





1. Introduction

In an earlier paper (BOCOCK, 1973}, one of us described the collectlon

of soil temperature data in a deciduous woodland, Meathop Wood, in the

southern Lake District (Merlewood project 301/12), In a separate study
(Merlewood project 108), various soil characteristics,, including soll temperature,
were examined in 48 woodlands scattered over the Lue District and around

the northern shores of Morecambe Bay. HOWARD and BENEFIELD (1970) provided

-»tan dntroductlon to this study.

. Temperature data were collected in different ways in the two projects.
'*In.jol/lz they were recorded hourly for over four years using a strip-chart
recorder and thermistor probes, whereas, in project 108, a modification

of the sucrose inversion technique of BERTHET (1960) was used to determine
successive four-weekly mean temperatures over one year on each of the 48
aites.

In both projects, data analysis problems arose, for éxample, because of
the number of data involved and the way in which data were collected, and
because some values were missing, In addition, we' required a ‘satisfactory
‘method of describing.: and comparing- temperature patterns at diffevent times
and:soil depths. Harmonic analysis solved many ‘of these problems and
we suggest that this method could be used profltably by many mbre workers
- 1f they understood 1ts rudiments and gained some appreciation of its potential.
These are the basic reasons for producing this paper, in which we give

an outline of the principles of harmonic analysis and describe some of
the ways in which we have used the method with temperature data.

2, ' Basic principles
2.1 Analysis

Harmonic analysis is concerned with the representation of a waveform
88 B serles of mathematicsal terms and the calculation of estimates
for the parameters associated with each term, A waveform 1s a line
representing the change in one variable, such as temperature, with
snother variable, such as time, Tt may be a smooth curve such as

a sine (Figure 1) or cosine curve, or it may follow the general trend
of such a curve, but with corrugations imposed by variation in the
basic data used (Figure 2). The analysis is usually applied to data
which clearly change or are expected to change periodically, but it
may -also be used to describe curves which show little evidence of
regular oscillations, for example that given in Pigure 3,

A sine curve, such as y = sin x (Figure 1), is a simple example of

the type of data which one may wish to examine. The dependent variable,
y, could be temperature, but here it 1s expressed as sine values ranging
from the + ) to -1. The amplitude of the curve, a, is equivalent

to the half-range. The independent variable, x, could be time, but
here 1t is expressed 1n radians. The latter are easily converted

to angular degrees, because 2 7T radians are equivalent to 360 angular,
In the example, the period of wavelength of the curve, that is the

units of x required to include one complete oycle, fromy = O to y

= ] back through ¥y = 0 to ¥y ® -1 and back to y = 0, 1s 27 radlans.




Any periodic function, f (x), whose period is 2 l‘ s can hbe expressed
in the form
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&, is the mean value aroumd'which the curve oscillates and is equivalent
%8 y = 0 in Pigures 1 ahd 4," The first term after a,, c1 sin (x .

+ A7), is celled the fundamental or first harmonie, cp sin (x +.An), .

the second harmonic arnd cp sin {nx + Ap), the nth harmonic. - Fundamental

and first harmonic are used here Anterchangeably for the filrst term

but note that some authors may ‘follow the practice .of :the phystieiats

and refer to term one as the funddmental and terms two to n as harmoniQS-
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Each term may be expressed graphidally as & sine curve) the period
of the curve being equivalent to the fundamentsal period divided by::
the number of the harmonic. A set of data may thus be modelled by :
a series of superimposed sine curves whose perlods decrease and whoge
frequency of oscillation)increases ‘with the harmonic numbers : In
a plot of the nth harmonic,. the'abscissa always retains'the length s/
of the fundamental th covers ‘the spes of the basic data'sety - ud
but it 1is divided info 360%n or 2" n radians' (Figure 4" In the
specially selected examb,e 1ustrated in"Figure #, the gbseérved: ﬂa&ww
(Table 1) are modelled by ‘two ‘superimposed curves, - If there are: .

N basic data, a complete model which accounts for loq% of the varihbllity
in the data, is constructed by addition of N/2 sine terms or curves:.:.

So far in this paper, we ha?e arbitrarily chosen to use sine terms !
and curves in the discussion, but equation 1 can also be written in o
a cosine form _ . o
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or a cosine and sine version

£ (x) = a,+ cq sin x cos A} + ¢} eo0s x sin Ay L..a.aL.u

(o]

a F & & 9 i + i
, ¢, sin nx cos A+ ¢ oS OX sin Ay (3)

or
f(x) a +a.l COSJ{+bl Sin]{.........oo- (4}

where 2y, = Cpn sin An

and bn = oeq cos An
Eguation 4 can be re-written as .
20 .
¥ = oayt EE; (an cos x + b sin x) -(5)
n=1

.

which indlecates that the dependent variable y may be estimated by

adding the mean a, and the sum of up to an infinite number of composite
terms each of which includes the independent variasble x and coefficients
ap and b Equation 5 is an expression of the Fourier serles on

which harmonic analysis is frequently but not invariably kased. Further
information on this series may be obtained from standard texts such

as CALUS and FAIRIEY (1970), DAVIS (1973) and SMITH (1966).




A Fourier series and, in the strictest sense, Fourier analysis use
an'infinite_number of terms to desdribe an infinite number of closely
-ad jacent data points, that is a gontinuous curve, Harmonic analysis,

. a special case of Fourier snalysis is concerned with a particular

":numbep“of_qata_pants'(N) which are usually equally spaced along,

-or more strictly around, a pqrticgigf,pdrtibﬁ“df the hypothetical

continuous curve., It is possible £o lse Fouriér-baséd techniques

for analysis of irregularly sampling data, but such data réquire a
more sophisticated approach than that adopted in this paper.

From the previous paragraph, it follows that the basle equation for
Fourier-based analysis of temperature data (t) can be written

t =gt F (py cos x g sin x) |
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. with a change of nqtetion from equation 5 because we are now deallng

" .with a specific.iype of datd. Note that n'is nd¥‘limited to the

.. N | ;..-'__}..! LA . .‘..: . v
.- Some authors .(

theeretical maximum Q?}&(g_terms;yﬁfﬁéinélyhe”qgmbér of data points

. . 'equaliy spaced-in:time, =~ | S
6 in thelir analysis but, for convenlenc “of intérpretation and presentation

-

. of. the results of the analyeis, this egquation’is more uslially expressed

. solely, in, cosine terms, as,in equation 2 (TURNER, 197 1), or, in sine
. terms aS;in.equatiopgll(BALIARD}?ggﬁgjfhERpQKS“and"CﬁRRUTHERS, 1953 ;

. JAGER, 1972; KRISHNAN. and KUSHWAHA, 1972; MOTTERSHEAD, 1971; PEARCE

. - end GOLD, 1959; SIEGENTHAIER, 197%;" VAN WIJK and DE VRIES, 1963;

- . WEST, 1952). - We use-eguatio 6 to allow calculation of the coefficients

P and q and the following version as the final model

o %§2 o ' _
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n=1

This indicates that temperature t,, referring to some particular point
in time i, may be estimated from "t , ine mean of ¥ data, plus the

sum of up to N/2 terms. Each term may be represented by a sine curve
as in Figure 4. Esch curve has an amplitude or half-range a;, which

_ P 2
is algebraically equivalent to“(pn + q, where D and q, are the
coefficients from equation 6,

x, which is sometimes called the vime angle (CONRAD qn%OgOLLAK, 1950),

equals iz where 1 = 0, 1, 2 ansnsrrne .» M-l and z & P in angular
2 .

degrees or p ||in radians. The latter is equivalent to w, the radial

frequency, of VAN WIJK and DE VRIES, (1963). P denotes the length of
the fundamental period in the time units which are of particular interest,
For example, if 52 weekly mean temperatures are being analysed, one
complete period or cycle of the fundamental curve extends over He weeks
s0 P = 52, In the 27th week, therefore, 1 7 26 and

z = 2%% so x = 26 (égg)'qr 180° ahgular. P and N are often numerically - -

equal, as in this example, but P may be higher than N if the oblect of the
analysils is to obtain eéstimates of y for x values lying between the
sampling points, as in section 3.3 below. Note that, for all harmonics,
P retains the same value, but x changes from O %o M- 1 (2@9), and n,

the frequency of oscillation of the sine curve Ilucreases fro% one for
the fundamental to N/2 for the N/2th curve (Figure *3.




An in equation 7, the phase angle. offset angle or angle of 138, ig

., equivalent to arctan (p./a,) (= 1/tan (p,/qn)) where p, and q, are
the coeffioients from equugion In Figure 1, the sine curve 1g
drawn go that it begins at y = 0, reaches a pesk at 900 and a trough-
gt 270" and, bocause we have based this curve on published sine- values,
the fundamental curve asecounts for virtuglly all the variability in
the data. For the point at the beginning pf this curve, equation

T woyld read as follows :

o+1sin(0(—L))+A) | : o T
so sin (A Y=0 and A =0° o | : | |

Where y = 0707, sin (Az) = 0.7071 mog A, = 4s%. At the peak of the
curve, y = 1, sin (Ap) = 1 and Ap = 90°. _ S

From this example, it 1a qloar that the phase nngle 1nd1oates tha
starting pojnt of the ourve on the angularscale being tsed for that
“eurve. It therefore algo determines the Valuaq of-x at ‘which the
extremes of ¥y geeur, that is where nx + A, is' 90% (0,51 ) for the
maximum or 2707 (3,57FT ) for the minimum.  Other desired values
.on the curve may be caleulated by satting the equation T vuriables

| qfappropriatelyfas-in_seetion 3 3 bel@wg

- In the secohd axample or hnrmonio analysis (Figura Ky as in the Pirst

' {Figure 1) the fundamental curve begins at § = 0 so the phaae angle

is 0. The angle for the second harménie has to be 180° to complete

the model of the data. Third and subsequent harmonics are of negligible
importance and may be ignored., Table 2 gives the pomplete analysis

of the data.

Some computer programe produce phase angle values in a form uncorrected
for the quadrant in which the angle lies. This is indicated by the
negative sign attached to some angle and by all the angles being less -
than 90°. Correction should be made as follows by reference to the:
signa taken by p, and q, in equation 6 (BROOKS and CABRUTHERS 1953;
CONRAD and POLLAK, 19507,

pPn t an +| A, no correction

Py * Uy " 180° - Ap
o
pn-l- qn-lBO +An

aQ
Pp+ Ay * 360 - A,
The above correction is done automatically 1n the current Merlewood
programs (HASCV, HAST and HAFIT).

Equation 7 holds for both odd and even numbers of data but the calculations ’
of the last harmonic vary slightly with type of number, CONRAD and

'POLLAK (1950) p. 131 give relevant details. The Merlewood programs

are constructed to cope with odd and even-numbered data setls representing
less than or more than one fundamental cycle or periocd, Examples

. of the sort of differences one can expact between the outputs of harmonic
analyses of regularly varying data where the date sets oontain leas

than one and up to three periods are glven in Table 3,




Note particularly that the mean around which the harmonic curves osclllate
varies with the number of data and that, if the data represent x complete
. periods, the xth term and terms which are multiples of x account for

#imost of the variability. Other terms have a negliglble influence

. and reflect differences between periocds, and the corresponding curves

2,2

- are virtually straighit lines. Where the data set does not cover
exactly one or more periods, then more than one term will frequently
be required to account for a high percentage (> 90%) of the variability
in the data. Clearly, inspection of the output from harmonic analysis
can reveal much about the pattern of the data which are being analysed.

Synthesis

- Harmonic synthesis involves assembling the fundamental and a selected

number of harmonic terms and then predicting values from the mathematical

- model which has been created. If N equally-spaced observations were

used in the analysis and if N/2 harmonics are used in the synthesis
and N equally-spaced data are predicted, then the difference between
.the observed and predicted values should be negligible. The total
variance for the observed data is gilven by = (t - to) /N using the
notation of equation 7. PANOFSKY and BRIER (1958) and many other
.‘authors state that the variance of the fundamental or any harmonic

. is given by a an/e except for the last harmonic where the value is

" 8§, ay being the amplitude of curve n. However, this applies’ only

 'tg even-numbered data seis, For odd-numbered sets the variance is

“ ~an/2 for -all curves. The total of the variances for n harmonies

S

3.1

‘can be expressed as a proportion of the total varience and the synthesis
stopped when the proporiion reaches some arbitrarlly selected limit,

. or, alternatively, when the harmonic variance itself drops to a selected
value. A Merlewood computer programme, HASCV, which caleculates the
total variance and the percentage of the total variance accounted
for by n harmonics, is available (Table 2).

Harmonic analysls and synthesis programs may be tested a) using worked
examples from the literature (CARSON 1961; CONRAD and POLLAXK 1950)

~or b) by checking that synthesis with N/2 terms (i) gives predicted

values which are virtually the same as the original observed data

(ii) accounts for exactly 100% of the total variance. Another valuable -
test is to use a set of sine values extracted from tables as test

data {Figure 1). If values covering only one period are used, then

the output for the fundamental should be as follows: mean 0.0, amplitude
1.0, phase angle 0, and much higher than 99.9% of the total variability
accounted for, the particular percentage dependlng on the number of
decimal places in the test data.

Application of harmonic analysis and synthesis

Introduction

There appear to be two main types of approach to the use of this method.

The first, of which we have had no experience but which is used in

meteorology, attempts to answer the questlons "Are there any identifiable
" periodic components in a given waveform?", "How many° and "What

are thelr statistics?". Relevant information and examples of this

approach are given by BROOKS and CARRUTHERS (1953%), HARTIEY (1949),

HORN and BRYSON (1960), PANOFSKY and BRIER (1958).

The second approach, which we illustrate below, assumes that there
are perlodic¢ fluctuations over defined periods, for example one day
or one year, and is concerned with describing these fluctuations objectively,
The mathematical models which are constructed are then used in various
ways, for example, as predictive models, or in the comparison of changes
mm hmdnne s drammdiahlae with Aharncas dn s third variahle f-5 2\
in the estimation of migging data values—-i3.5) and in the adjustment us
Ant o ('7;,)-1-\,




3.2 Description and comparison of patterns of change in varlables

This application is illustrated using the results of our examination

of weekly mean so0ll temperatures calculated from hourly dats for a

three year period and for six soil depths (Project 301/12), Because

365 deys is not exactly equal to 52 weeks it was necessary to begin

each 'year' on the same date to ensure synchrony of data. The one

or two residual days at the end of the year were ighored. A typical - -
data set is shown in Figure 2 together with the fitted fundamental :
curve and points based on the complete model. From Figures 2, 3

and 12 1t is clear that in accordance with theory our observed temperatmre "~
data are modelled very well indeed 1f all the harmonics are used. :
An indication of the gradual build-up of the complete model is obtained
. from the cumulative percentage variance curves (2.2 above the Figure

5). Note thet the shape of these curves varles with soil depth,

The fundamental term normally accounts for more than 90% of the total

variability in our temperature data but two or more harmonics are

usually required to account for more than about 95% of the variability
- {compare, CARSON 1961; FUGGLE 1971; KRISHNAN and KUSHWAHA, 1972; TURNER

1971).. . The fundamental curve indicates the main trend in the data

(Figu;é@éjfaﬁd#%hq harmonic curveés indicate various unspecified types

of minor variation. As PANOFSKY and BRIER (1958) point out, each

harmonic does not necessarily have any physical or bilological meaning.

Nevertheless, careful inspection and consideration of the harmonics

is always advisable because occasionally, as in HORN and BRYSON'S

(1958) study of precipitation patterns over North America, they have

a very definite significance in relation to the variable being studied.

Where strong periodicity does not occur in the observed data or in

the residual dats after extraction of one or more terms then the remainimg

terms provide merely a mathematical deseription of the changes in

the data.

Where the fundamental accounts for most of the variability, its statisties,
the mean, the amplitude and the phase angle, are frequently used in
comparisons, but caution is required in their use (see Section 3.3

below), With our data, we compared the temperature curves for different
soil depths and years (Figures 6, 7(a) and 8). A full account of

the background to this study will be given elsewhere (BOCOCK and WHITE,

in preparation). Here we wish to give only an outline of the analysis

to illustrate how this approach can form a useful basis for other

analyses.

The study involved using regression anhalysis to test the linearity
of the relationships between the dependent variable (mean, amplitude
or angle) and the independent variable, soil depth, for each year
and the use of a covariance analysis program to allow comparison
of the psrallelism and elevation of the curves for the three years.
All the nine regressions fitted by the method of least squares, were
linear or only slightly curved (quadratic term not significant or
only just significant P = 0.05) (Figures 6, 7(a) and 8).

The annual mean temperature, unlike the amplitude and phase angle

of the fundamental curve does not have to be calculated using harmonic
snalysis but it is an essential statistic of each harmonic term.

The slopes of the first and third mean temperature curves (Figure

6) where not significantly different from O(P0.20) but the slope
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of the second curve was significant (0.001 < P £ 0.02) but only very slightly
positive so in genersl there is little change in annual mean tempersture with
s0il depth. The difference between the three regression coefficients were
not significant (0.05€ P&0.10) so the lines must be regarded as parallel.
The difference in elevation of the lines was highly significant (P 0.001)
so at least two of the lines had a signficantly different elevation. The .
‘elevations of the twe lines which had the most similar elevation, lines two
and three, were only Jjust signficantly different from each other (O. Olw<~P<:
0.05) and were highly significantly différent (P & 0. 001) from the elevation
of line one.

Amplitudes of the fundamental curves were transformed to their natural logarithms
to reduce curvature. The slopes of the three lines (Figure 7(a)) were all
negative and significant (0,001 P €0.01). The difference between the slopes
was not significant (P> 0.20), but there was a highly significant difference
between the elevations of the lines (P € 0.001).  Further tests indicated

that the elevations of lines two #nd three were not significantly different

(0. O5<;I’<:O 20), but both these values were highly significantly different

from the elevation of ‘line one (P ¢ 0.001). . '

. The third statistic of the fundamental term, the phase angle, decreased gignificantly
7 (p ¢ 0.00L) 'with soil depth (Figure 8) and the slopes in the three years were

not significantly different (P 3» 0.20). Assuming linearity, the elevations

of lines one 'and two were not significantly different (0.05 £ P & C.20) but

were different from the elevation of line three P.CLO 001).

Having examined the temperature variable soil/depth/time relationships individually
as outlined above it is then possible to compare these relationships. For
example, it is worth noting that, for each temperature variable, the regression

for one year differs significantly from the other two regressions, but that

the 0dd year is 1966-67 for mean and amplitude (Figures © and 7(a)) end 1963-69

for phase angle (Figure 8). Or, again, sccording to the theory of heat conduction
in a semi-infinite homogeneous medium, the lag extreme values should increase,

that is the phase angles should decrease, and the logarithm of the temperature
amplitude should decrease linearly with scil depth {CARSON, 1961). GLOYHE

(1971} states that the annual mean temperature is the same at all soil depths

in a homogeneous soil. Clearly, analysis of our temperaiture data suggests

that the Meathop soll is almest, Tut not quite, entirély homegeneous with depth
(Figures 6, 7{a) and 8), but in some aspects, organic matter, root, stone and
moisture content, the Meathop =zoil is known to be very heterogeneous (SATCHELL,

in preparation). This anomaly can be at least partly explained by the small
number of data in each data set and the relatively high variability which together
make demonstration of curvature more difficult,

An alternative approach Lo the compariscon of temperature curve statisties for
different years and zoil depths is 10 use narmonic analysis comblned with analysis
of variance as described in detaill by BLISS {1970). If required for comparisons,
variances can be caleulated for individual amplitudes or phase angles {(GUEST,
1961; BLISS, 1470).

As there are defined relationships between mean temperatures, time and
soil depth in Meathop Wood (Figures 6-8) it would be possible to construct
‘a model, similar to that used by FLUKER (1958), which would allow
prediction of weekly mean temperatures at any s¢il depth in the range

0-50 e¢m or at any point in time wiithin the lhiree years
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studied. Estimation for times or soil depths outside these limits

"would be a dublous procedure, but might be pogsible 1T air temperature
- was included In the model as a continuously measured and snalysed

variable. The latter possibiliiy is being examined clirrently as
one way of predleting soll temperature from zair temperesture and other
climatic varlables (BOCOCK et al., in preparation).

Interpeclation of values from a harmonic model curve

Interpolation 1s possible using hsrmonic models ranging in complexity
from the fundamental curve to one bullt of N/2 harmonics.” However,

1t must be stressed that the predictions from the models apply oaly

to the same sub~divizions of the time-scale as those used for the
observed dsta. For example, below, we have estimated mean temperatures
centred on each day of the year from a model based on four-weekly
means 8o these estimates can only be four-weekly means.

Wé have used interpolation with models incorporating N/2 harmonies
in several ways. For the Meathop data, we estimated maximum, minimum
and range for each model by creating a compliter disk file of predicted
weekly means, one centred on each day of the year, and by scanning
this for maximum and minimum values. Amplitude (half-range) derived

from these extreme values {Figure 7(b)) changes with soll depth and

year in a similar way to the amplitudes of the corresponding fundamental
curves (Flgure 7(a)), but the absolute values of the data and the

slopes of the regressions differ alightly with the complexity of. the
model used, This suggests that in some respects the fundamental may
not be a satisfactory model of changes in our data.

This point is clarified by consideration of the mean lag in temperature

with soil depth (O to 50 cm)} calculated fef either the phase angle -
of the fundamental (Figure 8) or the times of extremes in the complete

model (Figure 9). These sources give estimated mean lags of respectively
about 14 and 3 days. :

The former figure appears to be the more realistic of the two Jjudging
by published temperature lag figures of 6 days (MOCHLINSKI, 1970)
or 8 days (ANONYMOUS, 1968) per 30 cm soil depth, and 12.6 days for

" 1050 c¢m depth (SIEGENTHALER, 1933). An explanation of the difference

in our two estimates of lag is obvious if we consider the weekly mean
data for one year, say 1967-68. First, the fundamental expresses
the general seasonal trend in the data (Figure 2) regardless of the
percentage of variability for which it accounts (Figure 5). The
maxima, @6 July for O cm (Figure 2) and.9 August for 50 em are therefore
the trend maxima. Second, the complete model accounts for virtually
all the variablility in the data, so the lag is virtually estimated
from the times of maxima of the observed means, 24 August for O cm
(Flgure 2) and 25 August for 50 em. The shorter the period on which
each of the observed means is based, the lower the lag 1s likely to
be. On the basis of MOCHLINSKI'S (1970) value of two hours per
Pour inches (10 em) for diurnal lag, we would have expecied a lag

of only 10 hours if we had used hourly data in our analyses.

In project 108, a different type of data-handling problem arose.

Each site was sampled every four weeks but only a guarter of the 48

sites could be sampled every week, As a result, the mesn temperatures

for the sites visited in week n were not comparable to those for sites visited
in weeks n + 1 to week n + 3, nor to data other than temperatures, which




were collected as spot readings each time a site was visited, To

. surmount these difficulties we carried out a harmonic analysis and

synthesis of each set of 13 data {Table 4) and then tracked along
the model curve a standard number of days from each sampling.date
and read off the data (Figure 10), In this way, we were able to

:aproduce for all sites, sets of temperature data which were strietly
. comparable with each other and with other data. TR

AU VLI

"It appears to be adv1sab1e to check the shape of the model curve between

sampling points before treating data as described above because a
curve that fits the observed data very well: ‘may show some’ ecorrugations
between the points (Figure: ll) and these ‘may rediice the acgéiracy of

;- interpolated values. It is gnticipated that this phenomenon will

be of imporpanoe only with ver& $mall data’ Sets Where theohumber of

’ ';ﬁharmonics in the model i$ insufficient to produoe 8 well»&hoothed -

. curve. .. The .eorrugations’ are eXpbcted t¢ be gredter 'if #he-data are

spot resdings. rather than meths ‘derived from “ihtégrated. teméerature '
such as those Used in the current project 108 :

Calculation of missing value estlmates using 1terative harmonic analysis

Harmonie sanalysis has proved to be useful in the caleuldtion' of missing

. value estimates of mean temperature in project 108 where each complete
;o data, aet contalned only 13 four*Weekly meblils (Flgure/12)vi ' The procedure,
. which- mey be carried out using 8 widely applicable program HAFIT«(Table

53 involves the following steps in the flrst 3eries of iberation5°-

a)} Insertion in the computer data file of a missing value estimate
derived by linear interpolation from adjacent values, Where
the missing value occurs at the beginming or end of a data set,
an observed data from the other end of the set is used as one
of the "adjacent" values.

b) A4 pre-selected value is added to or subtracted from the linear
interpolate. The velue ce&n be determined only by experience
with & particular type of data. For the data sets from project
108, which all produced approximately the same shape of curve
{(Figure 12) but which had amplitudes ranging from 4° o 10%%,
an initial value of about -1.0°C was suitable for the first series

*¢  of iterations {Table 5).

¢) Harmonic analysis is carried out on the revised data set and
estimates of mean itemperatures corresponding to the observed
values inciuding the initial missing value estimate are calcUlated
together with sums of squares of differences between the observed
and predicted values.

d) The missing values estimate is incremented by a small amount
and ¢) is repeated on the revised data set.

e) The sums of squares of differences calculated in d) is compared
with that calulated previously in e). If the second sum is
less than the first, the missing data estimate is printed out
otherwise the program prints INCREASE (Table 5).

£ Tnerementing, harmonic snalysis and synthesis continue until the
program is stopped manually.

A second series of iterations with a much higher base setting and

smaller stevs (Table 5% follows the first, The data file is automatically
BOLWVEG by LI wdE Uit wa el waeadiien weseeoli i e o e

of squares, and run as a normal data set wiik narmonic analyslis programs
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It is advisable to allow the program HAFIT to run for a few cyeles
after the first 'minimum' sums of squares has been reached because
sometimes the sum increases again slightly before dropping to a second
and final minimum value (Table 5).

If there are two missing data, one (A), it does not matter which,
is set t0 a linear interpolated value, then a)-f) (above) should be
followed, B being treated as the missing value, A 1s then treated
as the mlssing value and a)-f) is followed using the revised data
set containing the first missing deata estimate for B. A is again
. treated as the missing value, then B, then A and so on untll estimates
. for A and B remain unchanged during two cycles of analysis/synthesis,

Caleulation of missing data estimates in this way is surprisingly
rapid. 8ingle estimates can be obtained in a few minutes with sets
-eontaining only 13 data 1f a suitable initial setting is chosen for
the missing value. In one test, double estimates were produced for
one set of 13 date in about 15 minutes, but this procedure usually
takes rather longer.
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Table 1. Data analysed and corresponding fundamental and second -

harmonic values used in construction of Fig. L.

Basio data . Pundamental Second hagmonie
.. values . values
0 L G S
0.,0206 St 0.3420 | Loy
041504 - 0.6428 _ C-0.4924
044330 08660 | ~0.4330
0,8138 ' : 0.98,8 -0.1710
1.1558 0.9848 0.4740
1.2990 0.8660 S 0.330
1.1352 ' 0.6428 _ 0.4:92L
0.6634 0.3420 0.3214
0 0 0
~0.663L -0.3420 -0.3214
-1,1352 -0,6428 %0492 B
~1.2990 -0,8660 -0.4330 {.ﬂ~f’”'
-1.1558 -0.9848 -0.1710
~0,8138 ~0.98,8 ~0,1710
~0.4330 -0, 8660 0.4330
~041 50k ~0.6428 0.492h

~0,0206 -0.3420 0.3214




Table 2.
gomputer program HASCV.

NO. OF SAMPLE UNITS ? I8
‘NDe OF SINE CURVES ? 9

Analysis of the basic data give

n in Table 1 using Merlewood

} FOR PRINTOUT OF FINAL PREDICTIONS OR B ? o

MEAN = 2+.716357E~9 THEN FOR EACH SINE CURVE
ANGLE
VARIANCE OF AN OBSERVATION

- NIMBER AMPL I TUDE
- VARIANCE OF DEVIATIONS

CORRECTED ANGLE

TOTAL VARIANCE CUMULATIVE VARIANCE %2 VARIANCE
AMP. S. ERROR  ANGLE S. ERROR S. OF S« OF DEVIATIONS
1 « 9999873 1.492641E-6  1.492641E-6
1489389 <7 49981
+ 6249841 « 4999873 80.200801
+ 2886715 16.53987 2.234083
2 -~+4999937 4. 171993E-6 180
« 6249841 6249842 100
«3108829 35.53333 5« 9SAS98E-4
3 4.B7S8T4E-8 ~76.11811% 283.8819
- 5.489634E~5 1.822701
+6249841 6249842 180
»3370957 4.738654E+8 5,95p598E-4
& ~9+893856E-6 -.189]1228 179.8169
606113991‘3"5 10249968
« 6249841 6249842 100
+ 3726733 2.158168E+6 S.958260E-4
5 -3.12276@E-6 -.2744725 179.7255
8.5003085E=5 1.687102
« 624984 « 6249842 180
« 4225718 T+753262E+6 5.959213E-4
6 : 4.262186E~8 -88.53990 27 1. 4608
1.190042E-4 2. 249943
26249841 . 6249842 190
+ 4999937 6.721323E+8  5,95@211E-4
7 -1.976756E-5 + 87955779 180.0796
1.983359E-4  3.749935
26249841 6249842 190
- 645489 1.870934E+6  5.950976E~4
8 -1.545008E~6 + 9124067 180.9124
: 5.950071 k-4 11.24971
2624984 6249840 100
1.11802 42 146 1 16E+7  5.95097 1E-4
9 -2.342751E-8 e 6643442 180.6643
5.958071E~4 11.2497)
« 6249841 «6BH9R YD 1m

T a a w W g

e g oY+

595007 1E~4




Table 3. Veriation in the output of harmonic analysis with the nusber of
- poripds analysed. The basio date set comprised 13 four—mak:lor m scﬁ.:k
twturcs collected over one year {Merlewcod pmjaot 108). B

Data examined

Pirst 10 of 13

13 basic data

19,basio 13 + first 6
repeated

‘26, basic 13 + all 13
repsated once

39, basic 13 < all 13
repoated twice

Statistica of the t‘irat three or nino
harmonics

Mean

9.78

9.68

11,05

9.68

9.68

Amplitudie

Te61
1,88
2,81

7.27
0.37
0.19

5.52
349
1.66

0
727
0

~ Corrected

phase
.aqg;o

16,22
19,08
39.29

52,33
7.80
498.13

122,08
32939 -
352.25

81.00
52.33
323.45

78.31
67.00
52.33
292,29
339.60
7.80
252,16
31.00
198,13

Qumilative

% variastion

scocunted for

82,60
87,63
98.91

Ry B,
95.09
95.16

564l
LRTN
9027

. 0 éu
Aoty
S« Sl

o)

0
e &y
Sy 8l

- Moy
95.09
9509
95.09
95.16




Table 4. Output of the computer program HAST after harmonic analysis of.13 four-
weekly mean soil temperatures from one of 48 Lake District woodland sites.

NO. OF VALUES -(INCLUDING MISSING) 7 13
N0, OF MISSING VALUE ? 3

NO. OF SINE CIMVES ? 6

LINEAR INTERPOLATE = |4.6041

BASE ADJUSTMENT & STEP S1ZE ? ~1.2,08.2

ESTIMATE Se OF S MEAN

NO. OF VALUES (INCLUDING MISSINGY ? 13

1 1. 6A41 B1488BR66 9 .6R5229
2 13.8941 3148316 0. 64%614
-3 14.3041 +21479332 9.655998

4 142041 «3147725 9.671383
.5 14.4041 «B14T6973 9. 686768
6 o " INCREASE

T INCREASE
8 INCREASE

9 INCREASE

17 INCREASE

NQ. QOF MISSING VALUE ? 3

NQ« QF SINE CIRVES ? &

LINEAR INTERPOLATE = 14.694]

BASE ADJUSTMENT & STEP SIZE ? -04,%431

ESTIMATE 3. OF S. MEAN

1 14.2041 A1 477251 9.6713%3
2 1442141 1477233 9.672152
3 14.2241 31477147 9+ 672921
4 1442341 SALATTILS 54673691
5 l14.2441 +B147TAES 9.67446
6 142541 .3147734 0.675229
7 14.2641 +B1476982 9.675998
8 14.2741 B1476952 9.676768
9 14.2841 +B14T7693 94677537
10 14.2941 31476915 9.678366
11 14.3084% +@1476893 9.679875
12 14.314% +@1476882 9.679844
13 14.324] «@1476876 9.682614
14 INCREASE

15 14.344) +@1476875 9.682152
16 INCREASE

17 INCREASE

18 INCREASE

19 INCREASE

20 INCREASE




Tahle ©. Oulputs of computer program HAFIT,

estimate for a missing data using iterative Larmonie analysis.

. This program provides an

Note that

the first series of iterations has a much lower base setting and a larger

step than the second series. Harmonic enalysis of the completed data

set 18 gziven in Table 4.

NOs OF VALUES C(INCLUDING MISSINGY ? 13
MOe. OF MISSING VALUE 7?7 3

ND'« OF SINE CURVES ? 6

LINEAR INTERPOLATE = 14.6041

PASE ADJRISTMENT & STEP SIZE ? ~1.0,0.2

! ESTIMATE Se OF S
) 13.6041 - 01488866
2 13.8041 .3148316
a 14.2041 - 81479302
4 14,2041 «3147725
5 14. 4041 «@1476978
6 INCREASE
7 INCREA SE
8 INCREASE
9 INCREA SE
1.

2 INCREASE

N« OF VALUES C(INCLUDING MISSING)Y © 13
NO. OF MISSING VALUE ? 3

NOe OF SINE CURVES ? 6

LINEAR INTERPOLATE = 14.684!

BASE ADJUSTMENT & STEP SIZE 7?7 -0.4,08.81

ESTIMATE S5+ OF 5»
] 14.2241 +B31477251
2 14.2141 ' «@1477283
3 14.224) 31477147
4 14,2341 «A1477115
5 14.2441 «D1477065
6 14.2541 «B147784
7 14.2641 «@21476982
8 14.2741 «B1476952
9 14.2841 «B147693
12 14. 2941 «A1476915
11 14.304! +@1476893
12 14. 31 41 +31476882
13 14.3241 +Q1476876
14 INCREASE
15 14.344) «B1476875
16 ' INCREASE
17 INCREASE
18 INCREASE
19 INCREASE

}
]

LEL R T N RN T Y

"MEAN
9.625229
9.648614
2.655998
9.671383

D.686768

MEAN
9.671383
9.672152
9.672921
9+673691
9.67446
2.675229
9.675998
G.676768
9.677537
9678306
9679075
9.679844
9.680614

9.682152




Figure 1. A sine curvéz'vih_i“_
paper. The data used in: the
Table 1 for the fundamental.

Sine
value
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Figure 3. Daily mean temperature at the soil surface in Meathop Wood from

27 February to 26 March 1967 inclusive, ¥ observed values,

from a model incorporating 14 harmonies.
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Figure 4. Harmonic analysis of a wave form“(-ﬁ—j into tud{cbmpﬁhents, a) a
.fundamental curve (--r) with amplitude a, and a frequency of one and B) a
second harmonic (...,) with amplitude a, and a frequency of two., ' See

Table 1 for the basic data and Table 2 for a computer print~out of the analysis.
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Figure 5. cumulative percentage variance accounted for by successive harmonics

derived by harmonic analysis of weekly mean temperatures for ¢ om (X) and 50 cm

(0) seil depth’ in Meathop Wood in 1967-68 (1 August-29 July). .
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Figure 6. Change in annual mean temperature with soil depth in Meathop Wood,
X 1966-67, ® 1967~68, & 1968-69,
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Natural lozariinm of amplitude

Figure 7. Change 1in the natural logarithm of amplitude of the weekly mean
temperature curves with soil depth in Meathop Wood, (a) for the fundamental

sine curve, (b) for the complete model of 26 harmonies.

® 1568-09.

curvilinear.

X 1966-67, @ 1967 -68,

line of best fit, =---- linear regression where bdest line is
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phase angle (degrees)

Figure 8. Change in corrected phase angle of the fundamental weekly mean
temperature curve with soll depth in Meathop Wood. X 1966-€7, g 1967-68, 4 1968-69.

line of best fit, -==- linear regression line where best line 1s curvilinear.
Note that 1° is equivalent to 1.0138% days (normal year) or
' 1.016° days (leap year)
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Figure 9. Change in average cumulatlve lag of the weekly mean temperature

curve with soll depth in Meathop Wood.

This leg was calculated as (.‘l.a.‘c_z;ma‘x +

lagmin)/z where the extreme lags were (time of extreme at soll depth dl) -

(time of extreme at depth d2), d, always being the upper depth. X 1966-67, ©
1967 =68, & 1968-69.
']
3 = -
X
2 = i
&
3 o
.§ 1 ~ !p //’:, © .
[) x -
0 | 1 ) ]
Q 10 20 30 50

Soil depth (cm)



Pigure 10, Adjustment to standard polints in time of fourwweekly mean
temperatures collgcted from 48 aites uaing staggered sawling, Each of
the four curves represents a sampling group of appmximately 12 aites, -

0 Obaemad data, four weoks apart foy auooeaaive amling; on the same
ute. one week apart for data from different sites in adjasont wesk groupa :
0 Corracted data eatimtepi by traeking along tine cumlete hamonic mode.l curve.
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Flgure 11. Corrugaﬁion of a-cpmplete harmonic model curve (0) between observed
data points (8). The date sre Seken fnem.the region of the sixth and:seventh
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