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The study of animal foraging behaviour is of practical ecolgical importance,
and exemplifies the wider scientific problem of optimizing sarch strategies.
L évy flights are random walks whose step lengths come from prability dis-
tributions with heavy power-law tails®#, such that clusters of short steps are
connected by rare long steps. They display fractal propergs, have no typical
scale, and occur in physicat™ and chemicaf systems. An attempt to demon-
strate their existence in a natural biological system presged evidence that
wandering albatrosses perform Lévy flights when searching for prey on the
ocean surfacé. This well-known finding? 48 °was followed by similar infer-
ences about search strategies of de€rand bumblebees’. These pioneering
studies have triggered much theoretical work in physics (g. refs 11, 12),
and empirical ecological analyses regarding reindeéf, microzooplankton*4,
grey seals®, spider monkeys® and fishing boatd’. Here we analyze a new,
high-resolution data set of wandering albatross flights, ad find no evidence
for L évy flight behaviour. Instead we find that flight times are gamna dis-
tributed, with an exponential decay for the longest flights. We re-analyze

the original albatross data’ using additional information, and conclude that



the extremely long flights, essential for demonstrating Evy flight behaviour,
were spurious. Furthermore, we propose a widely applicablenethod to test
for power-law distributions using likelihood!® and Akaike weightst®2°, We
apply this to the four original deer and bumblebee data set¥, finding that
none exhibit evidence of levy flights, and that the original graphical approacht®
is insufficient. Such a graphical approach has been adoptedttonclude Levy
flight movement for other organisms3-7, and to propose Lévy flight analysis
as a potential real-time ecosystem monitoring todl. Our results question the

strength of the empirical evidence for biological Levy flights.

In 1992, five wandering albatrosseBigmedea exularson Bird Island,
South Georgia (5490'S, 3803’'W) each had a salt-water immersion logdeat-
tached to one of its legs. Over the course of a bird’s foragiipg the logger
recorded the proportion of each hour spent sitting on thesegace. In ref. 7,
flight durations (time intervals between landing on the o¢egere then calcu-
lated as consecutive hours for which a bird remained dryyésalution of 1 h. It
was assumed that birds landed on the water solely to feedhanflight durations

were thus indicative of distances between prey.

Time series for 19 separate foraging tfipgere pooled to give a total of 363



flights. The resulting log-log histogram of flight duratiayeve a straight line with
a slope of approximately 2, and is reproduced in Supplemeftig. 1 from the
original raw data. The crux of the conclusion that the altxges were performing
Lévy flights was that the slope of 2 implied the probabiligngity function (pdf)

of flight durationst (in hours), wa$*°

f&) ~t7, (1)

for t > 1 h (leaving out the normalization constant). This is comsistwvith
the Lévy flight definition that the tail of the pdf is of the pemaw form¢=#,
wherel < p < 3 (though technically this is a Levy wdlK:?3. The Lévy flight
was inferred to be an efficient foraging strategy for food thagght be fractally

distributed on the ocean surfdce

We first analyze a newer, larger, and higher resolution dzitafsalbatross
flight durations to test for Lévy flights. In 2004, 20 wanderalbatrosses on Bird
Island were each fitted with a salt-water logger and a GPSdeVvihe GPS data
were too infrequent (at most one location' hto give distances between landings,
but were needed to estimate each bird’s departure time frodhi8and, in order
to calculate the duration of the initial flight before firshting on the water (we

calculated return flights similarly). The resulting data seflight records was
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pooled, as in ref. 7, yielding a total of 1416 flights to a resoh of 10 s (Fig. 1).

The flights> 1 h are clearly inconsistent with coming from the power law
t~2 ascertainetifor the 1992 data. Furthermore, data from a power law of any
exponent (not just 2) would yield a straight Ifdgand this is clearly not the case.
In fact, the flight durations (in h) are consistent with coming from the shifted

gamma distribution given by the pdf

_ysflefry (2)

wherey = ¢t — 1/120 accounts for the assumed 30 s period before the bird
searches for new food sources (see Methogds), 0.31 is the shape parameter,

r = 0.41 h~! is the rate parameter, aid-) is the gamma function. Equation (2)
is valid for flights>30 s; for shorter flights we hav&(¢t) = 0. The exponential
term of (2) dominates for large implying Poisson behaviour, such that for long
enough flights the birds essentially encounter prey rangavith a constant low

probability.

A Brownian random walker’s displacement increases’ashereH = 1/2.
If H > 1/2, we have “superdiffusion” as originally inferred in Fig. @aref. 7.

Superdiffusion is explained by one or both of the followArig(i) the pdf of flight



lengths has a heavy tail, or (ii) there is long range pensc&én direction or time.
The term Lévy flight is usually reservéfor case (i). Ref. 7 used a Lévy walk
model that assumes constant velocity, yielding a power @ivopflight durations.
The gamma distribution (2) has= 1 — s = 0.69. This is such a slow power-
law decay that it is non-normalizable unless there is trtiona Hence, unlike
the truncated Lévy flightwherel < p < 3, equation (2) cannot be interpreted
as a power law with exponential truncation. Superdiffusemains possible, but

through directional persistence only, not Lévy flights.

The longest flight in 2004 was 14.9 h, whereas for the origli88I2 dat3,
25 of the 363 flights were- 15 h. In 1992, for six of the trips the birds were
also fitted with a satellite transmitter (Platform Termifegknsmitter, PTT) which
provided locations at irregular intervals. While theseadate also too coarse to
determine flight distances between landings (and were reolaie for ref. 7),
we use them here to determine when each bird left and retum8dd Island
(see Methods). Figure 2 shows the wet/dry data for theseips together with
the estimated departure and return times based on the P&T Fat trip 3B, for
example, the first dry sequence, based solely on the sadt~lagger data, is 46 h.

However, the PTT data reveal that the bird did not leave Bilahd until 41 h after



the logger was switched on. Thus the true duration of theffigstt was only 5 h.

For the remaining five trips, the original dry sequences fthenloggers (in
the order of Fig. 2) of 44, 69, 26, 67 and 23 h, represent, ilityeHight records
of only 4, 3, 1,< 1 and< 1 h, respectively. Similarly, for final flights the raw
logger data values of 4, 8, 13, 9, 34 and 9 h, get correctedi¢dlight records of

4,5, 8, 2,3 and 7 h, respectively.

However, in ref. 7 the raw logger data were assumed to repirese flights.
We adjust the data for the remaining 13 trips, for which no Rl&fa were col-
lected, by eliminating the initial and final dry sequence=e(Methods). Using
these adjusted data, in Figa &e compute a corrected version of the original log-
log histogram shown in Fig. 3a of ref. 7. There are now no fldymations in the
two largest bins, and the longest flight is only 20 h compaoetti¢ original 99 h.
The data thus no longer span two orders of magnitude, andaihésiclearly lie

on a curve, not a straight line that would indicate a power law

The data are also consistent with coming from a shifted gadistabution
of the form (2), illustrated in Fig. 8 The resulting confidence intervals fer

andr are much larger than those for the 2004 data, because of giteessample



size, lack of data< 1 h, and lower resolution of the data. Figure shows the
uncorrected and corrected data as a rank/frequency plotFég. 1. We conclude
that, when time spent by the birds on the nests is accountethéoriginal 1992

albatross data do not support Lévy flight behaviour.

The original albatross stuéyas followed by reports of Lévy flight be-
haviour by deer@ama dam¥-° and bumblebeedBpmbus terricol®. The deer
data were plotted as a standard histogram log-transforiiesh terminology of
ref. 24), the bees data as a smoothed histogram log-tramstf, and straight
lines were compared to the tails. The problenfatfé LT method was then used
to conclude Lévy flight behaviour in other studi€$1":26 and the LBN method
used in ref. 14. In no cases were alternative distributionpgrly considered, or
goodness-of-fit tests performed. In Box 1 we present a newaoddeb overcome
these shortcomings. We now illustrate this approach byedyaing the deer and

bumblebee daté.

Following ref. 10, we digitized data from ref. 27 concernfogaging times
of deer in unfenced and fenced areas, and digitized datare@r28 concerning
flights of bumblebees between flower-heads in high- and lmwdfsituations. In

ref. 10 these data were all assumed to relate to distanced|&ch between food



items. Likelihood functions modified from those in Box 1 asdaulated in the
Supplementary Information (requiring numerical maxinia), to account for
the data only being available already binned. The resuhitgjke weightsw; for

the unbounded power-law tail were 10~® for both deer data sets, and 0.40 and
0.001 for the bees (and for the 0.40 casés outside the Lévy range). Given such
negligible support for the unbounded power law in the Léuyge, we also tested

both models over the bounded ranges] assumed in ref. 10; see Table 1.

We find that for the deer scenarios the exponential disiohus favoured
by Akaike weights of 0.9994 and 0.95. Furthermore, the reglopower-lawu
valueg?® lie outside the 95% Cls for the MLE values, and are inconstsiéth
the data. Figure 4 shows the log-log histograms of the detr aled reported
power laws from ref. 10, plus the exponential distributiocakulated in Table 1.
By eye the two distributions do not appear as different aslooled statistically.
However, the log-log nature of Fig. 4 acts to minimize (toele) any differences,
and de-emphasizes the fact that there are far more datsegpee by some points
(bins) than others. This illustrates the problems involweth fitting lines (or

curves) to histograms plotted on a log-log scale.

For the high-food bees the Akaike weights essentially fav@ither model



(Table 1). For the low-food bees the power law is favoured nloti convincingly.
However, we have assumed maximum attainable flight valkjelsased simply
on the ranges of the power-law lines drawn in ref. 10. Thisiagion favours
preference for the power law, and relaxing it slightly (&ntis very unlikely
to hold) eliminates the marginal preference for the power ila the low-food
bees scenario (see Supplementary Information). Hence, oicthe four data sets

exhibit evidence for the power law over the exponential.

Furthermore, the deer foraging tim&sctually correspond to times spent
cropping and processing food (i.e. handling timasp particular feeding site
(pages 608 and 610 in ref. 27), rather than time spent mobetgeensites.
Also the bumblebee data actually represent the distandesbe successively
visited flower heads, rather than the flight times or distarfe@vn (Fig. 1 in
ref. 28). Therefore, neither of these data sets was ideaéting for Lévy flight
search behaviour. Nonetheless, we have re-analyzed thésesets to demon-
strate the problems with inferring Lévy flight behaviour fitying (or drawing)

a straight line through points on a log-log histogram, notsidering alternative
distributions, and not performing goodness-of-fit testsr &pproach used here is

grounded in the statistical theory of likeliho8d®, avoids any binning, and does
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not ignore bins with zero courts Given these issues relating to the identifica-
tion of power laws, we query whether the current evidencé& éwy flights would
withstand more rigorous statistical analysis. This thesesaquestions as to when
might a foraging animal satisfy the necessary conditionafcévy flight to be an

optimaf-1°search strategy.

METHODS SUMMARY

Maximum likelihood estimates were obtained by numericailBximizing the ap-
propriate log-likelihood functions, and 95% Cls were cotagusing the profile
likelihood-ratio test. All goodness-of-fit tests were performed using the G-test
(likelihood-ratio test) with Williams's correctidf. Akaike weights were com-
puted according to ref. 19, with bias-adjusted Al@sed for high-food bees due
to the small sample size. Computations were performed WRjngersion 2.2.0

(www.r-project.org).

Full Methods are available in the online version of the paper at www.reatam/nature.

METHODS

Initial and final albatross flights. A salt-water logger only detects whether a
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bird is sitting on the water or not, and its clock starts whieis switched on at
a computer. Thus a logger is recording before being attatthadird, and also,
crucially, while the bird sits on a nést The logger is dry, but the bird is not flying.
So the initial sequence of dry readings includes pre-tdkéroe plus time spent
in flight before first landing on water. For the 2004 data welitbe GPS data to
determine when the birds left Bird Island, and hence obththe duration of the
initial flights (to within an hour), eliminating the time speon the nest. Return
times to the island were used to determine durations of firgditf, eliminating

the dry period between landing and logger retrieval.

In 1992, PTT devices were used in 6 of the 19 trips (Fig. 2). ddepe and
return times were calculated to within 2 h (typically 1 h)rfr@ combination of
the PTT fixes and direct observations of the birds. For theaneimg 13 trips,
departure and return times remain unknown. As each tritglrand final dry
sequences were potentially spurious, we omitted them flendata. If the alba-
trosses really exhibited Lévy flight behaviour then theoeildl be nothing special
about the first and last flights, so eliminating these 26 dgueaces should not
markedly impact the results. However, the 14 longest drysecges (for the 13

trips), ranging from 21-99 h, all occurred at the start or ehdrips and were
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eliminated. These were much longer than the maximum flighed® h in 2004.

Albatross data analysis. The 2004 data consisted of a wet/dry reading every
10 s. A flight is therefore represented by a sequence of catigedry readings

in between two wet readings. For example, a sequence welrgrgry-dry-wet
gives a record of 4 dry readings, and represents a flight inathge 30-50 s. We
assume 30 s to be the minimum time after take off for a birdad searching for
new food sources. This excludes instances where a bird magydmdy lifted its

leg out of the water to scratch (yielding a sequence wetwht); or abandoned a

take off.

The 1992 data consisted of the number of 15 s intervals wehth hour
for which a bird was considered wet (e.g. Fig. 1 of ref. 7)gRts< 1 h could not
be directly inferred from the data. In ref. 7, consecutivethowet counts of O
(i.e. fully dry hours), in between non-zero hours, were usadfer flight times of
1, 2, 3, ... h. A sequence of hours wet-dry-wet was then assuonee a flight of
1 h. However, such a record could come from a true flight anysvhrethe range
1-3 h. In the Supplementary Information we derive the liketid functions for

each data set, taking into account the respective samploiggols.
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Deer and bumblebee data analysisWe digitized the deer and bumblebee data
from the original histogrant$2® and from ref. 10. For the deer data the origi-
nal linear histogrant$ were log-transforméd (LT method?), as reproduced in
Fig. 4 from the original datd. Whereas the bumblebee bifisvere smoothed
using running averaging and then lumped to produce log-lspgrams® (see
Supplementary Information). However, our likelihood apgarh and results in

Table 1 do not involve any smoothing or lumping of the origimaned data.

We fit the power-law and exponential distributions over united,|a, co),

and boundedg, b], ranges. For the bounded power law we consider the pdf
fl@)=Ca™, z€la,l] 3)

where( is the normalization constant given By= (u — 1)/(a'~* — b'~*). For

the bounded exponential distribution, we have
fz) = Ae™, € [a,b], (4)

where A is the normalization constant given by= )\/(e™** — e **). The data
were digitized from histogram$28 and so are already binned. In the Supplemen-
tary Information we derive the likelihood functions for @atistribution, modified

from those in Box 1 to account for the pre-binned data and tunbed ranges.
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For each scenario in Table 1, we tdakbd] to be the ranges implied by the power-
law straight lines drawn in ref. 10. These ranges imply th& impossible to
obtain data larger than that observed, an assumption thatrysunlikely to be
true in practice, but that we find favours preference for tbegr law over the
exponential. We investigate sensitivity &an the Supplementary Information,
showing that the result of the power law being slightly fanexlifor the low-food

bees (Table 1) is not robust to relaxation of this assumption
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Re-analysis of data sets for which Bvy flight behaviour was concluded?

Data set Reported  MLE for MLE for A Akaike weights
i (95% CI) (95% CI) Power law Exponential
G,p G,p
Deer, 2.0 1.57 0.0264 0.0006 0.9994
unfenced (1.29, 1.85) (0.0214, 0.0318)
19.0, 0.0003 4.2,0.24
Deer, 2.1 1.44 0.0290 0.05 0.95
fenced (1.06, 1.83)  (0.0212, 0.0372)
4.87,0.088 1.08, 0.58
Bees, 3.5 3.68 0.0153 0.59 0.41
high food (2.14,5.42)  (0.0086, 0.0234)
0.16, 0.69 0.59, 0.44
Bees, 2.0 2.20 0.00609 0.78 0.22
low food (1.84, 2.60) (0.00497, 0.00732)
11.3, 0.19 13.1,0.11
Table 1:
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Table and Figure Captions

Table 1. Re-analysis of data sets for which &vy flight behaviour was concluded®.
Tests are over bounded randesb|, with a, b and reported power-law exponents
for ;1 taken from ref. 10. Goodness-of-fit valugsandp are for the G-test (n and

df for the four scenarios are, respectively, 141 and 3, 182aR5 and 1, and 129
and 8). For both deer scenarios, the reporteclues® lie outside the 95% Cls.
For the unfenced deer, the data are inconsistent with cofronga power law at
the MLE value (and so are certainly inconsistent with theorega 11, for which

we calculated = 27.9,p < 1075). The Akaike weights overwhelmingly favour
the exponential. For the fenced deer, the data are consigncoming from

a power law with the MLE exponent of = 1.44 (though not with the reported
exponent ofy = 2.1, for whichG = 16.7, p = 0.0002). The Akaike weights
favour the exponential fairly convincingly. For the highefl bees the data were
considered to follow a power &\ but with the reporteg lying outside the Lévy
rangel < p < 3. The CI computed here does overlap the Lévy range, but the
Akaike weights favour neither the power law or exponentiabr the low-food
bees the reported lies within the 95% CI, and the power law is indeed favoured

(using the MLE value foy:), but not convincingly.

23



Figure 1. Rank/frequency plof3 of 2004 wandering albatross data, showing
no evidence for Levy flight behaviour. Circles show number of flights ¢ for
each flight duratiort (calculated by ranking flights by size). Red curve is the fit
to the shifted gamma distribution (2) with maximum likeldtbestimates (MLES)
of s = 0.31 (95% Confidence Interval (Cl): 0.27-0.34) and= 0.41 h~! (95%
Cl:0.36-0.46), obtained by maximizing the multinomialdikhood function that
takes into account the discrete sampling nature of the lsggee Supplementary
Information). The data are consistent with coming from thsribution @ =
1416, df=37, G = 28.9, p = 0.83). Flights are correct to withint10 s (see
Supplementary Information). If the flights 1 h followed the power law with
exponentu = 2 as in ref. 7, the points would lie on the straight blue féthat
has been vertically shifted slightly for clarity) — this ilearly not the case. Inset
shows the 2004 data as a conventional histogram on linear axidn number of

flights against flight duration in hours.

Figure 2. Data for the six wandering albatross trips in 1992 hat have known
departure and return times. Red lines are hours for which a logger was com-
pletely dry, blue lines indicate hours when a logger was wesbme part of that

hour, and grey lines indicate switches between these regiBlack lines indicate
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when each bird departed from and returned to Bird Islancedbas the PTT data.
Time 0 is when the loggers were switched on at a computer -thervals before
the first black lines include time taken to affix the logger tara plus time spent
by the bird sitting on its nest before departing. All birdenegned on Bird Island
for long periods before departing, but such periods wereidened to be flights

in the original study. Intervals after the final black lines correspond to time the
bird sat on its nest after returning plus time spent retnig\he logger, but these

were also originally considered as flights

Figure 3. When corrected, the 1992 wandering albatross flighdurations no
longer follow a power law. aBlue open circles show original log-log histogram
of 1992 data (Fig. 3a of ref. 7). Breakpoints of bins are at,}4,8, 16, 32, 64
and 128 h (with bin interval$ <t < 2, 2 <t < 4, etc.), and results are plotted
at the geometric means. The frequencies are each normalyzéukeir respec-
tive bin widths to yield frequency densities that compeas$at the increasing bin
widths®® (termed logarithmic binning with normalization, LBN, infr@4). The
straight line indicates a power law of expongnt 2 (ref. 7). Red filled circles are
adjusted flight durations that take into account time sparBiod Island, binned

in the same manner, showing no power-law behavibdie gamma distribution
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fitted to the (unbinned) flight durations (red curve) has Mlalitress = 0.73 (95%
Cl: 0.19-1.32) and = 0.33 h~! (95% CI: 0.22-0.46), and the data are consistent
with coming from this distribution{ = 335, df=8,G = 11.9, p = 0.16). This dis-
tribution yields expected counts in each bin (black opedes), which are what
should be compared with the binned data. Our multinomialiliood approach
accounts for the fact that the loggers’ memory limitatioresamt that a record of
1 h could correspond to a flight anywhere in the range 1-3 hs Tt plus the
effects of the binning procedure result in the differencesvieen the red curve
and black circles (note the log scale); see Supplementé&yniation. c Original
(blue open circles) and adjusted (red closed circles) dasarank/frequency plot.
Each record yields a point, and since the resolution of tiggdo data was 1 h,
there can be multiple points for each given flight duratiofhe ordinate shows
proportion rather than number of flights, because of ther#fit sizes of the data

sets.

Figure 4. Foraging times of deer previously concluded to deonstrate Lévy
flight behaviour!®. a Digitized data of foraging times of unfenced deer from
Fig. 3 of ref. 27, as plotted in Fig. 3c of ref. 10. Circles aeeqentages of foraging

times in each bin. Bins are each 20 s wide, though the axesgagithmic (the
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LT method?). Blue line is power law of exponent = 2 from ref. 10, and red
curve is superior fit of an exponential tail (see TableldAs for a, but for deer
in fenced areas. Blue line is power law of exponent 2.1 from ref. 10, and red

curve is superior fit of an exponential tail.

Box 1: When is a power law not a power law?

The approach widely used to test for biological Lévy fligeasch patterns
has been: (i) plot the move-length data as some form of higtogn log-log
axes; (ii) draw or fit a straight line across the full range afador just the tail;
(iii) define i to be the negative of the slope of the line; (iv) conclude thatdata
follow a power law of exponenit (across the full range or just the tail); (v) then

if 1 < < 3 conclude that the organism performs a Lévy flight with e>qrdn.

It is well known that log-log axes tend to make relationsHgusk straight,
and so it is problematic to only plot the data on a log-log plad then conclude
that the data lie on a straightline. One should at least denan alternative move-
length distribution, such as the exponential that corredpdo a simple uncorre-
lated Poisson random process. Ref. 16 did also test the erpah though used

the unreliablé&* 2> LT method for the power law and compared the distributions
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by comparing coefficients of variatidh(k2), which is not useful for choosing

between model$.

Here we summarize how to use modern statistical methods déhselectiof 2°
to test whether a given data set= {z, xs, 3, ..., z,,} provides more evidence
for a power-law tail or an exponential tail. Considering th# to start ata, the

power-law tail has pdf
fi(z) =Cax™", x> a, (5)

where the normalization constafit= (. — 1)a*~!, and the exponential tail has

pdf
folz) = XN >, (6)
The log-likelihood functiotf 1°for the power law i§

log[L: (ps|datax)] = nlog(p — 1) +n(u —1)loga — ) _logw;, (7)

j=1
where L (p|datax) is the likelihood of a particular value of the unknown param-
eterp given the known data (andlog is natural log). For the exponential model

the unknown parameter is and

log[Lo(A|datax)] = nlog A +nia — A z;. (8)

J=1
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Solving for the maximum likelihood estimates (MLEs) anaigtly?® gives
ft=1-n/(nloga—>77_, logz;) and) = 1/(3%-1 zj/n — a). Akaike's Infor-

mation Criteriod®1° (AIC) for modeli (i = 1, 2) is
AIC; = —21log[L;(6;|datax)] + 2K; (9)

whered; = i, 6, = ), and K, is the number of parameters being estimated for
model: (K; = K, here). The best model is the one with the minimum AIC,
AIC,,.... Then, AIC differences are given ky; = AIC; — AIC,,;,. The Akaike

weights?® are relative likelihoods of each model, given by

e—Ai/Q
- efAl/Q _'_efA2/27

(10)

Wy

normalized so the weights sum to 1. The weightis considered as the weight
of evidence in favour of modelbeing the best model for the given data, out of
the models considered. Multiple models of varying compieriay also be si-
multaneously considerét! Natural data that follow a power law must be finitely
truncated; any approach that neglected this would suffeohoe degree (see Sup-
plementary Information). Future work could explore theljjeon of inference of

truncated Lévy flights.

The likelihood approach clarifies what is meant by the ‘tail'the data
(permitting goodness-of-fit tests), eliminates binninglgems associated with
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log-log histograms (outlined in ref. 24), and yields 95% (@smputed using the
profile likelihood-ratio tesf). Furthermore, if the power law is supported by the
data, then the MLE fog: is more accurate (AME, in prep.) than the estimate

obtained from the LBN method.
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