restricted
to discrete-state attributes which do not vary within populations.

They further noted that the use of these methods appears to rest upon

a confusion between classification and diagnosis. IMonothetic association
analvsis oroduces a hierarchic classification by choosing a diagnostic
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key based on the available attributes which is in a precise sense optimal,
but the production of optimal diagnostic keys is not the Primarxy purpose
of classification in ecology or taxonomy.

Adhptzve mrthods

Most clustering methods are non—adeptive, that is, the algorithm prcceeds
toward a solution by means of a fixed clustering method which may,

to a greater or lesser extent, impose a structure on the data. However,.
an ideal clustering method would be adaptive. It would make an initial
exploration of the data to find the types of clusters that are probably
present, and would then modify the clustering algorithm to suit whatever
structure: is -considered to be most likely. Some methods which attempt
this were discussed Ly Sneath and Sokal . (1973)._ Two in particular will
be noted here, both ‘based on the 51ngle—link method.

A number of clustering methods possSess variance constraints, Wishart
{1969b}) -discussed thirteen. Implicit in the minimum variance approach .
is thé:concept that clusters.should have no significant overall variance
or spread, ‘and .this implies that in the case of a unimodal swarm the .
distribution should be split into an arbitrary number of compact sections,
Forgey (1964, 1965). argued that.-clusters should correspond to data modes,'
and there can only be as. many. classes .as there are distinct modes.' No
variance constraint is implied, or should be induced, for when a mode is"
elongated rather than spherical, the distribution merely reflects some
internal factor- of. variation for the corresponding class.. Forgey. inter-
preted a data mode as a contlnuous dense swarm of points separated from
other modes by eithex empty space. or a scattering of 'noise’ data. The
'noise' data may result from sampling errors. or they may be interpreted

as those natural phenomena associated with the intersecting tails of disjoint
continuous distributions. The cluster analysis problem is therefore to
isolate the dense centres irrespective of. the. interference (Wishart,

196%a, b).

Wishart (1969a, b) took the single—link method as a basis for his 'mode
analysis'. - The satisfactory mathematical properties of this method have
already been outlined. Wishart's solution to the clustering problem was:
to remove the 'noise' data, to cluster the remaining dense swarms by
single linkage, and then to re-allocate each noise. datum accordino to -
a similarity criterion. This was, achieved by selecting a distance o S
threshold r and a density limit k.. From each OTJ, the method tests '
whether K or more QTU's lie. within r, if so, the OTU is considared
'dense’ {this corresponds to counting the number of links to the OTU

in a single-link clustering). The 'dense’ points are then clusteréd

by a single~link method at the threshold r, and the resultant clusters
delimit the dense cluster nuclei. Bach 'non-dense' point is then allo-
cated to a‘cluster by some criterion. By fixing k and varyino ra hier-'
archical classification is produced. A .severe decision demand is placed
on the user in selecting r and k. : ' o

uarriott (1971, 1974) concluded that the method of Wishart was the

best available for detecting and identifying a natural grouping, and

it is unlikely to produce a meaningless or misleadi ng answer. - However,
he also pointed out that it is insensitive in detecting elongated modes,
and the choice of the value of k.may affect the conclusions. He (1971) )
made the following points: (1)  The search for.modes by dense pcints can '
lead to misleading results when continuous distributions are involved
unlegs samples are very laxge; (2) The dense points are defined. in terms o
of a 'spherical' scanning device.. This has certain advantages} dis-

crete distributions can be included and there is no problem of un-

wanted classification on the basis of a single variate. ©On the other
hand, the method is scale—dependent, s rather eensrtive to the inclusion
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of highly-correlated variates, and the existence of genuine multimodality
can be masked by the inclusion of irrelevant variates, especially if the
modes are ellxpso;dal rather than spherical

A similar strategy was proposed by Shepherd and Willmott (1968). In -
this strategy, the data are clustered in two stages. The purpose of stage
one is to determine which OTU's are most likely to be at or near the
centres of groups.' In this stage, a single-link method is used, followed
by ‘a process. of discarding peripheral OTU's until only compact nuclei ‘
remain. - The severity of this reduction process is determined by a

group reduction criterion. This results in a series of cluster nuclei
which are fed to stage two, in which the cluster nuclei ars expanded
using a modified pair-group average linkage method. A re-admission
criterion. determines how easy re—admission into a group should be.

These approaches retain the desirable properties of 51ngle-11nk clustering
and overcome the problems caused by chaining, and ecologists are currently
looklng Ainto their possxbillties.' : - : ~

The adﬁzsszbtltty crzterta of Fzsher and van Ness

Flsher and van Ness (1971) approached the problem of selectlng a 'best'
clustering procedure via decision theory, whlch tells us to restrict

our attention to admissible decision rules. They listed nine admis-
sibility conditions, and specified which of these were satisfied by the
following five clustering methods (the number given with the method in-
dicates the number of conditions it failed to satisfy): (a) nearest '
neighbour, 1; (b) furthest neighbour, 2; (c) minimum least squares - k
fixed, 4 with one condition not applicable; (d)-hill climb least squares -
k fixed, 5 with two not appllcable; (e) centrOLd, 5. : :

Hexre’ again, it is-clear that the two single link methods satisfy the
greater number of conditions. Fisher and van Ness did not fail these
methods on monotonicity (cf Jardine and Sibson, 1971, failed the furthest
neighbour method on this count), these methods failed only on the convex
admissibility, which Fisher and van Ness admitted does not seem :
universal s;nce it~ elimlnates many reasonable clusterings.

Fisher and van ﬂess {1971) also noted that, if two admissible clustering :
schemes give different dendrograms, one might wonder whether the data .

were suitable for a tree structure. This would seem to be a legitimate

use of ‘the flexible clustering strategy of Lance and Williams 1967). -

Thoughtful use of the properties of different clustering methods can
reveal certain properties of the data., For example, the nearest-

neighbour method maximizes the minimum intercluster distance at each

step. The furthest neighbour method minimizes the maximum cluster

diameter at each step.  If different dendrogxams result from the use. -

of the two methods, then both of the above objectlves cannot be attained
at the same time. A coémparison of the two trees would be revealing. .
Since, at present, there is little knowledge of how to choose between:

many different methods of caleculating similarity coefficzents and .
hierarchical clustering algorithms, presentation of the, data under. varxous
methods would give some, admittedly non—quantitative, information on.
reliability of any dendrogram cbtained. A more concise method of
presentation would be to run several methods and give the diameter of

the set of dendrograms cbtained. This would help avoid the computation timc
objection to Hartigan's (1967) approach, but not the need for a metric.




22

4. GRAPHS -AND TREES

In the graph theoretical sense, a graph is a set of points (vertices) ani
of relatzons between palrs of vertices indicated by lines called edges. A
set of entities and their dissimilarities may be represented by a graph,
with the entities shown as vertices and the dissimilarity relationships
between them shown as edges. 1In graph theory, the edges are not d;rectlv
associated with a real value such as a dissimilarity or distance. How-
ever, it is possible to associate a real number with an edge, and this
can be called its length. It is easy to see that with entities as ver-
tices, the lengths can be dissimilarity measires. Relationship is indi—
cated by the presence (or lack of relationship by the absence) of an edge,
betqeen two vertices. Hence, by breaking the'graph at various special
levels based on the lengthe of the edges, oné. can form clusters of
vertices. The edges connecting a cluster of entities indicate the set 7
of those entities that are more similar to_.each other than an arbitrary '
criterion.

The utility of the graph theoretical approach in this context is three-
fold. First, graphs serve as illustrative devices ‘that’ enable many -
investigators to understand a variety of problems connected with cluster
analysis.- Secorid, the graph theoretical approach enables us to derive
certain properties of clusters from well-established theorems of graﬁh
theory and also to employ graph—theoretical tools as solutions to
specific problems. Third, they provide extra information when superim-
posed on ordinatlcns (Sneath and ‘Sokal,. 1973)

This leads us to certain basic concepts in graph theory. A graph is

said to be connected if every pair of distinct vertices is joined by at _
least one chain. . A minimally connected graph contains only one direct T
or indirect path between every pair of vertices. Removal of one edge )
from such a graph-disconnects it into two subgraphs, which are also maxi-
mal connected subgraphs hecause they have no proper supergraph which is
conhected. A graph is said to be a tree if it is connected and has no
circuits, The removal of .any one edge of a tree yields a disconnected
graph, since the edge removed constituted the unique chain joining two
verticesy” “Hence, a tree is a minimal connected graph, If all vertices -
of graph G are'included in tree T, then T is said to span G. A minimum
spanning tree has the smallest possible.sum of the lengths of the
vertices.,

A special family of graphs is the family of directed graphs (also known'
as networks), which imply direction in the edges. ' A'directed tree has
edges with direction and a unique path from one vertex; talled the root'
of the ‘tree, to all other vertices. A conventional dendrogram is an ex~
ample of such a- graph

Minimum spanning trees have been found useful as ‘an additional perspective :
of taxonomic relationships in an ordination (e. .g. Gower and Ross, 1969% Rohi-
1970; schnell, 1970).. Some. cluster: analyses leave invariant the dis-
similarities between certain: pairs of: objects . The set of elements left
invariant by the single—llnkage clustering method corresponds to the

edges of the minimum spanfning tréé. (Rohif, 1974a). Gower and Ross’ (1088}
drew attention to'the value of the minimum spanning tree in single-

linkage cluster analysis.
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Wirth et al (1966) presented a computer method for cluster analysis based
on graph theory (cf Estabrook, 1966). The method, essentially a form of
51ngle—11nhage cluster analysis, is based on the partition of the collection
of specimens (OTU's) into equivalence classes {(clusters)} which are maximal
connected subgraphs. In using this method, Wirth et al gave to the ve:tlces
the values &f theé similarity coefficients between the pairs of oTu's.
Clusters were de5cr1bed by the value of similarity associated with them,

and the numerical expression of the isclation of a cluster {called its
moat') was the value of the similarity coefficient at which the cluster
would join with ancther .cluster or OTU. The moat could be thought of as

a measure of the empty space around a cluster. VUhen this method was

applied to 31 members of the Oncidiinae {Orchidaceae), the results were
interesting, and the hierarchy showed good separation of c¢lusters. The
results were considered to be more satisfactory than those for.other

cluster methods with the same data. In some’ cases;:cClusters were linked

by 'articulation points', i.e. specimens intermediate between two clusters.,
The graph-theory model provided a theoretical framework within which the
nature of the relationships could be examined.
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5. GENERAL CONCLUSIONS

It seewms clear from what has been written so far that it is advisable to
have a clearly-defined strategy for the application of numerical technigques
to an ecological problem, in order to make it clear why the various steps
have been taken, and to avoid the numerous pitfalls with which the subject
is littered. Applying a particular technique to a set of data without a
good reason may give misleading results, especially if the data do not
happen to suit the method. Again, some methods imply that a particular
structure exists in the data and, if it does not, the results can be mis-
leading. - For example, the user may think he has a realistic classifi-
cation when in fact he may have an arbitrary alssectlon. ’

It is important to consxder the nature of the data required, It seems
clear that binary data are unsatisfactory and should be used only in
certain restricted circumstances. There is also the possibility that
the data may need scaling or transforming in some way. Unless the
ecologist has a clear understanding of likely structure in the data,
the next step will be an examination of the data to get some idea of
its inherent structure and to look for discontinuities in multivariate-
spacge. Ordination techniques are useful for this purpose, and also
reduce the dimensionality. ‘

If discontinuities do occur, they should be obvious in this preliminary
examination, and may provide a basis for classification (e.g. Blackith
and Revment, 1971), If clear discontinuities do not occur, this may be
for one of two reasons: (1) there is only one cluster and all the entities
belong to it; {2) clusters exist but 'moats' are obscured by 'noise'
data or the fact that the frequency distributions of the clusters have
overlapping tails. Here, the problem is to search for the presence of
modes about which clusters can be formed. For this purpose, a simple
single linkage cluster analysis appears to be suitable, and has the
advantage that it can be used in conjunction with the minimum spanning
tree, which provides a useful visual aid. We are currently testing
this approach on two practical problems, and are also investigating
the problem of allocating points to the cluster nuclei,

A hierarchical strategy optimizes a route between the individuals of
which the sample is composed, via intermediate groupings, to a single
group consisting of the entire sample. The groups through which the
process passes are not necessarily optimal in themselves, the best route
may be obtained at the expense of sone slight reduction in homogeneity
of individual groups. With non-hierarchical strategies, the structure
of the individual groups is optimized, and the groups are made as
homogeneous as possible, However, no route is defined between groups
and their constituent individuals, or between groups and the complete
sample (Williams, 1971).

Marriott (1974) stated that as a method of cluster analysis, if there

is no special reason for imposing the nested structure of the dendogram,
the strictly hierarchical methods have serious disadvantages. For
example, to decide whether a division intoc two or three groups gives

a better representation of the data, it 1s necessary to compare the

best division into two with the best division into three, and hierarchical
methods will not usually give both. Blackith and Reyment (1971, p. 277)
stated that it seems likely that hierarchical techniques are almost always
undesirable in theory, but the consequences of using hierarchical tech~
nigques when the structure of the experiment renders such a practice dubious,
seem not to be very serious.
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If discontinuities do not occur, or if they do not divide the data in .
a way which the researcher considers to be useful, then the problem is
one of dissection, not classification. If dissection is to be carried
out, the basis of the dissectlon must be clearly defined. For example,
an ecologist may regard the vegetation as essentially continuously
changing, but changing more rapidly in some regions than others. He
will therefore wish to treat these zones of maximum gradient as if

they were discontinuities, and to sharpen them by an appropriate
technique (Williams, 1971). Some cluster methods have properties which
make them useful for different types of dissection, for example the
various minimum-variance methods and methods of the association analysis
type. The flexible clustering strategy of Lance and Williams (1967) may
also be useful for this purpose.
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