The hydrogeochemistry of methane: evidence from English groundwaters

W G Darling^{*} and D C Gooddy

British Geological Survey, Wallingford, Oxfordshire, OX10 8BB, UK

*Corresponding author: phone +44 (0) 1491 692326 fax +44 (0) 1491 692345 e-mail wgd@bgs.ac.uk W G Darling Maclean Building British Geological Survey Wallingford Oxfordshire, OX10 8BB, UK

ABSTRACT

The presence of methane (CH₄) in groundwater is usually only noticed when it rises to high concentrations; to date rather little is known about its production or natural 'baseline' conditions. Evidence from a range of non-polluted groundwater environments in England, including water-supply aquifers, aquicludes and thermal waters, reveals that CH4 is almost always detectable, even in aerobic conditions. Measurements of potable waters from Cretaceous, Jurassic and Triassic carbonate and sandstone aquifers reveal CH₄ concentrations of up to 500 μ g/l, but a mean value of <10 μ g/l. However, aquiclude and thermal waters from the Carboniferous and Triassic typically contain in excess of 1500 μ g/l. Such high concentrations have so far only been found at redox (Eh) potentials below 0 mV, but in general CH₄ concentration and Eh value are poorly correlated. This suggests a lack of thermodynamic equilibrium, which is confirmed by comparing pe values calculated from the redox couple C(-4)/C(+4) with those derived from Eh. Genesis of CH_4 appears to occur on two timescales: a rapid if low rate of production from labile carbon in anaerobic microsites in the soil, and a much longer, millennium scale of production from more refractory carbon. Methane is rarely measured in groundwater; there is no single ionic determinand which acts universally as a proxy, but a combination of high HCO₃ and low SO₄ concentrations, or the reverse, is an indication that high amounts of CH₄ may be present.

Keywords: Methane, aquifers, redox, carbon isotopes, Chalk, limestone, sandstone

1. INTRODUCTION

There are three reasons to study the occurrence of methane (CH₄) in groundwaters: (i) as part of the contribution to the atmospheric budget ('emissions'), (ii) as a potential explosive hazard ('safety'), and (iii) more fundamentally its production characteristics. For the UK, emissions and safety have been addressed by Gooddy and Darling (2005). The present paper complements that approach by considering the third factor via a detailed study of hydrogeochemistry of a range of groundwater types.

The presence of CH_4 in groundwater is usually only noticed when it rises to problem concentrations. These have on occasion caused explosive incidents in Europe and North America (e.g. Altnöder and Hutter, 1981; Buswell and Larson, 1937; Kelly et al, 1985). In some of these cases it is clear that CH_4 has leaked into the groundwater from adjacent strata, whereas in others the origin is less evident. In the UK rather little appears to be known about the occurrence of CH_4 in groundwater beyond a few high-profile incidents (Hooker and Bannon, 1993; HSE, 2000). The present paper is not concerned with such incidents but instead focuses on 'baseline' conditions by looking at regional distributions of dissolved CH_4 and the differences between aquifer types. A knowledge of typical background CH_4 concentrations will *inter alia* provide a more secure context for the interpretation of future methane survey or incident data, particularly for NW Europe where similar aquifer types are exploited.

2. BACKGROUND

2.1. Occurrence of methane

Apart from some rather specific instances, such as the supposed 'abiogenic' CH₄ in ophiolite complexes or crystalline shield rocks (Neal and Stanger, 1982; Sherwood et al, 1988), most CH₄ finding its way into groundwater has been produced from organic matter, either via thermal ('thermogenic') or bacterial ('biogenic') mediation (Schoell, 1988). Thermogenic CH₄ is associated with many petroleum reservoirs or natural gas fields and also with their storage and distribution systems (Barker and Fritz, 1981; Kelly et al, 1985). Biogenic CH₄ has been documented in anaerobic groundwater environments, including peat bogs, lignite deposits, and glacial, lacustrine and eolian sediment (Barker and Fritz, 1981; Coleman et al., 1988; Grossman et al., 1989).

The origin of CH₄ in groundwater systems can be deduced using several lines of evidence. Simple hydrochemical methods in the field or laboratory can often be used to determine origins (Games and Hayes, 1976; Jakobsen and Postma, 1999). Where these are more cryptic, study of the gas phase itself may be necessary. For example, the presence of C_{2+} hydrocarbons in significant proportion indicates a thermogenic origin for the gas, while microbial CH₄ rarely contains detectable hydrocarbons higher than ethane, and typically has very high C_1/C_2 ratios (Barker and Fritz, 1981). Carbon stable isotope ratios can be diagnostic of 'light' biogenic or 'heavy' thermogenic or abiogenic origins (Schoell, 1988).

Traditionally CH₄ has been predicted to occur in groundwaters only when conditions are sufficiently reducing (e.g. Edmunds et al, 1984), otherwise oxidation should occur (Smith et al, 1991). In effect this implies a necessity for confined aquifer conditions where dissolved oxygen (DO) concentrations have been reduced to significantly less than the normal detection limit of 0.1 mg/l. In practice, the present study shows that groundwater CH_4 is almost ubiquitously present above detection limit whether the aquifer is confined or not.

This wide distribution of CH₄ in English aquifers suggests an origin predominantly via bacterial activity rather than from thermogenic ('natural gas') or abiogenic ('deep methane') quasi-point sources, for which there is generally little evidence (though instances of gas seepage in areas not covered in this study are recorded by Selley, 1992). Bacterial (or biogenic) CH₄ can be produced via two routes: decarboxylation (fermentation) of acetate, or reduction of CO₂ (Whiticar et al, 1986). The first of these produces both CH₄ and CO₂, the second CH₄ only. The difference between these processes has implications for δ^{13} C distributions (e.g. Clark and Fritz, 1997), but most baseline CH₄ concentrations are too low (i) to allow the determination of δ^{13} C–CH₄ and (ii) to have a significant effect on DIC (dissolved inorganic carbon) in concentration or isotopic terms.

In order to produce CH_4 , methanogenic bacteria require an absence of oxygen. Particularly where aquifers are unconfined, there is likely to be O_2 available in both the saturated and unsaturated zones. However, in both zones it is possible for anaerobic 'hot spots' to develop around organic matter (Murphy et al, 1992), when the uptake of O_2 exceeds the rate of its diffusivity (Vinten et al, 1996). This might permit production of CH_4 at a low rate.

Both acetate fermentation and CO_2 reduction processes may proceed simultaneously (Conrad 1999) but neither is a very thermodynamically favourable reaction (Chapelle 1993). Generally, acetate fermentation is the primary pathway for methane formation in lake sediments (Kuivila et al, 1989), whereas CO_2 reduction tends to dominate in marine sediments (Hoehler et al, 1994). The reason for this is that sulphate is abundant in seawater

and its reduction in marine sediments is an important precursor for methanogenesis and is responsible for most acetate metabolism (Whiticar 1999). Reduction of CO_2 can only occur where conditions are sufficiently reducing to produce H₂, a situation typical of environments such as landfills or peat bogs (Lansdown et al, 1992). For most groundwaters, therefore, acetate fermentation appears to be a more likely route to CH_4 production (e.g. Chapelle 1993), although CO_2 reduction has been identified as the dominant process in certain cases (e.g. Barker and Fritz 1981; Aravena et al, 1995).

Data are compared from six groundwater environments: the Chalk (Upper Cretaceous), the Lower Greensand (Lower Cretaceous), the Lincolnshire Limestone (Middle Jurassic), the Sherwood Sandstone (Triassic), Namurian shales (Upper Carboniferous), and thermal waters from the Triassic and Carboniferous.

2.2. Geochemical indicators

Any study of CH₄ hydrogeochemistry requires consideration of two primary areas: redoxsensitive indicators and carbon cycling.

2.2.1 Redox indicators

Methanogenesis represents the last of a series of reactions where electron acceptors such as O_2 , NO_3^- , Mn^{4+} , Fe^{3+} and SO_4^{2-} are used sequentially to oxidise organic matter. This form of oxidation is predominantly via dissimilative metabolism by bacteria that can utilise a range of potential Terminal Electron Acceptor Processes (TEAPs) in the reaction. The range of TEA species is characterised by differences in the energy yield they provide when used in respiration. Owing to the problems often associated with interpretation of Eh measurements using a platinum electrode, redox environments are often classified in terms of the appearance of species such as Mn^{2+} , Fe^{2+} , H_2S and CH_4 or the disappearance of O_2 , NO_3^- and SO_4^{2-} . Lovley and Goodwin (1988) have measured H_2 directly and proposed specific H_2 concentration ranges for different TEAPs. However, both Jakobsen and Postma (1999) and Hansen et al (2001) found the H_2 concentrations were not indicative of the TEAP according to the ranges defined by Lovely and Goodwin (1988). This is because H_2 reaction is strongly temperature dependent and thermodynamically controlled (Jakobsen et al, 1998) in addition to depending on the concentration of other TEAs (Hoehler et al, 1998)

Environments can be considered as either oxic or anoxic, with a DO cut-off of about 0.05 mg/l, i.e. slightly below the typical detection limit of 0.1 mg/l. Anoxic environments are further subdivided into post-oxic; which is dominated by the reduction of nitrate, manganese oxides and/or iron oxides; sulphidic, where sulphate reduction occurs; and finally the

methanic (or methanogenic) zone (Berner, 1981). Not all of these zones are invariably present and a groundwater may completely by-pass one of these states depending on the composition of the aquifer and the nature of the organic material. For example, Gooddy et al (2002) found a nitrate reducing zone, a sulphate reducing zone and a methanogenic zone resulting from the infiltration of cattle slurry beneath farm waste stores sited on Chalk in southern England. No manganese or iron reduction was found since these are not present at significant concentrations in the Chalk matrix, whereas nitrogen and sulphur are component parts of the cattle slurry. By comparison, Lawrence et al (2000) found a complete redox sequence in an iron and manganese rich alluvial aquifer receiving unsewered urban wastewaters. Neither of these cases represents baseline conditions, but they illustrate well the importance of groundwater environment to redox processes.

In this paper Eh, dissolved O_2 , Fe and SO_4 are used as a representative spread of redoxsensitive indicators (see Results).

2.2.2 Carbon cycling

In many groundwaters the majority of dissolved carbon is inorganic ('DIC'). This will be distributed between carbonate (CO_3^{2-}), bicarbonate (HCO_3^{-}) and dissolved CO_2 (H_2CO_3), the proportions depending on pH and pCO_2 (e.g. Clark and Fritz, 1997). Most potable groundwater is of near-neutral pH where HCO_3^{-} is dominant, so analyses of DIC are typically reported as HCO_3^{-} . Determination of DIC is however based on titration of alkalinity; while the alkalinity of most groundwaters will be overwhelmingly due to DIC, there are instances (for example in brines) where acetate or even sulphide may be an important component.

Groundwater acquires its initial DIC content via the reaction of soil CO₂ with rock carbonate. At the same time it acquires a small component of soil organic carbon ('DOC'), conventionally divided into heavy molecular weight ('HMW') and light molecular weight ('LMW') fractions (Murphy et al, 1989). The dissolved organic carbon in groundwater is a diverse mixture of organic compounds which can come from various sources. Both initial DIC and DOC contents may be raised by further interaction with aquifer materials, but DOC tends to remain some two orders of magnitude below DIC in concentration weight-forweight. Its significance in the mass balance of the overall C-cycle is therefore minimal, though it may be important for other reasons to be discussed below. This also applies to the other main organic component of groundwater, CH_4 itself, which may be produced from organic or inorganic sources as outlined above.

Stable isotope ratios play a key role in understanding the fate of carbon in groundwater. The 1:1 reaction of dissolved soil CO₂ with soil or rock carbonate at neutral pH results in a water with a $\delta^{13}C_{\text{DIC}}$ composition approximately halfway between the two, which may be depleted by further equilibration with CO₂ or enriched by subsequent water–rock interaction (e.g. Clark and Fritz, 1997). The bacterially-mediated transformation of DIC into CH₄ is characterised by the bacteria's preference for breaking ¹²C–H bonds, resulting in the typically depleted δ^{13} C values for CH₄. Subsequent oxidation or further interactions between C phases tends to alter δ^{13} C values along well-characterised reaction paths (Clark and Fritz, *ibid*), giving an indication of C-system evolution.

The role of radiocarbon $({}^{14}C)$ in this study has less to do with carbon cycling processes (though this is an important consideration in its interpretation) than with giving an indication of water residence time. Nevertheless it is appropriate to view it as a 'carbon parameter' (see Results).

2.3. Groundwater environments

Three different groundwater settings are considered: (i) sedimentary aquifers with a range of redox conditions; (ii) thermal waters; and (iii) the waters associated with some aquicludes.

Since much groundwater abstraction in England is for public water supply, most data have been obtained from the major aquifers. In descending stratigraphical order these are the Chalk, Lower Greensand, Lincolnshire Limestone, and Sherwood Sandstone. Depending on the down-gradient location, the quality of water in these aquifers can be poor and this is where higher CH₄ concentrations tend to be found.

Three examples of thermal waters are considered: two actively circulating (Carboniferous Limestone of Buxton and Bath), the third apparently immobile (Sherwood Sandstone of the Southampton area).

By far the highest natural dissolved CH_4 concentrations are associated with formations typically regarded as aquicludes. Most notably these high- CH_4 waters have been revealed as a result of tunnelling in Namurian rocks in northern England.

3. SAMPLING AND ANALYSIS

Samples for CH₄ analysis were collected by a variety of methods, all of which relied on the partitioning or stripping of dissolved gas from measured amounts of water into headspaces of known volume (TWA, 1986). Gas extracted from these headspaces was analysed for CH₄

(plus C_2H_6 and C_3H_8 where appropriate) by gas chromatography using a porous polymer column and a flame ionisation detector. The detection limit of this method is better than 1 part per million by volume (ppmv), corresponding to a dissolved concentration at 10°C of approximately 0.05 µg/l.

Where dissolved concentrations were sufficiently high, isotopic measurements of δ^{13} C–CH₄ were made by oxidation of extracted gas over CuO at 850°C, followed by cryogenic separation prior to mass spectrometric analysis. Precision of these measurements was ± 0.5 ‰.

In one part of the Chalk aquifer, measurements of radiocarbon activity in dissolved organic carbon (DOC) were made to compare with previous conventional inorganic (DIC) results. Samples for ¹⁴C_{DOC} analysis were prepared by extraction of the HMW compounds (humic and fulvic acids) from approximately 50 litres of groundwater onto a DEAE-cellulose resin (Miles et al, 1983). The HMW compounds were eluted from the resin using 0.5 M NaOH. The eluant was acidified to pH 1 with HCl to precipitate the humic acid fraction while the fulvic acid fraction remained in the eluant. Analysis of the fulvic acid fraction was carried out by AMS (Accelerator Mass Spectrometry) via the NERC Radiocarbon Laboratory at East Kilbride, Scotland, with an average precision of ± 2.8 pmc (percent modern carbon).

Supporting hydrochemical and isotopic data are either original or derived from reports and publications as credited in the tables of results; all were obtained by standard methods.

4. RESULTS

4.1. The Chalk aquifer of the wider London Basin

The Chalk of southern Britain is a generally rather pure fine-grained limestone which although possessing a high primary porosity is considered to act mainly as a fractured aquifer because of the considerable amount of fissuring and the very tight pore throats in the matrix (Price, 1987). This combination can result in unusual hydrogeochemical effects in the sense that the fractures promote rapid mixing while the porosity encourages slow diffusional exchange (Barker and Foster 1981).

The Chalk of the London Basin outcrops in the Chilterns and North Downs before becoming confined down-dip by a covering of younger Palaeogene sediments consisting mainly of impermeable London Clay (Fig 1). Four methane transects were measured across parts of the basin, moving from the unconfined to confined zones: NW–SE in the area south of Reading, Berkshire; W–E, from Maidenhead into Central London; S–N, from Croydon into the Central

London; and SW–NE in the Medway area northeast of Maidstone, Kent. A number of confined sites running N–S down the Lee Valley were also included. Some of the sites in south and east London measured for CH_4 by the then Thames Water Authority (TWA, 1986) were also investigated. The results are given in Table 1.

Methane concentrations versus distance from the onset of confinement are plotted for samples from the four transects in Fig 2. This shows that concentrations do not exceed $0.5 \ \mu g/l$ in the unconfined aquifer. Values can remain this low up to 5 km from the boundary, but typically begin to rise until a plateau is reached at about 10 km with values usually in the range $0.5-10 \ \mu g/l$, though samples from the Medway Chalk are an order of magnitude higher in concentration.

The relationship between CH_4 concentration and redox parameters is poorly defined (Fig 4). Nevertheless, as CH_4 rises there is generally a decline in Eh and dissolved O_2 , and an increase in Fe. There is however little sign of SO_4 being much affected by reduction. In fact, as Edmunds et al (1984) pointed out, dissolved SO_4 tends to increase with residence time as sulphate minerals slowly dissolve, up to the point where conditions become reducing enough for conversion to sulphide. When sampling Chalk groundwaters beneath London, Smith et al (1976) seldom found evidence of sulphate-reducing bacteria.

There also appears to be a poor relationship between CH_4 concentration and inorganic carbon system parameters (Fig 4). While concentrations near to or below detection limit are invariably associated with lower values of HCO₃ and $\delta^{13}C$ –DIC, high concentrations show no trends. The same is largely true for radiocarbon, though the Medway samples show an apparent evolutionary relationship. Also available are some ${}^{14}C_{DOC}$ results, though only for selected sites in the Berkshire Chalk (Table 2). These have a similarly poor correlation with CH₄ concentration, with the apparently oldest site (CK45) having the lowest CH₄ concentration.

The area of the Lee Valley where Sites CK31–CK36 are situated has been the focus of an investigation into water quality issues relating to pyrite oxidation in the overlying and hydraulically-connected Basal Sands of the Palaeogene (Kinniburgh et al, 1994). The balance of evidence (low HCO₃, intermediate $\delta^{13}C_{DIC}$ and in one case ¹⁴C values) suggests leakage from the Basal Sands mixing with Chalk water, but conditions remain reducing enough for CH₄ concentrations to be typical of those found in the centre of the London Basin

4.2. The Lower Greensand of southeast England

The Lower Greensand is typically a glauconitic sandstone with zones of partial cementation which do not however prevent the formation from generally being a good aquifer, albeit subject to complex lateral facies changes (Duff and Smith, 1992). The Lower Greensand is hydraulically isolated from the overlying Chalk by the Gault Clay, which is a highly-effective aquiclude.

The Lower Greensand outcrop basically follows the scarp slope of the Chalk in southeast England with a rather wider outcrop in the Wealden area south of London than that paralleling the Chalk of the Chiltern Hills to the northwest (Fig 4). Owing to a combination of deposition and erosion effects, the Lower Greensand is not uniformly present beneath the Chalk of the London Basin, but is certainly present under the western side of the basin. Where the Lower Greensand is confined it is usually overlain by the Chalk and relatively few boreholes are drilled into the lower aquifer. However for reasons of water quality a number of boreholes do penetrate to the Lower Greensand even in areas of relatively thick overburden, such as around Slough to the west of London.

The Lower Greensand samples were obtained from an approximately NNE–SSW transect across the western London Basin from Cambridgeshire/Bedfordshire to Surrey/Hampshire, although a site in north Kent near Maidstone is also included (Fig 4). Results are reported in Table 3. Methane concentrations for three more unconfined sites in west Kent are reported in TWA (1986).

Waters from both the unconfined and confined Lower Greensand have CH_4 concentrations generally an order of magnitude greater than those in the Chalk (Fig 5). It is not clear if or where a plateau in concentration is reached because of the lack of boreholes between 15 and 30 km from outcrop.

Redox parameters are plotted versus CH₄ concentration in Fig 6. (Unlike for the Chalk, it is not necessary to plot this axis on a log scale because of the relatively small CH₄ concentration range.) As with the Chalk, SO₄ is poorly correlated with CH₄ concentration, but otherwise the contrast between the two aquifers is large. Eh declines sharply to about +200 mV, then more gradually, while there is a steep decline in DO to the detection limit. Fe shows a trend basically similar to Eh, but this is the reverse of what would normally be expected. The reason is probably ready availability of Fe from the ferruginous cementation in the more northerly parts of the aquifer, a factor related to facies changes (Duff and Smith, 1992).

Bicarbonate and $\delta^{13}C_{DIC}$ show tendencies to increase slightly with CH₄ concentration (Fig 6). There is a good relationship between ¹⁴C and CH₄ concentration for nearly all sites below 5 µg/l, but this is not related to a particular geographical area and may be coincidental. At higher concentrations the correlation disappears.

4.3. The Lincolnshire Limestone of eastern England

The Lincolnshire Limestone is an oolitic formation. As a carbonate aquifer its main permeability is fractured, but it differs from the Chalk in having a much lower porosity. Thus the buffering tendency typical of the Chalk is much less developed in the Lincolnshire Limestone.

The Lincolnshire Limestone outcrops in eastern England (Fig 7). Although time-equivalent Middle Jurassic strata extend to the north and southwest, facies changes render these units less suitable for water supply and they are not heavily developed.

The Lincolnshire Limestone samples were obtained from a variety of locations which, with the exception of one unconfined site, extend from Lincoln along a transect into the down-dip confined portion of the aquifer in the Spalding area (Fig 7). Results (taken largely from Bishop and Lloyd, 1990, 1991) are provided in Table 4.

With the exception of two sites (LL5 and LL6), CH_4 concentrations do not appear to rise much above 10 µg/l with the onset of confinement (Fig 8). The very high levels of LL5 and LL6 could be due to due to leakage of gas from an underlying source or, perhaps more likely, the consequence of tapping into a relatively stagnant part of the aquifer. (This is considered in more detail in 4.7 below.)

Figure 11 shows the redox parameters Eh and SO₄ plotted against CH₄ concentration (measurements of DO and Fe are generally not available for these sites). As with the Chalk, a log scale is used for CH₄ because of the large concentration range. Both Eh and, unusually for this study, SO₄ fall as CH₄ rises. The decline in SO₄ is likely to be the consequence of the low redox potentials (down to -140 mV) found in parts of the confined aquifer; Downing et al (1977) found evidence of sulphate-reducing bacteria in Lincolnshire Limestone groundwaters to the south of the area considered here.

As far as the carbon system is concerned, the HCO₃ concentration barely changes except for the high-CH₄ samples from LL5 and LL6 (Fig 9), which have concentrations over 100 mg/l higher than any other site. However, δ^{13} C and A¹⁴C decline to near-zero values before CH₄ reaches 10 µg/l.

4.4. The Sherwood Sandstone of the East Midlands

The Sherwood Sandstone aquifer lies beneath the Lincolnshire Limestone, hydraulically isolated from it by the highly impermeable units of the Lias (Jurassic) and the Mercia Mudstone (Triassic). Because of a regional dip to the east for Mesozoic strata, the outcrop of the Sherwood Sandstone tends to parallel that of the Lincolnshire Limestone.

The Sherwood Sandstone is a well-sorted desert sandstone with good intergranular permeability. As an aquifer it is second only to the Chalk in its use as a groundwater resource. Boreholes abstract from both the unconfined and confined portions of the aquifer. The samples taken during this study (Table 5) were collected from a range of boreholes which, although not on a line of section as such, include representatives from the unconfined and confined portions of the aquifer (Fig 10).

The plot of CH_4 concentration against distance from the onset of confinement shows some features not found in the other aquifers (Fig 11). Values in the confined zone are on average very low (though it must be noted that the most down-dip sample is only 8 km into confinement). More significantly, a very high value was obtained from the unconfined site SS12. Although this does have low Eh and SO₄ values, they are higher than for some confined sites (Fig 12). However, the Fe concentration is twice as high as for any other site (even though it is much lower than for many of the Lower Greensand sites). The reason for the high concentration at SS12 is probably related to the relatively complex drift cover in the area. The site is in a permeable 'window' surrounded by clays. This results in abstracted groundwaters that comprise a mixture of reducing and oxic waters.

Carbon system relationships with CH₄ concentration (Fig 12) are equally elusive. The amount of change in $\delta^{13}C_{DIC}$ is only some 2 ‰, much lower than for the Lower Greensand, indicating fairly minimal water–rock interaction. There is no significant increase in CH₄ with time; the ¹⁴C age of water at SS9 has been modelled at between 6 and 9 ka (Bath et al, 1979), an age range likely to be reliable precisely because of the lack of 'dead' inorganic carbon additions. There are much older waters down-dip in the Sherwood Sandstone (Bath et al, *ibid*) but their CH₄ contents are unknown.

4.5. Namurian shales of northern England

Groundwater is not usually extracted from shales for water supply purposes as both yield and quality tend to be low. However, shales are sometimes tunnelled for water transfer or other purposes. Even though such excavations are normally lined water is liable to leak in, sometimes containing elevated amounts of CH₄. Two notable cases are the Carsington (Derbyshire) and Wyresdale (Lancashire) tunnels (see Fig 13 for locations), both driven in sequences of sandstones, siltstones and mudstones (colloquially 'shales') of Namurian (Upper Carboniferous) age. In the former case, the CH₄ concentrations of inflows averaged 8000 μ g/l (Pearson and Edwards, 1989) and in the latter 9000 μ g/l (Bath et al, 1988); see Fig 14. However, supporting hydrogeochemical data are only available for the Wyresdale Tunnel (Table 6).

Although there are no Eh and DO data owing to difficulties in sampling the tunnel inflows without atmospheric contact, it is apparent from Table 5 that redox conditions are such that SO₄ has been completely reduced. However, this has not led to the development of very high Fe concentrations, probably because of precipitation of FeS₂. As far as inorganic carbon is concerned, both HCO₃ and $\delta^{13}C_{DIC}$ become enriched as CH₄ concentrations rise, which suggests that dissolution of calcite is responsible rather than outgassing of CO₂ (Bath et al, 1988).

4.6. Thermal waters: Buxton, Bath and Southampton

The only surface manifestations of thermal water in Britain are related to the Carboniferous Limestone. It appears that this formation is capable of 'short-circuiting' the natural circulation of water to significant depths in such a way that it reaches the surface rapidly enough to preserve at least some of the heat imparted to the water by the geothermal gradient at depth. This is the mode of operation of the Buxton (27°C) and Bath (46°C) springs (see Fig 13 for locations). While hotter waters undoubtedly exist at depth over much of the UK (Downing and Gray, 1986), they are rarely accessible via boreholes. In Southampton, two deep (2 km) boreholes (Marchwood and Western Esplanade) were used to test, and in the case of Western Esplanade produce from, the Triassic Sandstone of the Wessex Basin. The locations of these thermal sites, which had temperatures of 75 and 80°C respectively, are shown in Fig 13.

Despite their temperature, the waters of Buxton and Bath are not highly mineralised. However, the Southampton waters have an extremely high TDS (total dissolved solids) content and low redox value (Table 7).

4.7. Elevated methane contents: higher hydrocarbon and isotopic evidence

From this survey of natural or baseline CH₄ contents, three instances of elevated concentrations stand out: the Stow boreholes of the Lincolnshire Linestone, the deep

geothermal boreholes in the Triassic at Southampton, and the inflows to tunnels from Namurian shales. Concentrations of CH_4 are high enough in these cases to characterise the higher hydrocarbons, and to speculate on the mode of formation of the CH_4 using isotopic techniques. Table 8 gives the results of gas and isotopic measurements.

4.7.1 Lincolnshire Limestone

The East Midlands has a number of small oilfields which are hosted in the Upper Carboniferous. Some of these are situated beneath the Lincoln area, e.g. Welton and Nettleham. The possibility of upward leakage of oil-associated gas into the Lincolnshire Limestone, was one possible explanation of the high CH₄ contents of the 'Stow boreholes' LL5 and LL6. However, examination of the data in Table 8 shows that this is unlikely to be the case. Firstly, although C₂H₆ was detected, CH₄ made up 99.9 % of the hydrocarbons; such a ratio is much more typical of bacterially-produced gas rather than the 'wet' gas typical of oilfields (e.g. Schoell, 1988). Secondly, the 'light' isotopic content of the CH₄ at around -72 ‰ δ^{13} C is also typical of bacterial rather than thermogenic (oil-associated) production. The radiocarbon data from the Stow groundwaters (Table 4) shows that they have been in residence long enough for fermentation processes to have accumulated the necessary amounts of gas. The δ^{13} C_{DIC} values are those expected for old waters in a marine carbonate aquifer (i.e. close to 0 ‰), indicating that any methane oxidation occurring via sulphate reduction is having a minimal effect on the isotopic composition of DIC.

4.7.2 Wessex Basin Sherwood Sandstone

Some parts of the Wessex basin, particularly a zone some 50 km to the WSW of Southampton, host commercial oilfields. These produce mainly from Jurassic and Triassic sandstones (Colter and Havard, 1981). During the testing of the Sherwood Sandstone formation in the Marchwood and Western Esplanade boreholes, the relatively high CH₄ contents found raised the possibility of a (potentially hazardous) connection with these hydrocarbon-rich zones. The data in Table 8 are at first sight equivocal: the C_2H_6 and C_3H_8 data show a very 'dry' gas (over 99.9 % CH₄) typical of bacterial production, but the $\delta^{13}C_{CH4}$ value of around –46 ‰ resembles that of thermogenic gas.

However, the $\delta^{13}C_{DIC}$ values of around -15.5 ‰ appear much more depleted than would be expected for long-residence groundwaters in this formation: values of around -8 ‰ would be anticipated if the Sherwood Sandstone of the East Midlands is typical (Bath et al, 1979). A significant amount of acetate fermentation is a likely cause: this has a tendency to raise $\delta^{13}C_{CH4}$ while lowering $\delta^{13}C_{DIC}$ values (e.g. Clark and Fritz, 1997). At some 40 mg/l, acetate

typically contributed one-third of the alkalinity in the Marchwood and Western Esplanade waters (Allen et al, 1983).

4.7.3 Namurian shales

While CH₄ concentrations in the Wyresdale Tunnel inflows are generally significantly higher than found in the Southampton thermal waters, values of $\delta^{13}C_{CH4}$ are more depleted (average -67 ‰) and $\delta^{13}C_{DIC}$ more enriched (average -12 ‰). Bath et al (1988) considered migration of biogenic CH₄ from some organic matter source in adjacent strata to be the most likely cause of the high CH₄ concentrations, but did not rule out CO₂ reduction, because high *p*CO₂ values were measured in inflows on the periphery of the high-CH₄ zone. The origin of this CO₂ is debatable, but O and H stable isotopes confirmed the inflows to be typical of meteoric water, and the peaty upland areas through which rainfall infiltrates were found to have *p*CO₂ values $\geq 10^{-1}$ atm (Bath et al, *ibid*). Whatever the mechanism of CH₄ production at Wyresdale, the similar peak concentration of ~15,000 µg/l at Carsington (Fig 14) suggests a similar mode of formation.

5. DISCUSSION

5.1 The effects of modern perturbations on natural flow regimes

Before detailed discussion of the results, it is necessary to note that over the past 150 years the natural flow patterns and discharge characteristics of the major water supply aquifers have been distorted by the abstraction of many millions of cubic metres of groundwater. This is likely to have affected the distribution of CH_4 within the aquifers, by altering regional flowpaths and causing mixing of different waters. In the absence of detailed output volume records for many of the boreholes considered in this study the effects of magnitude of abstraction cannot be investigated in detail. However, an approximate indication of any effect may be provided by comparing results from water utility pumping stations with those from industrial and domestic supplies. The pumping stations generally have a significantly higher output as they need to supply a large number of consumers.

All Sherwood Sandstone sites are pumping stations while all Lincolnshire Limestone sites are industrial/domestic/observation boreholes. This rules out useful comparisons involving these aquifers. However, Fig 15 shows comparisons between pumping station ('PS') and other sources ('non-PS') for the Chalk and Lower Greensand aquifers, in terms of CH₄ concentration versus distance from onset of confinement. In the Chalk, most PS data plot within a narrow concentration band irrespective of whether the borehole is sampling from the

confined or unconfined aquifer, while in the Lower Greensand PS data show no such pattern. Whether this difference is simply attributable to the different characteristics of the two aquifers (fracture flow for the Chalk, intergranular flow for the Lower Greensand) is debatable. However, it does suggest that the type of Chalk abstraction sampled is liable to bias the result to some extent.

5.2 Redox conditions

The results of this study shows that detectable CH_4 is found almost ubiquitously through a range of aquifers and redox conditions, even in well-oxygenated waters. This indicates that dissolved methane concentrations are not governed simply by redox state. This is perhaps to be expected by analogy with conditions in the atmosphere, where the CH_4 ratio (currently 1.75 ppmv in the lower atmosphere) is some 30 orders of magnitude higher than could coexist in thermodynamic equilibrium with free O_2 (Lovelock, 1979). Simple solution of atmospheric CH_4 at 10°C would alone give groundwaters a baseline concentration of just above the detection limit for this study of 0.05 µg/l. About one-fifth of the analyses reported here do not exceed 0.1 µg/l, so very little methanogenesis would be required to account for such low concentrations.

The reason for the atmospheric excess in CH₄ is the continuous input of methane, largely from biogenic sources, together with a low rate of oxidation. To what extent is this disequilibrium reflected in groundwater? The existence of the redox couple C(-4)/C(+4) in the form of dissolved CH₄ and HCO₃ permits the calculation of theoretical pe (relative electron activity) values against which pe based on measured Eh values can be compared. Figure 16 shows a plot of pe calculated using PHREEQC (Parkhurst and Appelo, 1999) versus pe derived from Eh via the conversion factor given in Appelo and Postma (2005). Most of the data points fall well below the 1:1 line. Not only are the theoretical values typically some 5–6 orders of magnitude above the observed values, but the r² value of only 0.11 for the best-fit line through the data shows there is little consistency in this displacement.

5.3 Substrate sources

The role of microbial activity in the production of CH_4 (and in changing the concentrations of the redox parameters SO_4 and Fe) is obviously important. It was reported by Zobell and Grant (1942) that a DOC concentration as low as 0.1 mg/L was sufficient to meet microbial requirements. The median DOC concentration in each of the four water-supply aquifers is likely to be at least an order of magnitude greater than this (for example, median values of 1.4

and 2.1 mg/l for the Chalk and Sherwood Sandstone respectively are reported by Hinsby et al, 2002), so in that sense the potential for methanogenesis is almost always present.

Thurman (1985) suggests that groundwater DOC either originates in the soil zone or via solubilisation of compounds associated with the rock matrix. The occurrence of organic matter in the three major English aquifers was reviewed by Foster et al (1991). Organic carbon content (% weight) ranges of 0.05–0.5 are reported for Chalk; 0.02–0.05 for Triassic sandstone; and 0.2–2 for Jurassic Limestone. Similar ranges for chalk and sandstone were found by Harrold et al (2003). A study of chalk from eastern England and northern France (Pacey, 1989) found a diffuse distribution of organic matter, some being intra-crystalline in the calcite, some being associated with clays. Whitelaw and Edwards (1980) found concentrations of carbohydrates up to 0.03% by weight in the matrix of shallow unsaturated zone Chalk. The origin of the carbohydrate was considered to be organic material in the overlying soil. Low concentrations of bitumens and kerogens have been found on fracture surfaces in limestone (Lawrence and Foster, 1986). All of this evidence suggests the biologically viable DOC in English groundwaters is likely to originate from the soil as the organic matter present in the matrix is mostly unavailable to micro-organisms.

Most DOC that travels from the soil zone to deep within the aquifer will be old and highly recalcitrant, and therefore not prone to further microbial breakdown over the timescales of more active groundwater circulation. Accordingly, CH₄ formed microbially is most likely to be produced in shallow groundwaters where redox conditions permit. This is likely to be around anaerobic microsites as proposed by Murphy et al (1992). The redox state in parts of an aquifer can also be lowered by sulphate reduction and pyrite formation, for example as shown to occur in the Chalk aquifer beneath North London by Kimblin and Johnson (1992). This could enable methanogenesis, although necessarily on a limited scale requiring specific circumstances and a definite sequence of events. In the usually oxidising environments of most shallow English aquifers, therefore, CH₄ will only be produced at the extremely low concentrations observed. The exception to this would be under conditions only likely to result from localised anthropogenic contamination such as petroleum hydrocarbon spillages or landfill/waste store leachates (e.g. Baedecker and Back, 1979; Christensen et al, 2001; Gooddy et al, 2002) where many of the required TEAPs are provided by the pollutant. In this case the redox potential is lowered considerably although a complete redox sequence may not necessarily exist.

Common to many trace organic compounds such as pesticides (Gooddy et al, 2001), the transport of methane from the surface may involve sorption to colloidal particles (Ryan and Elimelech, 1996). This may preserve low concentrations of CH_4 by helping to prevent oxidation.

As far as the high-CH₄ waters are concerned, while in the organic-rich Namurian shales and to a lesser extent the Lincolnshire Limestone there is ample scope for methanogenic bacteria to flourish, the source of the acetate substrate in the Southampton thermal brines is less immediately clear, because the Sherwood Sandstone itself is typically organic-poor on account of its desert origins (Duff and Smith, 1992). However, it was the view of Downing and Penn (1992) that dewatering of the overlying aquiclude formations during subsidence of the Wessex Basin must have contributed substantially to the presently-observed brine content, and it seems possible that this could also have been the ultimate source of the more refractory organic compounds.

5.4 Timescales of accumulation

Although microbial populations have been found in some deep fractured hard rock aquifers (Hama et al 2001), the small pores of Chalk and sandstone aquifers predominant in England will tend to minimise deep transport of most micro-organisms (West and Chilton, 1997; Bloomfield et al, 2001). Any micro-organisms that do exist deep in the aquifer (possibly transported through fractures rather than the matrix) must survive on a highly refractory carbon source such as degraded humic matter from the soil or water-insoluble kerogens (Tissot and Welte, 1984). Therefore only in the longer-residence groundwaters would significant methanogenesis be likely to occur. If there were a relatively simple 'piston flow' of water then a relationship between residence time and CH₄ concentration might be expected. For the water-supply aquifers, there is little evidence from ¹⁴C_{DIC} data (or ¹⁴C_{DOC} where available) for the time-related build up of CH₄. There is ample scope for mixing in fractured limestone aquifers such as the Chalk and particularly the Lincolnshire Limestone (Darling et al, 1997), so a good correlation with age would not be expected for these aquifers.

While it is certainly the case that the highest CH_4 concentrations in the Chalk, Lower Greensand and Lincolnshire Limestone are found among the older waters (there are insufficient data for the Sherwood Sandstone) with bulk ages back to the late Pleistocene, the evidence suggests that in some systems CH_4 can build up to close to its final concentration on a Holocene timescale (i.e. <10ka BP). The most consistent data from this study, for the

Lower Greensand (Fig 6), show a well-correlated CH_4 build-up occurring until a ¹⁴C value of ~20 pmc, equating to an approximate age of 7 ka (Evans et al, 1979).

However, little is known about the residence time of waters with CH₄ concentrations above 1000 μ g/l. There are no ¹⁴C data for the Wyresdale inflows or the Southampton waters (though it is likely the latter have been in residence for several millions of years: Edmunds, 1986). The ¹⁴C activities for the high-CH₄ sites LL5 and LL6 in the Lincolnshire Limestone do not have the lowest measured values (Table 4), and in addition could be affected by methanogenesis (Bishop and Lloyd, 1990). If from 'dead' organic carbon in the aquifer matrix, this would make the water appear older than it actually is. However, there is no sign of the anomalously positive $\delta^{13}C_{DIC}$ values often associated with methanogenesis (Barker and Fritz, 1981).

The production of CH_4 is obviously influenced by redox conditions in addition to residence time, and the relative contribution of each factor cannot be resolved with the present data.

5.5 Hydrochemical screening for methane

Methane is not routinely measured in groundwaters. Partly this is due to its lack of impact on potable water quality, and partly because rather specialised sampling and analytical methods are required. What pointers to its presence can conventional inorganic hydrochemical analyses provide?

Consideration of redox and carbon system parameters for the four water-supply aquifers shows that there is no single universally-dependable proxy for dissolved CH₄ among the commonly-measured hydrochemical determinands. This is not surprising given the thermodynamic disequilibrium demonstrated above. However, since these waters have CH₄ concentrations averaging <10 μ g/l (excluding sites LL5 and LL6), methane has little more than trace element status and the lack of predictability is therefore not problematic.

Methane concentrations in excess of 1500 μ g/l become of increasing significance to geochemistry (Parkin and Simpkins, 1995; Hansen et al, 2001) and safety (Buswell and Larson, 1937). The small number of measurements available for waters above this concentration in the present study makes statistically-meaningful correlations impossible, but certain tendencies are apparent. For non-thermal waters (LL5, LL6, Wyresdale Tunnel inflows, see Tables 4 and 6), very low SO₄ combined with elevated HCO₃ is the most obvious clue to potentially high CH₄ concentrations. Negative Eh values (where available) reinforce this. For the Southampton thermal waters (Table 7) very low Eh is also a strong indicator, but

because of the different mode of CH_4 formation referred to above, in these cases SO_4 is elevated and HCO_3 low.

6. CONCLUSIONS

The occurrence of CH₄ in a variety of groundwater settings has been investigated in terms of its hydrogeochemical context by using redox and carbon system indicators. Methane was present in nearly all groundwaters above the detection limit of 0.05 μ g/l, but potable waters from the Chalk, Lower Greensand, Lincolnshire Limestone and Sherwood Sandstone possessed (with one exception) only trace concentrations, below 50 μ g/l and with an average of <10 μ g/l. Concentrations in excess of 1500 μ g/l were only found in non-potable waters, the highest values (up to 16,000 μ g/l) being found in tunnel inflows from Namurian shales.

Highest CH_4 concentrations were associated with negative Eh potentials, but generally there was at best a tenuous relationship with redox-influenced parameters. A comparison of pe values calculated from the C(4)/C(-4) redox couple with those converted from Eh shows that CH_4 is very far from being at thermodynamic equilibrium with its surroundings. This is largely due to the bacterial mediation usually involved in CH_4 production, i.e. CO_2 reduction or (for all potable waters) acetate fermentation. In the latter case, sufficient DOC exists to provide a substrate for bacterial activity, but methanogens are restricted to reducing microsites and productivity is therefore low.

For the high- CH_4 waters, stable isotope and higher-hydrocarbon evidence demonstrates that both CO_2 reduction and acetate fermentation are possible production routes. Leakage of thermogenic methane from underlying strata has not been identified, but migration of biogenic CH_4 from adjacent sources remains a possible factor.

The genesis of CH_4 in aquifers seems to occur on two timescales: a rapid if low rate of production from labile carbon in anaerobic microsites, and a much longer, millennium-scale of production via the breakdown of more refractory carbon. However, mixing is likely to affect this simple picture, more particularly in aquifers with fracture porosity (typically the carbonates).

There is no single standard ionic determinand which acts universally as a proxy for high CH₄ because modes of production differ with hydrogeological context. However, a combination of high HCO₃ and low SO₄, or the reverse, indicates a potential methane problem.

ACKNOWLEDGMENTS

We thank our colleagues for collecting many of the samples considered in this paper, and Rosemary Hargreaves for producing the map figures. Measurements for ¹⁴C in dissolved organic carbon were performed by the NERC Radiocarbon Laboratory, East Kilbride. We are grateful for advice and assistance from David Kinniburgh and Dieke Postma, and for the constructive comments of the Editor, David Rickard, and referees Adrian Bath, Colin Neal and Anonymous. This paper is published with the permission of the Executive Director, British Geological Survey (NERC).

REFERENCES

Allen D J, Barker J A and Downing R A (1983) The production test and resource assessment of the Southampton (Western Esplanade) geothermal well. Rep *Investigation of the Geothermal Potential of the UK* series, British Geological Survey, 60 pp.

Altnöder A and Hutter E (1981) Methane in ground waters and the related problems at water works in Hungary. In: *Quality of Groundwater* (Eds W van Duijvenbooden, P Glasbergen, H van Lelyveld), Proc Symp Noordweijkerhout, Netherlands, Elsevier, 1045–1047.

Appelo C A J and Postma D (2005) Geochemistry, Groundwater and Pollution (2nd Edn). CRC Press, Boca Raton, 652 pp.

Aravena R, Wassenaar L I and Barker J F (1995) Distribution and isotopic characterization of methane in a confined aquifer in southern Ontario, Canada. *Journal of Hydrology* 173, 51–70.

Baedecker M J and Back W (1979) Modern marine sediments as a natural analog to the chemically stressed environment of a landfill. *Journal of Hydrology* 43, 393–414.

Barker J A and Foster S S D (1981) A diffusion exchange model for solute movement in fissured porous rock. *Quarterly Journal of Engineering Geology* 14, 17–24.

Barker J F and Fritz P (1981) The occurrence and origin of methane in some groundwater flow systems. *Canadian Journal of Earth Science* 18, 1802–1816.

Bath A H, Edmunds W M and Andrews J N (1979) Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. In *Isotope Hydrology 1978*, Vol II, IAEA, 545–566.

Bath A H, Darling W G, Hitchman S P, Andrews J N, Cave M R, Green K A and Reeder S (1988) Chemical and stable isotopic analyses of dissolved gases and groundwater seepages collected from Wyresdale Tunnel, November 1987. Rep British Geological Survey WE/88/1.

Berner R A (1981) A new geochemical classification of sedimentary environments. *Journal* of Sedimentary and Petrology 51, 359–365.

Bishop P K and Lloyd J W (1990) Chemical and isotopic evidence for the hydrogeological processes occurring in the Lincolnshire Limestone. *Journal of Hydrology* 121, 293–320.

Bishop P K and Lloyd J W (1991) Use of ¹⁴C modelling to determine vulnerability and pollution of a carbonate aquifer: the Lincolnshire Limestone, Eastern England. *Applied Geochemistry* 6, 319–331.

Bloomfield J P, Gooddy D C, Bright M I and Williams P J 2001. Pore-throat size distributions in sandstones and some implications for contaminant hydrogeology. Hydrogeology Journal 9, 219–230.

Buswell A M and Larson T E (1937) Methane in ground waters. *Journal of the American Water Works Association* 29, 1978–1982.

Chapelle F H (1993) *Ground-Water Microbiology and Geochemistry*. John Wiley and Sons Publishers, New York. 424 pp.

Christensen T H, Kjeldsen P, Bjerg P L, Jensen D L, Christensen J B, Baun A, Albrechtsen H J, Heron C (2001). *Applied Geochemistry* 16, 659–718.

Clark I D and Fritz P (1997) *Environmental Isotopes in Hydrogeology*. Lewis Publishers, Boca Raton, 328pp.

Coleman D D, Liu C-L and Riley K M (1988) Microbial methane in the shallow Paleozoic sediments and glacial deposits of Illinois. *Chemical Geology* 71, 23–40.

Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. *FEMS Microbiology Ecology* 28, 193–202.

Colter V S and Havard D J (1981) The Wytch Farm oil field. In: *The Petroleum Geology of the Continental Shelf of NW Europe*, Institute of Petroleum, 494–503.

Darling W G, Edmunds W M and Smedley P L (1997) The isotopic composition of palaeowaters in the British Isles. *Applied Geochemistry* 12, 813–829.

Downing R A and Penn I E (1992) Groundwater flow during the development of the Wessex Basin and its bearing on hydrocarbon and mineral resources. Rep British Geological Survey SD/91/1, 30pp.

Dennis, F, Andrews J N, Parker A and Wolf, M (1997) Stable and radiogenic isotopes in the Chalk aquifer system, England. *Applied Geochemistry* 12, 763–773.

Downing R A and Gray D A (1986) Review of the geothermal potential of the UK. In: *Geothermal Energy: the Potential in the United Kingdom*, (Eds R A Downing and D A Gray). HMSO, London, 152–161.

Downing, R A, Smith, D B, Pearson, F J, Monkhouse, R A and Otlet, R L (1977). The age of groundwater in the Lincolnshire Limestone, England and its relevance to the flow mechanism. *Journal of Hydrology* 33, 201-216.

Duff P M D and Smith A J (eds) (1992) *Geology of England and Wales* Geological Society, London, 651 pp.

Edmunds, W M (1986) Geochemistry of geothermal waters in the UK. In: *Geothermal Energy: the Potential in the United Kingdom* (Eds R A Downing and D A Gray). HMSO, London, 111–123.

Edmunds, WM, Miles D L and Cook J M (1984) A comparative study of sequential redox processes in three British aquifers. In: *Hydrochemical Balances of Freshwater Systems*, Proc Symp Uppsala (ed E. Eriksson). IAHS Publ 150, 55–70.

Edmunds, W M, Cook, J M, Darling, W G, Kinniburgh, D G, Miles, D L, Bath, A H, Morgan-Jones, M and Andrews, J N (1987). Baseline geochemical conditions in the Chalk aquifer, Berkshire, UK: a basis for groundwater quality management. *Applied Geochemistry* 2, 251–274.

Edmunds W M, Buckley D K, Darling W G, Milne C J, Smedley P L and Williams A T (2001). Palaeowaters in the aquifers of the coastal regions of southern and eastern England. In: *Palaeowaters of Coastal Europe* (eds W M Edmunds and C J Milne). Geological Society, London, Spec Publ 189, 71–92.

Elliot T, Andrews J N and Edmunds W M (1999). Hydrochemical trends, palaeorecharge and groundwater ages in the fissured Chalk aquifer of the London and Berkshire Basins, UK. *Applied Geochemistry* 14, 333–363.

Evans G V, Otlet R L, Downing R A, Monkhouse R A and Rae G (1979) Some problems in the interpretation of isotope measurements in United Kingdom aquifers. *In Isotope Hydrology 1978*, Vol II, IAEA, 679–706.

Foster S S D, Chilton P J and Stuart M E (1991) Mechanisms of groundwater pollution by pesticides. *Journal of the Institution of Water and Environmental Management* 5, 186–193.

Games L M and J M Hayes (1976) On the mechanisms of CO₂ and CH₄ production in natural anaerobic environments. Chapter 5, *Environmental Biogeochemistry*, V. 1, Carbon, Nitrogen, Phosphorus, Sulfur and Selenium Cycles, J O Nriagu (ed.)., pp. 51–73.

Gooddy D C, Bloomfield J P, Chilton P J, Johnson A C and Williams R J (2001). Assessing herbicide concentrations in the saturated and unsaturated zone of a chalk aquifer in southern England. Ground Water 39, 262–271.

Gooddy D C, Clay J W and Bottrell S H (2002) Redox-driven changes in pore-water chemistry of the Chalk unsaturated zone beneath unlined cattle slurry lagoons. *Applied Geochemistry* 17, 903–921.

Gooddy D C and Darling W G (2005) The potential for methane emissions from groundwaters of the UK. *Science of the Total Environment* 339, 117–126.

Grossman E L, Coffman B K, Fritz S J and Wada H (1989) Bacterial production of methane and its influence on ground-water chemistry in east-central Texas aquifers. *Geology* 17, 495–499.

Hama K, Bateman K, Coombs P, Hards V L, Milodowski A E, West J M, Wetton P D, Yoshida H, Aoki K (2001). Influence of bacteria on rock–water interaction and clay mineral formation in subsurface granitic environments. *Clay Minerals* 36, 599–613.

Hansen L K, Jakobsen R and Postma D (2001) Methanogenesis in a shallow sandy aquifer, Rømø, Denmark. *Geochimica et Cosmochimica Acta* 65, 2925–2935.

Harrold G, Gooddy D C, Reid S, Lerner D N and Leharne S A (2003) Changes in interfacial tension of chlorinated solvents following flow through UK soils and shallow aquifer material. *Environmental Science and Technology* 37, 1919–1925.

Hinsby K, Gooddy D, Witczak S and Aamand J (2002) Baseline organic carbon (TOC/DOC) concentrations in European groundwater. In: Proc. International Symposium on Subsurface Microbiology (eds H J Albrechtsen & J Aamand), International Society for Subsurface Microbiology, Copenhagen, pp 56.

Hoehler T M, Alperin M J, Albert D B and Martens C S (1994). Field and laboratory studies of methane oxidation in an anoxic marine sediment. *Global Biogeochemical Cycles* 8, 451–463.

Hoehler T M, Alperin M J, Albert D B and Martens C S (1998). Thermodynamic control on H₂ concentrations in anoxic sediments. *Geochimica et Cosmochimica Acta* 62, 1745–1756.

Hooker P J and Bannon M P (1993) Methane: its occurrence and hazards in construction. CIRIA Publication R130, 140 pp.

HSE (Health and Safety Executive) (2000) Water boreholes: danger from gas evolution. *Local Authority Circular* No 27/14.

Jakobsen R, Albrechtsen H-J, Rasmussen M, Bay H, Bjerg P L and Christensen T H (1998) H₂ concentrations in a landfill leachate plume (Grindsted, Denmark): In situ energetics of terminal electron accepting processes. *Environmental Science and Technology* 32, 2142–2148.

Jakobsen R and Postma D (1999) Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark. *Geochimica et Cosmochimica Acta* 63, 137–151.

Kelly W R, Matisoff G and Fisher J B (1985) The effects of a gas well blow out on groundwater chemistry. *Environmental Geology and Water Science* 7, 205–213.

Kimblin R T and Johnson A C (1992). Recent localised sulphate reduction and pyrite formation in a fissured Chalk aquifer. *Chemical Geology* 100, 119-127.

Kinniburgh D G, Gale I N, Smedley P L, Darling W G, West J M, Kimblin R T, Parker A, Rae J E, Aldous P J and O'Shea M J (1994) The effects of historic abstraction of groundwater from the London Basin aquifers on groundwater quality. *Applied Geochemistry* 9, 175–195.

Kuivila K M, Murray J W, Devol A H and Novelli P C (1989). Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. *Geochimica et Cosmochimica Acta* 53, 409–416.

Lansdown J M, Quay P D and King S L (1992) CH₄ production via CO₂ reduction: a source of ¹³C depleted CH₄. *Geochimica et Cosmochimica Acta* 56, 3493–3503.

Lawrence A R and Foster S S D (1986) Denitrification in a limestone aquifer in relation to the security of low-nitrate groundwater supplies. *Journal of Institution of Water Engineers* 40, 159–172.

Lawrence A R, Gooddy D C, Kanatharana P, Meesilp W and Ramnarong V (2000) Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand. *Hydrogeology Journal* 8, 564–575.

Lovelock J E (1979) Gaia: A New Look at Life on Earth. Oxford University Press.

Lovley D R and Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant electron-accepting reactions in aquatic sediments. *Geochimica et Cosmochimica Acta* 52, 2993–3003.

Miles C J, Tuschall Jr J R and Brezonik L (1983) Isolation of aquatic humus with diethylaminoethylcellulose. *Analytical Chemistry* 55, 410–411.

Murphy E M, Davis S N, Long A, Donahue D, Jull A J T (1989) ¹⁴C in fractions of dissolved organic carbon in ground water. *Nature* 337, 153–155.

Murphy E M, Schramke J A, Fredrickson J K, Bledsoe H W, Francis A J, Sklarew D S and Linehan J C (1992) The influence of microbial activity and sedimentary organic carbon on the isotope geochemistry of the Middendorf aquifer. *Water Resources Research* 28, 723–740.

Neal C and Stanger G (1983) Hydrogen generation from mantle source rocks in Oman. *Earth* & *Planetary Science Letters* 66, 315–320.

Pacey N R (1989) Organic matter in Cretaceous chalks from eastern England. *Chemical Geology* 75, 191–208.

Parkhurst D L and Appelo C A J (1999) User's guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259, 310 p.

Parkin T B and Simpkins W W (1995) Contemporary groundwater methane production from Pleistocene carbon. *Journal of Environmental Quality* 24, 367–372.

Pearson F and Edwards J S (1989) Methane entry into the Carsington Aqueduct system. Paper 4.3 in: *Methane – Facing the Problems*, Proc Symp Nottingham, 26-28 Sept 1989.

Price M (1987) Fluid flow in the Chalk of England. In: Fluid Flow in Sedimentary Basins and Aquifers (eds J C Goff & B P J Williams), Geological Society, London, Spec Publ 34, 141–156.

Ryan J N and Elimelech M (1996) Colloid movement and transport in groundwater. *Colloids* and Surfaces A – Physicochemical and Engineering Aspects 107, 1–56.

Schoell M (1988) Multiple origins of methane in the Earth. Chemical Geology 71, 1-10.

Selley R C (1992) Petroleum seepages in Great Britain. Marine and Petroleum Geology 9, 226-244.

Sherwood B A, Fritz P, Frape S K, Macko S A, Weise S M, Welhan J A (1988). Methane occurrences in the Canadian Shield. *Chemical Geology* 71, 223–236.

Smith D B, Downing R A, Monkhouse R A, Otlet R L and Pearson F J (1976) The age of groundwater in the Chalk of the London Basin. *Water Resources Research* 12, 392–404.

Smith R L, Howes B L and Garabedian S P (1991) In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests. *Applied and Environmental Microbiology* 57, 1997–2004.

Thurman E M (1985) *Organic geochemistry of natural waters*, Martinus Nijhoff, Dordrecht, 497 pp.

Tissot B P and Welte D H (1984). Petroleum Formation and Occurrence. Springer-Verlag, Berlin, 699 pp.

TWA (Thames Water Authority) (1986) A survey of dissolved methane levels in raw water from operational wells and boreholes. Central Div Tech Services Rep CD/TEC/TALL/17, 9 pp.

Vinten A J A, Castle K and Arah J R M (1996) Field evaluation of models of denitrification linked to nitrate leaching for aggregated soil. *European Journal of Soil Science* 47, 305–317.

West J M and Chilton P J (1997) Aquifers as environments for microbiological activity. *Quarterly Journal of Engineering Geology* 30, 147–154.

Whitelaw K and Edwards R A (1980) Carbohydrates in the unsaturated zone of the Chalk, England. *Chemical Geology* 29, 281–291.

Whiticar M J (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. *Chemical Geology* 161, 291–314.

Whiticar M J, Faber E and Schoell M (1986) Biogenic methane in marine and freshwater environments: CO₂ reduction vs. acetate fermentation – Isotopic evidence. *Geochimica et Cosmochimica Acta* 50, 693–709.

Zobell C E and Grant CW (1942) Bacterial activity in dilute nutrient solutions. *Science* 96, 189.

Table 1	Dissolved methan	ne, redox	and	carbon-system	measurements	for	sites	in tl	he Chalk	aquifer	of the	wider	London	Basin.
	Radiocarbon data	sources as	indic	cated. NGR – N	ational Grid Re	feren	ce, PS	– pu	imping sta	tion, OB	- obser	vation	borehole.	

Site N	o Site Name	NGR	CH_4	Eh	DO	SO_4	Fe	HCO ₃	$\eta^{13}C_{DIC}$	$A^{14}C_{DIC} \\$	Site No	o Site Name	N	GR	CH_4	Eh	DO	SO_4	Fe	HCO ₃	$\eta^{13}C_{DIC}$	A ¹⁴ C _{DIC}
		E N	ηg/l	mV	mg/l	mg/l	ηg/l	mg/l	% PDB	pmc			Е	Ν	ηg/l	mV	mg/l	mg/l	ηg/l	mg/l	‰ PDB	pmc
				ŀ	Redox p	aramete	ers	Car	bon parai	neters						R	edox pa	aramete	rs	Cart	oon paran	neters
Main	London Basin - BO	GS CH ₄ sites									Main	London Basin - TWA sit	es (con	td.)								
CK1	Bourne End PS	4895 1885	0.30						-14.0	60.8^{1}	CK93	Crayford PS	5506	1749	0.10	139	4.8	79.2	<12	305	-15.1	
CK2	Nicholas	4952 1806	0.05	215	1.5	61	3.2	320	-9.6		CK94	Wansunt PS	5510	1741	1.77	135	4.6			333	-14.5	
CK3	N & G	4978 1804	1.22	63	< 0.1	17	55	313	-2.5	1.9^{2}	CK95	Wilmington PS	5543	1728	0.34	185	5.3	45.8	<5	288	-14.3	
CK4	Pinewood	5018 1843	< 0.05	239	0.1	9		311	-8.6	20.8^{2}	CK96	Darenth PS	5549	1719	0.11	176	5.2	23.6	<5	295	-14.6	
CK5	Sanderson	5054 1851	< 0.05	229	0.8	35	5	303	-9.9		CK97	Green St. G. PS	5573	1709	< 0.05		5.9	12.9	12	304	-14.3	
CK6	Kodak	5146 1898	0.53	134	< 0.1	73	30	366	-1.7	3.8 ¹	CK98	Horton Kirby PS	5558	1680	0.13	174	6.1	23.7	<5	256	-14.7	
CK7	Glaxo	5150 1846	2.90	125	< 0.1	179	29	416	-1.7	1.1^{2}	CK99	Eynsford PS	5536	1655	< 0.05	203	8.2	23.1	<5	279	-14.8	
CK8	Lyons	5146 1843	0.18	138	<0.1	219	25	417	-1.3	,	Lee V	alley										
CK9	Crown Cork	5110 1794	0.53			100	• • • •	••••	-0.8	1.1	CK31	King George's Res OB	5373	1978	1.8	342	1.1	51.9	23	223	-7.5	
CKI0	Hoover	5167 1830	1.74	55	<0.1	183	206	388	-1.1	1	СК32	Sewardstone Rd OB	5376	1961	2.3	226	1.3	62.4	59	227	-6.9	3
CK11	PFW	5170 1834	0.43	60	< 0.1	308	238	415	-1.1	1.1	CK33	Chingford S OB	5374	1947	0.57	259	0.9	55.7	16	229	-4.7	21.5
CK12	Hornsey Baths	5307 1864	0.65	193	0.4	118		293	-2.6	1.42	CK34	Flanders Weir OB	5367	1934	5.8	259	0.9	52.9	18	232	-7.3	
CK13	Kentish Town B	. 5288 1847	3.20	48		186	97	364	-2.6	0.82	CK35	Greaves OB	5362	1918	2.2	261	0.5	62.8	16	240	-7.6	
CK14	Dorset House	5278 1820	1.90	20	<0.1	266	124	362	-2.4	0.8^{2}	CK36	Blackhorse Lane OB	5356	1904	0.07	256	0.5	106	17	256	-9.6	
CK15	BTAlder	5322 1815	1.42	156		• • •		• • • •		1 22	Berk.	shire				• •		• •				• • 4
CK16	Unilever	5315 1809	0.46	160	<0.1	282	80	388	-2.5	1.02	CK41	Ufton Nervet PS	4625	1685	0.14	30	0.2	20	98	324	-3.6	2.0*
CK17	BT Electra	5314 1809	7.02							2	CK42	Old Mill Hotel	4595	1665	0.16	100	0.2	16	290	328	-9.7	2.64
CK18	Sainsbury	5316 1804	1.12			191	76	331	-0.6	1.8	CK43	Grazeley Ct	4693	1674	0.42	50	0.2	42	61	287	-2.9	2.64
CK19	Harrods	5276 1794	2.56	105		125	97	377	-4.9	17.1 ²	CK44	Dairy Res. Inst.	4730	1683	0.69	119	1.9	45	217	331	-4.7	1.94
CK20	Unigate	5305 1779	3.68	169	0.2	177	87	324	-12.8	12.6 ²	CK45	Mortimer PS	4675	1645	0.13	41	< 0.1	34	72	268	-8.6	11.7^{4}
CK21	Sunlight	5302 1750	2.88	119	0.17	19	384	295	-8.9	13.5^{3}	CK46	Little Park Fm	4679	1631	2.67	95	0.2	50	582	287	-13.3	23.4 ⁴
CK22	Modeluxe	5256 1705	1.92	81	0.6	31	111	274	-3.8	4.5^{2}	CK47	Lawn Fm	4700	1601	1.41	40	0.1	67	120	293	-1.7	
CK23	BXL	5299 1672	0.75	99	0.7	22	630	315	-3.6	4.3^{2}	CK48	Sherfield Manor	4681	1571	1.41	110	0.3	22	650	295	-3.1	3.4 ⁴
CK24	Philips	5307 1654	< 0.05	258	6.2	23	4.4	268	-13.5		Med	way										_
CK25	Payne	5308 1647	< 0.05	287	7.0	35	1.8	271	-13.6	66.2^2	CK51	MC Air Filtration	5821	1674	0.29	352	3.9	84.6	<5	337	-16.4	79.3 ⁵
Mair	1 London Basin - T	WA CH ₄ site	s								CK52	Motney Hill WTW	5829	1685	1.64	226	0.1	101	120	271	-14.5	40.1 ⁵
CK90	Wanstead PS	5408 1875	0.51						-5.0	15.3 ³	CK53	Ibstock Funton	5875	1678	0.29	174	< 0.1	36.4	480	336	-6.7	4.1 ⁵
CK91	Deptford PS	5376 1765	0.12						-12.2	60.2^{3}	CK54	Co-Steel (i)	5914	1748	42.9	73	< 0.2	127	260	354	-14.8	10.6 ⁵
CK92	Shortlands PS	5395 1691	0.12						-12.7	65.8 ³	CK55	Sheerness Port	5905	1755	23.4	396	< 0.3	148	90	287	-14.3	3.0 ⁵

¹Smith et al (1976) ²Elliot et al (1999) ³Dennis et al (1997) ⁴Edmunds et al (1987) ⁵Edmunds et al (2001)

Table 2Results of ${}^{14}C_{DOC}$ analysis of waters from the Berkshire Chalk, with ages
(in ka BP) based on simple correction from pmc (percent modern carbon)
values, assuming Ao = 100 pmc (i.e. no dilution factor).

Site No	Site Name	CH_4	$\delta^{13}C_{DIC}$	$A^{14}C_{DIC}$	$A^{14}C$	DOC
		µg/l	‰ PDB	pmc	pmc	ka
CK41	Ufton Nervet PS	0.14	-3.6	2.0	59.4	4.2
CK42	Old Mill Hotel	0.16	-9.7	2.6	38.9	7.6
CK43 ¹	Grazeley Court Fm	0.42	-2.1	1.1	43.6	6.7
CK45	Mortimer PS	0.13	-8.6	11.7	33.5	8.8
CK46	Little Park Fm	2.67	-13.3	23.4	41.1	7.2

¹CH₄ concentration from nearby borehole (Grazeley PS)

Site No	Site Name	NO	GR	CH_4	Eh	DO	SO_4	Fe	HCO ₃	$\Box^{13}C_{DIC}$	$A^{14}C_{DIC}$
		Е	Ν	□g/l	mV	mg/l	mg/l	□g/l	mg/l	‰ PDB	pmc
				_		Redox p	arameters-		Car	bon parame	eters
LG1	Birchmoor PS	4943	2347	< 0.05	422	7.6	7.6	64	21.3	-19.3	86.5
LG2	Pulloxhill PS	5080	2336	0.77	170	<0.1	45.5	2600	176	-13.5	42.6
LG3	Meppershall PS	5150	2371	3.97	146	< 0.1	34.5	1618	226		
LG4	Newspring PS	5211	2416	7.63	138	< 0.1	53.9	996	304		
LG5	Dunton PS	5242	2448	9.93	136	< 0.1	75.9	835	252		
LG6	Delco 2	5006	2223	14.51	156	< 0.1	48.9	5510	204	-13.1	47.4
LG7	Delco 1	5007	2213	1.68	199	0.1	66.1	6510	199	-13.1	54.1
LG8	Slough Est. 7	4947	1820	12.88	86	< 0.1	73	138	221	-10.1	0.1
LG9	Slough Est. 10	4947	1820	18.84	154	< 0.1	78	9	218	-9.8	2.4
LG10	Slough Est. 12	4949	1820	10.45	74	< 0.1	49.3	121	266	-11.1	0.1
LG11	Horlicks 5	4973	1804	22.0	4	< 0.1	34.8	182	240	-11.5	2.1
LG12	Boxalls Lane PS	4863	1493	13.33	131	0.1	15.8	140	144	-16.1	1.2
LG13	Tongham Moor PS	4883	1493	3.09	158	0.1	14.4	154	146	-16.3	0.5
LG14	Tongham PS	4878	1484	8.13	151	0.1	16.9	205	146	-16.2	3.1
LG15	Oakhanger PS	4736	1361	4.03	299	< 0.1	7.2	249	131	-17.3	35.1
LG16	Bourne PS	4846	1450	2.56		0.4	36.5	3820	224	-12.1	37.1
LG17	Tilford Meads PS	4875	1435	3.81	177	< 0.1	12.4	347	141	-11.3	24.4
LG18	Mousehill PS	4939	1417	11.86	94	< 0.1	16.3	506	162	-12.4	37.2
LG19	Netley Mill PS	5077	1476	0.56	258	6.5	25.7	616	94.6	-12.0	72.5
LG20	Akzo Nobel	5778	1694	7.70	364	5	18.9	20	343	-12.5	1.32

Table 3Dissolved methane, redox and carbon-system measurements for sites in the
Lower Greensand and lateral equivalents. NGR – National Grid Reference.

										12	
Site No	Site Name	N	GR	CH_4	Eh	DO	SO_4	Fe	HCO_3	$\delta^{13}C_{DIC}$	$A^{14}C_{DIC}$
		Е	Ν	μg/l	mV	mg/l	mg/l	µg/l	mg/l	‰ PDB	pmc
						-Redox p	arameters		Car	bon param	eters
LL1	Ropsley Lodge	4983	3355	1	301	nd	76.6	46	372	-12.7	61.6
LL2	Ryland	5032	3768	1.5		nd	106		309	-7.4	
LL3	Dunholme Rd	5037	3764	0.05	261	nd	225		305	-14.0	
LL4 ¹	Stow 5	5063	3705	32		nd	77.2	14800	184	-11.2	61.1
LL5 ²	Stow 4	5072	3711	1700	-49	nd	3.2	80	723	-1.5	2.9
LL6 ²	Stow 6	5074	3699	2300	-109	nd	3.6	500	552	-2.1	2.4
LL7	Dorrington Fen	5114	3539	21.2	11	nd	2.8		413	-3.3	1.2
LL8	Digby Fen	5118	3547	2.6	116	nd	122		297	-10.0	47.2
LL9	Walcott	5130	3565	5.3	76	nd	48.0		280	-2.4	6.5
LL10	Timberland	5130	3586	2.6	-29	nd	56.2		410	-1.8	1.9
LL11	Pinchbeck W	5205	3250	1.4	86	nd	31.0		395	-2.0	
LL12	Donington Caythorpe	5221	3363	4.1	-139	nd	31.0		436	-1.7	

Table 4Dissolved methane, redox and carbon-system measurements for sites in the
Lincolnshire Limestone. Data from Bishop & Lloyd (1990, 1991) except as
indicated. NGR – National Grid Reference.

¹Data from this study ²Data other than CH₄, Eh and SO₄ from this study

Table 5Dissolved methane, redox and carbon-system measurements for sites in the
Sherwood Sandstone of the East Midlands. NGR – National Grid Reference.

Site No	Site Name	NC	GR	CH_4	Eh	DO	SO_4	Fe	HCO ₃	$\delta^{13}C_{DIC}$	A ¹⁴ C _{DIC}
		E	Ν	μg/l	mV	mg/l	mg/l	μg/l	mg/l	% PDB	pmc
				-		-Redox p	arameters-		Ca	rbon param	neters
SS1	Far Baulker No 1	4612	3543	0.93	343	8.0	45.8	<10	109	-14.0	56.0
SS2	Halam No 1	4670	3537	< 0.05	340	7.1	5.9	<10	135	-12.2	29.6
SS3	Ompton No 2	4678	3648	2.43	419	6.7	4.9	<10	139	-13.0	42.6
SS4	Whisker Hill	4692	3800	< 0.05	440	5.8	30.9	<10	109	-12.9	43.3
SS5	Ordsall No 2	4696	3802	< 0.05	358	5.7	29.5	<10	134	-12.8	39.2
SS6	Markham Clinton	4711	3727	1.42	357	4.9	8.4	<10	161	-12.8	27.3
SS7	Hayton No 1	4729	3854	< 0.05	102	< 0.1	58.9	121	213	-12.5	16.6
SS8 SS9	Grove No 2 Caunton No 2	4741 4739	3804 3601	<0.05 1.93	90 2	<0.1 <0.1	31.7 32.6	191 191	204 249	-12.4 -13.0	17.3 21.1
SS10	Nutwell No 3	4634	4031	2.5	382	< 0.1	27.6	<10	151	-13.4	
SS11	Thornham No 3	4655	4033	< 0.05	155	< 0.1	48.9	<10	232	-13.8	
SS12	Boston Park No 1	4677	4046	465	120	<0.1	23.3	370	223	-14.1	

Sample point ¹	CH_4	SO_4	Fe	HCO ₃	$\delta^{13}C_{DIC}$
metres	µg/l	mg/l	µg/l	mg/l	‰ PDB
		Redox pa	arameters	Carbon p	parameters
509	2714	<2	<20	378	-12.8
4343	16000	<2	<20	583	-8.1
4980	3000	<2	<20	411	-13.8
5090	13000	<2	35	417	-11.6
5340	15000	<2	24	451	-10.3
5787	2429	<2	240	410	-15.6

Table 6Dissolved methane, redox and carbon-system measurements for sites in the
Wyresdale Tunnel, Lancashire. All data from Bath et al (1988).

¹Distance from Rowton (northern) portal

Table 7Dissolved methane, redox and carbon-system measurements for thermal
waters from Buxton, Bath and Southampton. NGR – National Grid Reference.

Site name	NC	θR	TDS	Temp	CH_4	Eh	DO	SO_4	Fe	HCO ₃	$\delta^{13}C_{DIC}$	$A^{14}C_{DIC}$
	Е	Ν	g/l	°C	μg/l	mV	mg/l	mg/l	μg/l	mg/l	‰ PDB	pmc
]	Redox pa	rameters	;	Car	bon parame	eters
Buxton	4055	3735	0.38	27.5	0.29	431	< 0.1	11.9	<10	235	-8.9	18.0
Bath	3750	1647	2.3	44.8	53	-2	< 0.1	1080	774	187	-1.5	2.16
So'ton Marchwood	4399	1112	103	72.5	7790	-300	< 0.1	1400	4200	81	-15.8	
So'ton W Esplanade	4416	1120	124	76.0	5540	-200	< 0.1	1230	4100	71	-15.5	

Site	CH_4	C_2H_6	C_3H_8	HCO ₃	$\delta^{13}C_{DIC}$	$\delta^{13}C_{CH4}$
	cm ³ STP/l	cm ³ STP/l	cm ³ STP/l	mg/l	‰ PDB	‰ PDB
		x 10 ³	x 10 ³			
Wyresdale tunnel						
509 m	3.8	< 0.01	< 0.01	378	-12.8	-60.3
4343 m	22.4	1.1	< 0.01	583	-8.1	-64.3
4980 m	4.2	< 0.01	< 0.01	411	-13.8	-66.5
5090 m	18.2	3.5	< 0.01	417	-11.6	-67.1
5340 m	21.0	0.2	< 0.01	451	-10.3	-72.6
5787 m	3.4	< 0.01	< 0.01	410	-15.6	-68.6
Lincolnshire Lst					-12.0	-66.6
LL5	2.4	2.3		723	-1.5	-71.8
LL6	3.2	3.3		552	-2.1	-72.6
So'ton geothermal						
Marchwood	10.9	7.1	0.51	81	-15.8	
W Esplanade	7.8	5.3	0.25	71	-15.5	-45.8

Table 8Dissolved gas composition and isotope values for high-methane waters in the
Lincolnshire Limestone, Wyresdale Tunnel and Southampton geothermal
wells.

- Figure 1 Map of the wider London Basin area, showing the outcrop of the Chalk and the location of borehole sampling sites within the London area, Berkshire (S of Reading) and Medway (NE of Maidstone). Site numbers are prefixed with CK when referred to in tables and text. Sites are differentiated according to whether sampled by the British Geological Survey ('BGS') or by the former Thames Water Authority ('TWA').
- Figure 2 Plot of dissolved CH_4 concentration versus distance from onset of confinement (positive = confined, negative = unconfined) for the Chalk sites in Fig 1. LB – London Basin.
- Figure 3 Plots of redox-related parameters Eh, dissolved O_2 , SO_4 and Fe, plus carbonsystem parameters HCO_3 , $\delta^{13}C_{DIC}$ and ${}^{14}C_{DIC}$ activity, versus dissolved CH_4 concentrations in the Chalk aquifer of the wider London Basin.
- Figure 4 Map of the outcrop of Lower Greensand and lateral equivalents in SE England, showing the location of borehole sampling sites. Site numbers are prefixed with LG when referred to in table and text. Sites are differentiated according to whether sampled by the British Geological Survey ('BGS') or by the former Thames Water Authority ('TWA').
- Figure 5 Plot of dissolved CH₄ concentration versus distance from onset of confinement (positive = confined, negative = unconfined) in the Lower Greensand aquifer of SE England.
- Figure 6 Plots of redox-related parameters Eh, dissolved O_2 , SO_4 and Fe, plus carbonsystem parameters HCO_3 , $\delta^{13}C_{DIC}$ and $^{14}C_{DIC}$ activity, versus dissolved CH_4 concentrations in the Lower Greensand aquifer of SE England. Note that in contrast to the Chalk, Lincolnshire Limestone and Sherwood Sandstone, the CH_4 scale is non-logarithmic, and Fe scale is in mg/l rather than µg/l.
- Figure 7 Map of the outcrop of the Lincolnshire Limestone in eastern England, showing the location of borehole sampling sites of Bishop and Lloyd (1990). Site numbers are prefixed with LL when referred to in table and text.
- Figure 8 Plot of dissolved CH₄ concentration versus distance from onset of confinement (positive = confined, negative = unconfined) in the Lincolnshire Limestone aquifer of eastern England.

- Figure 9 Plots of redox-related parameters Eh and SO₄, plus carbon-system parameters HCO₃, $\delta^{13}C_{DIC}$ and $^{14}C_{DIC}$ activity, versus dissolved CH₄ concentrations in the Lincolnshire Limestone aquifer of eastern England.
- Figure 10 Map of the outcrop of the Sherwood Sandstone in eastern England, showing the location of borehole sampling sites. Site numbers are prefixed with SS when referred to in table and text.
- Figure 11 Plot of dissolved CH₄ concentration versus distance from onset of confinement (positive = confined, negative = unconfined) in the Sherwood Sandstone aquifer of eastern England.
- Figure 12 Plots of redox-related parameters Eh, dissolved O_2 , SO_4 and Fe, plus carbonsystem parameters HCO_3 , $\delta^{13}C_{DIC}$ and ${}^{14}C_{DIC}$ activity, versus dissolved CH_4 concentrations in the Sherwood Sandstone aquifer of eastern England.
- Figure 13 Location of thermal water and high-CH₄ sites (excluding LL5 and LL6 see Fig 7).
- Figure 14 Plot of dissolved CH₄ concentrations in the Wyresdale (Lancashire) and Carsington (Derbyshire) water transfer tunnels. Both tunnels are bored in Namurian strata and show comparable levels of CH₄.
- Figure 15 Plot of dissolved CH₄ concentrations in Chalk and Lower Greensand boreholes versus distance from onset of confinement, differentiating between high-abstraction pumping station (PS) and other sources (non-PS).
- Figure 16 Plot of pe values calculated from the redox couple C(4)/C(-4) versus pe derived from field Eh measurements for samples from the Chalk, Lower Greensand and Lincolnshire Limestone aquifers, indicating the sizeable departure from thermodynamic equilibrium for dissolved CH₄.

Figure 1

Figure 3

Figure 4

Figure 5

Figure 6

Sampling sites

Overlying formations Incolnshire Limestone Underlying formations

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16 Plot of pe values calculated from the redox couple C(4)/C(-4) versus pe derived from field Eh measurements for samples from the Chalk, Lower Greensand and Lincolnshire Limestone aquifers, indicating the sizeable departure from thermodynamic equilibrium for dissolved CH_4 .