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ABSTRACT

The mothoed of probability welghtaed moments is vsed
to derive estimators of the parameters and quantiles
of the generalised extreme-value distribution. The
properties of these estimators are investigated in
large samples via asymptotic theoxy and in small and
moderate samples via conputer simulation. Probability
weiaht e moment estimators have csw variance an? nc
severe bias, and compare favourably with estimators
cbtained by the methods of maximum liklihood or
sextiles. The method of prebabi 1ity welghted moments
also yields a convenient and powexrful test of whether
an extreme-value distribution is of Fisher-Tippett

type I, II or III.
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fﬁé:}x’vestigni:ed the small-sample properties of probabilit
- estimators (PWM estimators) of parametex

o ;",#.listribution and fou
o g;;imtmmmt and mximum-a.ixﬂlihooa estimatorn.

«a.\t al (1979) are identical to Downton g (1966Db

coefficj.ents", and thus share th

INTRODUCTION

The generalized extreme-vaiue distribution of Jenkinson (1955) is widely
ugsed for modelling extremes of natural phenomena, and is of considerable
importance in hydrology. since it is recommended by the Flood. Studies Report
{(NERC 1975) for modeliing the disuribution of annual maxima of daily
streamflows of BEritish rivers. Currently favoured methods of estimation of

the parameters and quantiles of the distribution are Jenkinson's (1969) method

.~ e 2 e
-

of sextiles, and the metnoa o BAZ LI o P2t ke kb Aot wtlanmm 106G . Dvaacrntt

and Walden 1980, 1983). Neither method is completely satisfactory: the
justification of the mxifnum-likelihood approach is based on larue—sample

theory, and there has been 1i1ttle assessment of the performance of the method

when applied to small or moderate samples; wiile the sos 110 mathaA invnlven

an inherent arbitrariness (why sextiles rather than, say, gquartiles or

octiles?), requires interpolation in a table of values of a function in order

w o€ thn Fic+ritmtion. and has o

ke
[ ey B4

to estimate Lhe suAps palal
properties which are not known even for large samples.

Probability weighted moments, & generalization of the usual moments of a

probability distribution, were introduced by Greenwood et al (1979). There

are several distributions, for eaxample the Gumbel, logistic and Weibull, whose

uarametera can be conveniently estimated from their probability wedghted

A The Gumbel distribution, being a special case of the generalized

yé:'fktreme-value aistribution, is of particular jinterest. lLandwehr et al ( 1979)

y weighted moment
s and quantiles for the Gumbel

nd them superior in many respects to the conventional

The estimatovs used by Landwehr

) "Linear estimates with- linear

e asymptot:lc propertiea of the latter- in



be preferred to them.

wherq pr ©

 and this is often the ‘most:' convenient way of evaluating these moments.

particular, the asymptotic efficiencles of the PWM est:imators of the Gumbel

0.756 and 0.996 respedtively.

scalc and location paraneters are

In the present werk we summarize some theory for probability' veighted

moments and show that they can be used to obtain estimates of parameters and

quantiles of the generalized extreme-value distributlon. We derive the

asymptotic distributions of these estimators, and compare, via computer

simplation, the small-sample properties of the probability weighted moment,

gextile, arvl maximum~likelihood estimators. The method of probabi -ty

. PR - . . - . P — - o~ - re - - X
weighted MOMEI TS OULPOILULMS Lie wiics weibhiode Lih miany cascs and will _"___1__;

We also derive from the PWM estimator of the shape

parameter of *he generalized extreme-value distribution a test of whether this

~ shape parameter is zero, and assess the performance of this test by computer

simulation.

PROBABILITY WE IGHTED MOMENTS

- The probabj'.'i;l.ty waighted momehts of a random variable X with
digtribution Function F(x) = P(X < x) are the quantities
Mo,r,e ® exP{F(x)T01 - ()38 (1)

Probabil ity welighted moments are

and 8 are real numbers.

lik'eiy'to be most useful wvhen the inverse distributijon function x{F) can be

vritten in clomed form, for then we may write
Mp,r,8 “-J;{x(r)}l’r”-u-ﬂsdf' L, @
 the.

quantitiea MPoO or p =1 12,000, are the usual noncentral moments of X.  The

'noments M4 'L s may, however, be preferable for estimating the paramnters of

the distribution ot x, since the occurrence of only the first power of X

: 1n'”the ‘expresaion for- “1;:-,3. "me'a.na---that.t:he'-‘:rela.s:ionship be_tweenf-parameters"- .

e

—

e . . - - .
) = . .

and moments often takes a simpler form in this cage than when using the

conventional momenta; When r and s are in-E=egers, FF(1-F)® mawy be

expressed as a linear combination e:lther of pOwmmgers of F or powers of

(1-F), s0 it :ls natural to summarize a distri P—ytion either by the moments

My,p,0r £ ™= 0,1,2,00.y ox by H1 0,8’ 8= 0, T gee2;tvs v Greecnwood et al (1972)

generally favour the latter approach but here -wmsarg #ill consider the moOments

B, = “1,:,0 = p[x{F(X))*), r = 0,1,2,... .

Given a random sample of size estimation

n from the= jatribution F,

~n¥ PI.‘ ia maet remvanientlv haaed on +ho Ardow—aal ramnlp X, € W € . . € X .
| - : = "

The statistic

| ) . : |
. (3=1)(4=2Y .. ¢ = ) .
> " j‘z"‘ (n""1)(n-2)...(-_-j;x_, ~r) 73 (3)

r
is an unbiased esf-imator cf 3

(Landwehr et .=mm:] 1979), Instead one may
estimate B by

8 lp, ) = %1 B n ™ (4)

vhere 15, ia a plotting position, i.e. 8 A3 = ribution~free estimate of

.such ase -:‘mj,n' {j=a)l/n, 0 < & < 1,

F(xj). Reagonable choic2e of py pe

or pj n ™ (J=a)/(n+i- 2a).- - -21- <a< ;. yield am=sgtimators Brlpj'n] which are

and therefore=  areé congistent est imators of

asymptotically equivalent to b

By

The estimators b, are closely related to ufata_tisticé (Hoeff&ing 1948),

wh:lch are averagea of statistic.; calculated fror_-_-:.-l all uubsamples of size

j {n of a given sample of size n. In particmsr by = n ).x is a trivial

example of a U-siacistic, and is a natural estz.r*_:natr: of location of a

di strlbut ion°
2b4 - by -% u, = ; (g)'_’.:}f (:-:}kj:)'-' | :(5) '
EPL S |

:ls a U-stat:latic for est:lmnting the sca.se of a &igta ution - the etatistié -

tfz, sometmea known as Gini's mean difference, has a Hatory going back at



‘ !
least 88 far <. von Andrae (18723, &nd 3 g U, is a 98% efficlent estimator

of the Bcale p>arameter of a Normal <Xigtribution {Downton % 966a)) and

- ; Il-l- _ J- n -1 bl -
S, - 6b, + by =3 U, y (3) i>§>k(xi 2xj+xk) ()

ig a U-statise4c for ~stim.:ing slcerwness which has been wussed as the basis of a

'_test for Normaes 1ity by Locke and Spuxx-yier {1976). uU-stat L=stics are wide]y ussed

in_nonparametr;tc stetistics (uee, £ ox example, Fraaer. 1957, Chap., 41 Randl es
and Wolfe, 1929, Chap, 3) and theix desiradle properties <of iobustness to
outliers in tiIhre smiz'ple.; high efﬁiciency'andlahﬁtotic noz:'malify may be

expected to edetend to the probabili ty weighted toment estZmmators b, and

| other quantit ¥ es calculated from them,
Pvy ESTIMATORSS FOR THE GENERALIZED IEXTREME-VALUE DISTRIBUGT ION |

The genexray X ized extreme-valixe ({ GSEV) diatribu‘,;iqm intxr odiced by Jenkinson

distritution Foex extreme values; as Serived by Fisher and T dppett (1928). The

distribvtion ftmctioh is‘

{expt- {1 = k(x-—z)/a}‘/" X¥o o, .
F(x)> = . | o (7)
exp(~ exp{- (x—E& 3 /o}] , k=0 -

with x boundedi by g4 a/k from above if k,)l 0 an& frc.m bélow if

X < 0. Here &

the ghape parameter kx determines whaich extreme=value disi:ribution is

representeds P:l.sher-'rippett types Xe 11 and. III. correspona to k=0, k < N

and k >0 respectively- ‘When k = O t'he ey diltribution reduces to the

"Gumbel distribu:t:ion. 'rhe inverse d:l.stzibution funct:ion is

A

-fix(I?TF_;; ) ‘.‘;+@-~- : .8y
SRR e O oA 109(-109 !'): EEEE T SR =

and a are locat:j.on and scale parametere; respectively. while

v

I! 5
L

. |

g approximations for k are. very accurate.

N B . - . R K i p 1 R —
- A . ' B . ¥ .
) ; ¢ S ) . v - - - ‘

,Equat‘ions (13) and (15), or thair equivalent forms w:lfh b

The probability weighted moments of the GEV distribution for k # 0 are

given by

B = e+ E 4 al1 = (O TTOMOK K> - 9)

(fox; proof see Appendix 1). When k < -1, 80 {the mean of the distribution)

and the res.t of the ﬁr do not exist. from (9) we have

30 = £ + a1 - T(t+ki)}/k , (10)
28, = By = aT(1H)(1 = 2750/, (11:
?82-80 1‘3.7]‘ (19

281-80 1_2-k ’ '

The PWM estimators £, @, k Of the parameters are the solutions of (16) -

(12) for £, a and k when the ﬁr are replaced by thelr estimators br or

~

F )
B ij_ ]« To obtain k we musi solve the cquaticn

3by~by 437k
-3 (13)
Zb,-b, =
1-2

e O + wivae iterative methods, but because the function

PR P
aiids S LohoTIe

ey e
B N e sk Yoy

'(1~ "k)/(1-2"k) is almoat linear over the range of values of k,

- -1 <k < -1-. which 'is uaually encountered in practice, low-order polynomial

2
We propose the upproximate

estimator

2b . ~b
3b1-b0 - iog_g_ ? o (14)
2™Pg 109

% = 7.8590c + 2.9554c%, ¢ =

‘the errxor in k due to using (14) rather than (13) is less than 0 0009

s < k < -1--‘ Given k. the scale and locaticn

| throughout: the ranga -3 3

'-parametars can be estimated succeasively from equationa (11) and (10) as

. (?b b )k
‘. r(m:)(a z )

.'_l,:_"- ETR.

g i:'e'plac":e“td” by

e el e e e ey e

11111111

._—l""' ’ E o bO + d{r(""'k) ""”'/k L (15)




[pj ], define the PWM estimators of thez parameters of the GEV distri-

M1ion. Given tTze estimated parameters, the quantiles of the distribution are

m’imated'using Tthe inverse distribution function (8).

as the estimator of B, the PWM estimates of

Wher cAlcula ted using br

£33 o CIv Metribut Lon satisfy a feasibillty criterion, namely that Xk > =1 and

R

o >0 almogt swxxely (for pProof Bee Appendix 2). This is clearly a desirable

pPxY-<perty, tince ©Ome vould like estimates calculiated using a set of sample

mossments to yield &ain estimated distribution fox whic. he corresponding

pPoelation oment == exist, We 'have not been able to prove that this

Feampibility critexjion ig satiasfied when pldtting-position estimators

L)

Br !_'pjm] ate uge<3, hut n'o examples of the criterion not being satisfied have

bexe=n digcovered ix» practice.

ASENPI0TIC DISTRIERUTION OF PWM ESTIMATORS

When modelling the properties of extremes of physical procegses it rarely

occ=urs that the awrajlable data set is large enough to ensure that asymptotic ,

ln:::'graample theo;r:y may be directly applied to the problem. It ia nonetheless

val.'uabla to :lnvest 1gate the aaymptotj.c propertz.es of a new statist:lcal

t erc=hnique, for two main reasong. First; one nmy' seek to establish the

) 1n1=.egr1ty of the technique; in t:he aense that whan a .;arge sample is

avzuilable, the new method shoqu ‘ot be grossly 1neffic:lent compared to an

: est:ablished; asymptotioally optimal method suc.h ag maximum lirelihood.

Saczond, asymptoticz theory my proﬂde an aﬂequate approximation to ﬂﬂme ﬂﬂpect_'-_--. '

' ;.'°FE_ ' thedistributicm "0£:-a=;;qt:ai;:léti9 eve_r; .liﬁg"”‘l‘?’-",-_t?---_kml!u"-"94!!‘_‘?1‘95'--} m-«:ft_hfe IR

| premseit iids wa sTaall see that the variance of PWM\estimators of parametsra. . - gy | g

We consider first the asymptotic distribution of the b,. From (3),

b

r is a linear combination of the order statistics xq,...,X,, and the

results of Chernoff et al (1967) ‘may be used to prove that the vector |
b = (by by bz)T has asymptotically a multivariate Normal distribution with
mean B8 = ‘{80 B, 82)T and covariance matrix n~1V. The elements of V and
detail's‘of"'the proof are given in Appendix 3.

The asymptotic distribution of the PWM estimators of the GEV parameters
[ A A A T

follows from'the precedln_g result. Let 8 = (£ a k)T, 8 = (£ and
write (13) and (15) as the vector equation 8 = £(b). Define the 3 x 3
matrix G = (gij) by g34 = Bfi/abj. Then asymptotically 9 has a

miltivariate Normal distribution with me;-m £(B) = 8 and covariance matrix

n~1eveT (Rao, 1973, p. 388). The covariunce matrix has the form

[ 2 2 ]
a w" o W12 CCW13
-1 T -1] 2 2
n GVG = n a wr12 | a w22 aw23 . {(16)
AWy,  OW,, Wa,
L J

'The iﬂij are functions of k  and have a complicated algebraic form, but tr'sy

can be evaluated numerically and are given in Table 1 for sev_eral values of

ELEMENTS OF THE ASYMPTOTIC COVARIANCE MATRIX OF ‘fHE PWM .
ESTIMATORS OF THE PARAMETERS OF THE GEV DISTRISUTION -

- e [
Ty wetbo N e

TABLE 1

S PSS

ko Wy wya waz o Twgy  Pway o way

=0.4  1.6637  1.3355  1.1405  1.8461 = 1.1628  2.9092
0.3  1.4153 . 0.8912  0.5640 1.2574  0.4442  1.4090
C T L0.2 1.3322° 0.6727  0.3926  1.0013  0.,2697  0.9139
U Lpie) 12915 U 0.8104.0 0 053245 0.8440  0:2240 .5315-._  |
0.0 1.2687  0.3705  0,2995  0.7395 - 0,2249  0.5635
0.1 02550 0,2411  0.2966 0.6708  0.2447 05103
Hi”‘f“*1.2474¥ ””“'””w“ﬁiﬁfbfabh1~ﬂifo.ssaoLJJEO¢2729ﬁa¢;0;5621.L@:e e wEioan
312438 So.0023 0.3297 0.6223° 0.3033  o.s20a 7T
'"“Lilﬁ;zgggggjfff”"'”Ligﬂoidﬁézqfﬁf .ﬁaeail[;o.aazsgf}lggégﬁép,gg]w.”;p;;i




ke AB 3=  approaches - -21-; the variance of the GEV distribution becomes

infinite &ndthe variances of the br and of the PWM parameter estimators are

no longex- of order n~1 asymptotically .

- The asymptotic biases of the eatimatcis are of order n"'l and can be

evaluatec® by nethods similar to those of Rao (1973, p. 388), The biases,

graphed & r Figure 1, axre negligible im large samples provided that &k > -0.4.

1]

. 10 —
9 j
e 8
| .
7
6
e 5 '
xX
a 4
e
& 3 —’
] \
o —_— e ————
p—
R -1 o
- 3 -2 T I | E— l —
— 0.5 -04 --O 3-02 -0.t 00 01 02 03 04 05
Shape pararneter k
FIGURE 1

Asyuptotic b as of PWM estimators. o;t parameters of the
GEV distribution_ K, & .

>

For comarison, asymptotic biases of ‘_-a:'t;e,-'_:;gavgimuggel-'i‘kelihpoe': eetﬁniatprg of

the parasme=ters of the GEV digtribution az_:e g;raf»fiefl in I-‘igure 2 . : "I'ﬁ_eee Z:bi‘eseé‘,: Co

~were cal cxzlated using eqruation (3.13) of sheniﬁoin ;and hawm&;; (1377 }c-';':ada:a; : 

""funct:lons of expected va:luan of th:l:ra deriv&ti#ee ef the mg—-likatihbod

n ffuncti on .

a‘l 15 L_\‘ DS

*"i:'f"maximum—l :!.‘kel_ihopd_ eerimtora ‘are no'c of order

-5
.

For k > 1/3 these expecnations do not exist and 1he bi‘a..ee of «me

n 1--¢,usymptoti ally.‘ , .
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In Figures ] to 4, the curves on the graphs have not been
identified. Thehy correspond to parameter estimates, as follows:
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FIGURE 2 Asymptotic bias of ML estimatore of parametere of the

Lpbond LA AP ] L mom e e s rsu
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'I'f:'e"l"a'iiymptotic variances of the estimators are graphed in Figure 3, and
theii asymptotic efficienciee in Figure 4. Asymptotic efficiency is defined

as the ratio

eff(Bi),;_m 1im (var Bi/var 91)‘

n+Ho

for each elemen: Gi of the parameter vector J, where Ei is the maximum-
likelihood estimator of 8 i Overall efficlency is the ratio of the deter- ‘

minants of the asymptotic covariance mat'ricee of © and 0. The c.‘werall

efficiency of the PWM estimators tends to zero at k = :tO 5 but for values

-6‘f.-“1:1‘-' not. too. far from gzero the PWM method 'is reasonably efficient. W:I.th:l.n

the range -0 2 < k < 0 2, which ie valid for mny hydrological data eete,

each PWM parameter eatimator has efficiency of over 0.7
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Asymptotic variance of PWM estimators of parameters of the
GEV distribution: K, &, E.
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Asymptotic etficlency of PWM estimators of paranetera of the
GEV distribution: £, a, £, ..... overall efficiency
i.e. ratioc of determinants of asymptotic covariance matrices of

ML, and PNM eatimatora.
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Corresponding results may be obtained for PWM and maximum-likelihood

estimators of quantiles of tne GEV distribution.

full, but Tables 2 and 3 give results for various quantiles when k = =0.2,
and for various values of k at the F =
illustrate the main characteristics of PWM quantile estimators, which are:
high positive bias in oxtreme upper taii, arising from positive bias in ;t

high variance in upper tail when k < Uy fair or high efficiency except when

TABLE 2

TABLE 3

These are not presented in

0.98 quantile.

The tables

ASYMPTOTIC B1AS AND VARIANCE OF PW: AND ML ESTIMATORS OF GEV

e e g A e P PR B 3 ER TICYRITRFAMARN AN ATITYR T ET

HUnﬂALunu, NI DA & s asivos

€.001
0.01
0.1
0,2
0.5

ol ¥)

-1.60
“1,32
-0.77
«0.45
0.38
1.75
2.84
.ot
7.55
12.33
14.90

2.

n » bias
FWN ML pwM
-1,2 1.7 3.78
~.2 146 2-06
£.8 1.2 0.46
1.0 0.9 0.88
0.6 -0.1 1.92
-1.3 “1,2 6.10
-3.1 “141 16,1
-, 5k 147
-1.6 13.4 336
23.9  54.3 1760
49.1 2.2 3310

n X variance

ML

2.29
1.35
0.79
0.88
1.79
6.00
15.9
131
289
1430
2630

L e Aral B PR ERE St e e Mrha i e W AR Ve e b e et ORI e

Efficiency

0.61
V.66
0.92 -
1.00
0.93
0.98
0.v9
c.e”
0.86
0.8%
0.80

ASYMPTOTIC BIAS, VARIANCE AND EFFICIENCY OF THE PWM AND ML
ESTIMATORS OF THE F = 0.98 QUANTILE OY THE GEV DISTRIBUTION,

AND THE EFFICIENCY OF THE PWM ESTIMAVLRS.

a=1,

0.3
0.4

x{F)

9.41
7.41
5.91
4.77
3.90
3.23
2.71
2,30

1.98

n x bias

PWM ML oG
~G4.8 21.5 1170
~45,3 15.3 Cane
4.4 5.5 - 147
=11 -0.3  64.8
=0.1 -3,0 30.2

0.3 -€.% 14.7

0.5 =8, 7.53

0.5  -23.2 4.0¢ .

0.6

R © 2,28

n » variance

ML

574

275

131
62.0
28.8
13.0

o He62
2.28
0.83

Parametera £ = 0,

Efficiency

0.49
0.75
0.89
0.96
0.95
0.88
0.75
' 0.56
0.36

11
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k 48 cioga €O #£0.5. The maximum-likelihood guantile estimators have lower

variance thaxa the PWM estimators but have some very large blases. particularly

in the extrexne upper tail of the distribution.

The regslts of this section were derived for PWM estimators which use

b, towtimate B.. If the plotting-position estimates B r [pj n] are used
r

Y
instead, the asymptotic variances and efficiencies remain unchanged, but the

agymptotic bi ages are Aifferent and cannot be easily calculated, being

affected Iy the blases in the B - [pj n} themselves.
1

SMALL-SANPLE PPROPERTIES OF EB;I‘IHA’I‘ES Of THE GEV DISTRIBUTION

A coqput-er simulation experiment was run to compare three methods of

estimaticn o the parameters and quantiles of the GEV distribution.

simulat},qgg werye performed for sample gizes n = 15, 25, 50, 100 with the

shape parriet-ex of the distributaon taking wvalues k = -J.4, ~0.2, C.0, 0.2,

0.4, AMlthe methods of estimation are invariant under linear transformat fons

of the dats, So withcut loss of generality the locrtion and scale parametexs

E=0 and ¢ =1 vere used throughout. For each combination of values n

and k. 1000© randon samples vere generated from the GEV 4. stribution, ané for

each sample t=Yie parameters £, ¢ and k, and the quantiles x(F), vhere

P=0001,0-01, 0.1, 0.2, 0,5, 0.8, 0.9, 0.98, 0,99, 0.998, 0.999, wvere

egtimated by each of tiiree methods: (1) the method of probab:llity'we.{qhted

moments (WH) » described above; (2) the method of mximun likeiihood (ML),
using Newton—Raphson 1teration to maximize the likelihood function, 88

recommendad >y Prescott arnd Wa den (1983); and (3) Jerkirson's (1969) method

of pextiles € JIS). 'I‘he PWM method requires a choiqe o a au:l.table estimatos

- of B v fevexal pows bil:lties were investigated, includ.mq the unbilased

eﬂtmﬂtqrﬂ_lbr aud ¢ number of p.mttinq-pos}ition eatimators 8 [Pj n ]. The

TR
A —

e ST T I NI TR F TR O I T

e

. L]
A
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LR
~

o

e ;e

.~
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o 3
S -

13

best overall results were given by the estimator Br [pj n] with
14

P4,n = (J§~0.35)/n, and the simulation results presented below for the PWM

method refer to this version of the PWM estimators.

T oieg

For some simlated samples, the maximum=-likel ihood and sextile estimates
could not be found. The cause of this problem for the maximum-likelihood ‘

method was nonconvergence of the Newton-Raphson iteration, usually due to an

extreme outlier inethe sample; for the sextile method, a ratio of sextlle

means used to estimate the shape parameter of the GEV distribution
mcoanionallv lay outside the range of a table of values in which it was to be

interpolated. Such cases were omitted from the simulations. No such problems

were enccuntered with the PWM egtimators, which could always be calculated.

The simulation results for estimation of the parameters of the GEV

distribution are summarized in Table 4 and 5. Resultc for the estimator of

kx are of the greatest importance, since this parameter determines the overall

shape of the GEV distribution and the rate of increase of the upper

cuantilea x(F) as F approaches 1. Apart from the case n = 100, when

all the methods have comparable performance, the PWM estimator has .

consistently the lowest standard deviation of the three estimators of k., its

advartage being particularly marked in small samples, n =15 and n = 25.

The PWM estimator has in general a larger bias than the other estimators but

its bias is small near the important value k= 0 and is in any <case |

relatively insignificant compared to the gstandard dewviacion in its contribhu-

tion to the mean square error of k. The sextile estimator of k has a iaxrge

positive bias in small samples when k ¢ 0 and its standard deviation is . ‘

generally larger than that of the PWM estimator.

gimilar results can be seen for estimators of £ and a, &lthough the

18
differences between the variances of the estimators are less marked than is J

the case with estimators of k. In generai, PWM estimators have grallest

standard deviation, particulariy for n ™ 15 _and" n = 25, and their bias,
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14 l ‘ I 15
“‘}  TABLE 4 BIASS (F ESTIMATORS OF GEV PARAMETERS . l ' though often larger than for the ML or sextile estimators, is not severe. The
l I gtandard deviations of the PWM estimators for n » 50 are well approximated
Biag(£) Biaa(;) Bias(il b7 th -
eir large-sample values given 16) and Table 1., HMaximum—=likelihood
B 047012 00 0:2 0.4 0.4 =0.2 0.0 02 0.4 0.4 ~0.2 0.0 0.2 0.4 7t gemaampie ¥ 9 by (16) i eli
n Method
] ' l estimators are the least biased but are more variable than PWM estimators in
’ PWH .w '.05 "'-02 .0‘) ".03 .GG "‘.Oﬁ --10 "-11 "0‘2 -11 .03 "003 -.OB - 12
1 M 0! «03 05 ,05 ,08 ~,07 -.07 ~.07 =06 ~.07 =~,04 =,02 .02 .04 .03 small samples. Even at sample size 100, the asymptotic inefficiency of the '
Jg 1M1 <-08 .08 .04 .02 -,05 -.,06 -.07 -.08 -,08 .10 «06 03 01 ~.01 l _ L
e P 06 <03 01 =01 =02 .00 =.04 ~.06 =.07 =.07 0B .02 =.02 =05 ~+07 PWM method compared to maximum likelihood is not apparent in the simulation K
25 M 0 =02 .03 .03 ,04 ~.04 -.04 -.04 -.03 -.03 ~-.02 ~.01 ,02 .04 .05 v
JB8 6 -~04 .03 .02 ,01 ~,03 -.03 -.04 -.04 -.05 07 .04 02 .01 -.00 I ' results. Sextile estimators in general have larger standard deviations than .
PHH g04 - Q2 iol -00 -,01 .01 -.02 -003""004 -.04 .05 .02 =01 =02 -.04 =
50 ML .0l ~ 01 02 .02 .02 ~,02 =~.02 -.02 -.02 =.01 =-.01 .00 .01 .02 .03 PWM estimators and have some significant biases in small samples when k < 0.
ML | BB L BN L B . SR RN D 4 I .nA 02 A1 .00 .00 . . | . — . et —
tabibLivaa opei bawe i cotlmateors ol quantliliec » ~ F
P 2 <01 00 .00 =01 .00 =~.01 =.02 -.02 =.02 .03 .01 .00 =.01 -.02 -l . 4ne arabiboced pLopes :
1004 00 ~©Qp 0V ,01 0t -,01 -,01 ~-.01 -,01 .00 -.0% .00 .00 .01 .02
g 02 ~01 0V ,00 ,00 -.01-,01 ~.01~.01-.01 .02 .01 .00 .00 .00 distribution were evaluated for many combinations of quantiles and values of
- - the shape parameter ¥, and only a few representative simulation results are .
l presented in Table 6. The most important aspect of quantile estimation in
hyfirologidal applicatlicns 1o cotimation of the extreme wpper quantiles,
l l particularly for heavy-tailed GEV distributions with k < 0. Table 5 gives s
' the bias and standard deviation of the estimated upper quantiies for two GEV n
TAULE §  STANTT-auD DRYIATTON OF WU IMaTORSE NF CEY baARaMiTrpL et ! . ]
TABLE 6  BIAS AND STANDARD DEVIATION OF ESTIMATORS OF GEV QUANTILES.
. . . ' ' Tabulated values are bias and standard deviation of the ratio
St.devs(3) _ St.dev(a) 8t.dev(k) | %(F)/x(F) rather than of the quantile entimator-X (F) itself.
k’ "0.4 -0 -2 0l0 0'2 0-4 -004 -0.2 0.0 0.2 0.4 ""044 -0..2 0.0 0-2 0.4 : ' )
n Method ' .
: - l T rrrrrrrr1 1] k--o.z e Ll o - - - - - k-o.z “ﬂ----.---ﬂ-*ﬂ
PwM 032 -30 '29 028 028 033 n25 .2’ 019 .19 420 .19 018 518 ' .19 F’O.g P-o.gg F‘o.ggg E‘O.g Po.gg 5‘0'999 e
15 HIBJ |32 .32 |3; .30 .28 .28 .25 23 22 21 036 -32 029 l27 023 ” K(F)“2.84 x(F)B.]ISS X(F}ul4090 K(F)=1081 x{F}"3-01 x(P).3074 .
J 033 - 31 -3 .29 .28 032 028 024 -21 021 .25 .24 023 . 023 023 ' n M‘thOd bilﬂ Bod- biﬂB Bod- biﬂs Bod- hiaﬂ B-d- bias s.d. biBB B-do
P 0 - 23 .22 .22 .22 .24 .19 .17 5 .16 .18 .16 14 .14 .15 :
25 ML 4 =224 .23 .23 22 21 419 17 .16 .17 24 <21 .20 .18 .17 PWM -.06 .34 -,02 «55 .75 1.12 -.04 .23 .08 «32 + 25 +56
3B 4 e23 23 .22 .22 .24 .21 .18 .47 .16 .19 .18 17 A7 N l 15 ML -0; .50 * * ' * -.06 .23 02 .79 .44 8.10
. ' bl «34 - . . . - . - ‘. . . .
WM 17 - 36 16 .16 16 «37 J14 .12 11 .1 A4 .12 11 10 1 ' 8 0 3 05 26 " 1.20 06 .22 0 33 " o4 N
50 ML 17 - 6 .16 .16 16 .15 .13 .12 M1 .M A8 .13 .12 11 M PWM -.04 .27 -.01 «45 11 .88 ~.02 .18 .05 «24 14 «39 K
J .17 - 3¢ .16 .16 .16 .17 14 .13 .12 .11 14 .13 W12 1Y W12 25 ML -.01 .32 16 .97 74 9,59 -.04 .17 -.04 « 29 .02 +86 ‘
. PWM .12 - 12 .11 .11 .11 .12 .10 .09 .08 .08 -11 .09 .07 .07 .08 I I JS "'005 027 "'002 946 309 189 --04 -17 "001 025 -05 042 - e
100 ML .12 - 11 M1 L1111 .10 .09 .08 .08 .08 .10 .09 .08 .07 .07 ‘ . PWM -02 .19 -,01 =33 06 .61 =01 412 «02 - 16 07 «25 k
Jg8 4 - 0 W1 11 N .12 .10 .00 ,08 .u8 .10 .09 .08 .08 .08 50 ML -,01 .22 .05 .40 .18 .86 -.03 .12 ~.03 - 1€ «,02 .28
» l l s ~02 .19 =.01 .33 .04 .59 -.02 .12 =01 .17 .02 .27
PWM _“-01 -14 .00 .24 -04 042 —-01 -09 -01 012 303 |17
100 ML 00 .15 «0Z 25 .08 .43 - =01 09  =.02 «11 -.01 .15
35 ~01 .14 .00 .24 03 .40 -.01 .09 .00 .12 01 .18
+ indicates values which varied widely between different sets of 1000

gimulations and consegquently could not be estimated accurately.
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‘practice than estimation of upper quantile=s, 50 5l

digtriputions, one with & < 0 and one with k>0, Results are presented

for the ratios x(F)/x(F) rather than for the x(F) themselwves, since the

former quantit i @s ace more easily compared at different F values, For
sample size 1CQ the three methods have comparable performance.' In small

samples the uyppper guantiles obtained by PWM estimtion are rather biased, but

are still pref exable to the maximum-likel £ hood estimators since these have

very laree blases and standard deviations. The errors in the maximum-

1ikelihood pamtile estimators arise chiefly from a small number of simulated

.t g mEm aAs e
R R W

geries which y 1 eld large negative estimates ot K, and cunsegucnbly

large estimtess of extreme upper quantiles

gstimtior. of extreme lower quantiles +eonds to be less important in

mulation results for this

cage are not giwven in detail. All three mexthods give comparable results

when n ? 50, but for small gamples the PWM estimators have smallest standard

deviation and small or moderate blas, and are generally to be preferred.

—_ M mrrd o whon
e inaoo2Xx - B

All the methods o©of quantile estimdooin art viIy =& >

estimating ext reme quantiles in small samples vith k < 0. It is of courge to

be expected that a quantile x(F) cannot T e estimated reliably from a sample

of glzge b If F » 1-1/n. Nonetheless it ig sometimes possible to obtain

ugeful estimt es of extreme guantiles from short data sets, by combining

informtion from a number of independent data sets. Such a “"regionalization

trocadure’, hased on the PWM egtimation method for the GEV distribution, is

degeribed in Hosking et al (1984).

TESTING WIEJHEJR THE SHAPE PARAMETER IS ZERO

The type I extreme=~value d_.istribution, or Gumbel distribution, is a

particularly simple special case of the GEV distribution, and it is often

i

aE == S EE EE e

H

useful to test whether a given set of data is generated by a Gumbel rather
than a GEV distribution. This is equivalent to testing whether the shape
parameter k is zero in the GEV distribution. A test of this hypothesis may

be based on the PWM estimator of k. On the null hypothesis Hg : k =0 the

PWM estimator k is asymptotically distributed as N(0,0.5635/n) so the test
A 1

may be performed by comparing the statistic 2 = k(n/0-5635)/2 with the

critical values of a standard Normal distribution. Significant positive

values of Z imply rejection of Hy in favour of the alternative k > 0,

2 ~immificant nmeoative values of 2 imply rejection in fawvour of Kk < 0.

The size of the test based on Z for various sample sizes and its power

for sample size 50 axe given in Tables 7 and B. These results are based on

computer simulations of 50000 samples for each value of n and k. The

results may be compared with Hosking's (1984) survey of tests of this

hypothesis: the Z-test has power almost as high as the 1likelihood-ratio test

and for samples of size 25 or more itg distribution on Hp 1iB adequately

avproximated by the ctandard Normal sionificance levels. Since the

gtatjstic Z is very simple to compute, the Z-test can be strongly

recommended as a convenient and powerful indicator of the sign of +he shape

parameter of the GEV distribution.

EMPIRICAL SIGNIFICANCE LEVELS OF THE STATISTIC 2 FOR TESTING THE
HYPOTHESIS H : k=0 AGAINST ONE-SIDED AND TWO-SIDED ALTERNATIVES.

TABLE 7

Alternative: k<0 k>0 k#0
Nominal level: 10% 5% 10% 5% 10% 5%
Sample size '
15 10.3 4,3 7.3 3.7 8.0 3.5
25 _ 10.4 4.6 8.4 4.3 8.9 4.1
50 10.5 4.9 B.9 4.5 9.6 4.7
100 10.4 5.1 S.4 4.9 10.0 5.1
200 0.4 5.0 9.7 5.1 10.2 5.2
500 10.5 5.3 9,6 4.9 10.2 5.1
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Estimatorgs of  parameters and quant i X_es of the GEV dist-xibution have been
derived using the mmethod of probapility <w=relighted moments. *These estimators
have Several advamn it ages over existing met—Tods of estimatiory . They are fast
and straightforwax <X to compute and alway == 'yl'field feasible wva X ues for the
egtirated parametex-s. The biases of the estimators are sma 1 1, except when
estimating quanti) e in the extreme tail === of the GEV distxri Iution, and

dacrease rapidly =s=s the sample slze incxre=ages, The standaxa deviations of the

TABLE 8 POWER OF  ~THE Z-TEST OF THE KY &< "2HESIS k=0 AGAINST  ONE-SIDED AND distributions and the large-sample approximation to the variance of the
MO-SIDETX>: ALUTERNATIVES, SampX «e size 50, nominal significance "
level 5% I : I estimators is adequate for sample sizes of 50 or more. Although PWM
estimators are asymptotically inefficient compared to maximum~likelihood
Alternat ie! k<0 k»0 kO I l
x estimators, no inefficiency is detectable in samples of size 100 or less.
-0.5 96 - .94 l . The PWM estimator of the shape parameter k of the GEV distribution may be
-0.4 90 - .85 '
3 - 68 used as the basis of a test of the hypothesis Hp ¢ k = 0, and this test is
-0 . . - .
0.2 54 - .43 l I simple to perforr;, powerful and accurate.
"0-1 .25 - 017
) 05 .05 .05 . .
C. 1 - . 19 -1 L -
0.2 - 50 <37 , ACKNOWLEDGEMENT
0.3 - .83 .72 !
a o6 o3 v The authors are greatly indebted to Drs P E N'Connell and R T Clarke for
0. ) : initiating and sustaining the research described in this report. J R M
0.5 = 1,00 99 I Hosking's research was supported in part by the United States Army under
Contract No. DAAG29-80-C-0041.
CONCLUSIONS ' |

PyM estimators are  comparable with those  «of the maximum=11ile1lihood estimators

for moderate sample gizes (n= 50, 100) and often subgtant ially less than
those of the maseirmmxm likelihood_ estimatox— =3 for small sampless (n= 15, 25) . I

PwM estimators of CSEV parameters and quaxm-®iles have asymptot- ic Normal
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APPENDIX 2

APPENDIX 1 PROBAMBILITY WEiGITER MOMENTS FOR THE GEV DISTRIBUTION

For the GEV A1 stribution we have from (2) and (3)

= 1 4 - - k h o
B.. =M v 10[5 +af1 = (-log F) }/k]F 4F

- J:{E + a(1=u¥) ke (FFTIV

(E <+ a/k) ]:; e-(r+1)udu - (a/k) ]: uke-(r+1 )udu

i

e+ + al1 = (e+1)7¥r (140} /K] . (A1)

i1

FEASIBILITY OF PWM ESTIMATES OF THE GEV PARAMETERS

The PWM estimator k satisfies '( 13), and therefore k > -1 provided

- Ehat

(:-)b']‘"‘bo)/{Ebz‘”bU} :"%' (1\,2)
Now
1 '
2b1"'b0 = m ), (xi-xj) : ot (33)
i>3j
and
2
- 3 2 Al -
3b, _bo YCTDIETED 1>%>k( %y =Xy x, ) (a4)

are both positive, 80 (A2) reduces to by = 4by + 3by < 0. But we can write.

2 -
by—4b+3b, = —re—t—— ) (=x tx) 3 (A5)
0=4Py3b2 = T2y 4 T “x

thus by ~ 4bgy + 3b, < 0 almost surely and therefore k > -1 almost

surely. Regults (A.‘B)‘ ~ (AD) aboire are easily pfoved by induction on the
sample size n. :
. Furthermore, éinca | ‘
Tk (=277

du substituting u = ~log F ,

(£ + a/k)(z+1)" " = (a/k)(x+1) " EP(14k) providea that k > -1,

B S :

and 2b; - by > 0 as ncted above, k/(1-27K) > 0 for all k and

~

T{1+x) > 0O ‘because k > -1, it follows that we must have a > .

APPENDIX 3  ASBYVPTOTIC DISTEIRUTION OF THE b r

~case k-> 0 end let L T

The statistic b, may be written as a linear cimbination of the order
statistica of a random sample:

we have

-1 7 {r)
b, = n j}‘i Cpy Xy (A7)
where cr(l;) = (j-1)...(j-j‘-)/{(n-1)...(n—r)} and X4 < X, €oeof X is the
(r)

ordered sample. Az n+ *® and j+ e with j/n+ 86, 0 <8 <1, cnj is
asymptotically a function of the plotting position Jj/(n+1): in fact

c:l;) ~ {3/(n+1)}*. Tt is straight-forward to verify that b, satisfies the

conditiors of Theorem 1 of Chernoff et al (1967), and from that theorem it

' follows that by is asﬁ’mptotically Normally distributed with mean Br and

variance

n~ly =207 ) | Ee0Y R R 1 - Riy)laxdy (8)
| X<y |

A similar argument aj_:»plies to &ny 1:lr_lear cbplbinat'ion of the ,‘ by,

r=0,1,2,..., and it foliows t.:at the b, are asymptotically jointly

' Normally distributed with _ covariance given by

1 g ™ ..1-. . . :
Vg = ;]..1'.:: n cov(br,bs) = (gra -l-_gar) (19)

where
" 9.5 =2 ] ] (Rt} IR} F(x) {1 - F(y)}axdy . (210)

-

To‘,'eva"lua.t,e'l the g,y for the GEV distribution we consider first the

1= 2 ] R Paxdy
I8 x<y : LA

Y [ . o

T O
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so that
s = Tr+1,8 = <rtl,s+1 ° (A12)
Substituting (7) in (A11) and making the further substitution
u= {1 - k(x-£3/a}%, v = {1 = k(y-E)/a} V%, e nave
1" 20? ]: !: wX¥ le Ty, K15y
= 2027k J: vk-1e-svl'(k,rv)dv
22y 2K gi0ny v 19 L. Ak e /(vbal L
(o) ’ Y7, 11 s e/ (m13)

(Gradshteyn and Ryzhik, 1980, pp. 2%7. ©63); hexre TI'(s,v) is the incomplete

gamma function and »Fy 4is the hypergeometric function. It is convenient to

transform the hypergeometric function in (A13), using results from Gradshteyn

and Ryzhik (1980, p. 1043):

2F1[1.2k: 1+k; 8/(xr+s)] = 22k{P(1+k)}2/r(1+2k) if r =8 ,

{r/(r+s)}-2kG(a/r) if r>s8 ,

. (A14)
w ~{a/(r+8)} 2Ka(r/8) + 26 Fa R (r+m) 2K (T (14x)}2/T(142x) if r <8,

where G denotes the hypergeometric function G(x) = jF.(k,2k; 1+k; =x) -

note that 3(0) = 1. Substituting back into (A12) and (R9) we ohtain the

following expressions for the v, gt

v, = o221 r41) 2K P1a2K)6 e/ (e+1)} = {TC(1400}Y) . (A15)

v . a?x [ (r+2) 2T (142006 {x/ (x42)) +

e+ X {(e+)7* = 2 @) FHR (DA,

v L e X a2 (et ) 2D (1a2K)GLx/ (r4me 1)) -

e

T (x4) Fr(142006{ (x4 1) /(x4B)} +

AR SR BN ER EE G2 S0 @B e

When k ¢ 9 the foregoing argumant ie not valid because the integral in

(A11) does not converge. However, the expressions (A15) - (A17) are analytic
functions of k for all k> = -21 and hence by analytic continuation

expressions (A15) = (A17) are valid solutions of the intcgral xepresentation

(A®) - {A10) throuchout the Jomain - -g- <k <®, At the value k = 0, the

v., 2ars giren oy the limics off tA%5) = (A*7) 0a ¥k + 03 these limits are
vo'll-defined.

The results stated in this Appendix are valid for arbitrary positive

thoucgh only the cases r,s 0,1,2 are required for

integers r and s,

deriving the asymptotic distributions of PWM estimators.

i





