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The study of animal foraging behaviour is of practical ecological importance1,

and exemplifies the wider scientific problem of optimizing search strategies2.

L évy flights are random walks whose step lengths come from probability dis-

tributions with heavy power-law tails3, 4, such that clusters of short steps are

connected by rare long steps. They display fractal properties, have no typical

scale, and occur in physical3–5 and chemical6 systems. An attempt to demon-

strate their existence in a natural biological system presented evidence that

wandering albatrosses perform Ĺevy flights when searching for prey on the

ocean surface7. This well-known finding2, 4, 8, 9was followed by similar infer-

ences about search strategies of deer10 and bumblebees10. These pioneering

studies have triggered much theoretical work in physics (e.g. refs 11, 12),

and empirical ecological analyses regarding reindeer13, microzooplankton14,

grey seals15, spider monkeys16 and fishing boats17. Here we analyze a new,

high-resolution data set of wandering albatross flights, and find no evidence

for L évy flight behaviour. Instead we find that flight times are gamma dis-

tributed, with an exponential decay for the longest flights. We re-analyze

the original albatross data7 using additional information, and conclude that
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the extremely long flights, essential for demonstrating Ĺevy flight behaviour,

were spurious. Furthermore, we propose a widely applicablemethod to test

for power-law distributions using likelihood18 and Akaike weights19, 20. We

apply this to the four original deer and bumblebee data sets10, finding that

none exhibit evidence of Ĺevy flights, and that the original graphical approach10

is insufficient. Such a graphical approach has been adopted to conclude Ĺevy

flight movement for other organisms13–17, and to propose Ĺevy flight analysis

as a potential real-time ecosystem monitoring tool17. Our results question the

strength of the empirical evidence for biological Ĺevy flights.

In 1992, five wandering albatrosses (Diomedea exulans) on Bird Island,

South Georgia (54o00’S, 38o03’W) each had a salt-water immersion logger21 at-

tached to one of its legs. Over the course of a bird’s foragingtrip, the logger

recorded the proportion of each hour spent sitting on the seasurface. In ref. 7,

flight durations (time intervals between landing on the ocean) were then calcu-

lated as consecutive hours for which a bird remained dry, to aresolution of 1 h. It

was assumed that birds landed on the water solely to feed, andthat flight durations

were thus indicative of distances between prey.

Time series for 19 separate foraging trips7 were pooled to give a total of 363
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flights. The resulting log-log histogram of flight durationsgave a straight line with

a slope of approximately 2, and is reproduced in Supplementary Fig. 1 from the

original raw data. The crux of the conclusion that the albatrosses were performing

Lévy flights was that the slope of 2 implied the probability density function (pdf)

of flight durationst (in hours), was7, 10

f(t) ∼ t−2, (1)

for t ≥ 1 h (leaving out the normalization constant). This is consistent with

the Lévy flight definition that the tail of the pdf is of the power-law form t−µ,

where1 < µ ≤ 3 (though technically this is a Lévy walk4, 7, 22). The Lévy flight

was inferred to be an efficient foraging strategy for food that might be fractally

distributed on the ocean surface7.

We first analyze a newer, larger, and higher resolution data set of albatross

flight durations to test for Lévy flights. In 2004, 20 wandering albatrosses on Bird

Island were each fitted with a salt-water logger and a GPS device. The GPS data

were too infrequent (at most one location h−1) to give distances between landings,

but were needed to estimate each bird’s departure time from Bird Island, in order

to calculate the duration of the initial flight before first landing on the water (we

calculated return flights similarly). The resulting data set of flight records was
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pooled, as in ref. 7, yielding a total of 1416 flights to a resolution of 10 s (Fig. 1).

The flights≥ 1 h are clearly inconsistent with coming from the power law

t−2 ascertained7 for the 1992 data. Furthermore, data from a power law of any

exponent (not just 2) would yield a straight line23, and this is clearly not the case.

In fact, the flight durationst (in h) are consistent with coming from the shifted

gamma distribution given by the pdf

f(t) =
rs

Γ(s)
ys−1e−ry, (2)

wherey = t − 1/120 accounts for the assumed 30 s period before the bird

searches for new food sources (see Methods),s = 0.31 is the shape parameter,

r = 0.41 h−1 is the rate parameter, andΓ(·) is the gamma function. Equation (2)

is valid for flights>30 s; for shorter flights we havef(t) = 0. The exponential

term of (2) dominates for larget, implying Poisson behaviour, such that for long

enough flights the birds essentially encounter prey randomly with a constant low

probability.

A Brownian random walker’s displacement increases astH whereH = 1/2.

If H > 1/2, we have “superdiffusion” as originally inferred in Fig. 2aof ref. 7.

Superdiffusion is explained by one or both of the following3, 4: (i) the pdf of flight
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lengths has a heavy tail, or (ii) there is long range persistence in direction or time.

The term Lévy flight is usually reserved4 for case (i). Ref. 7 used a Lévy walk

model that assumes constant velocity, yielding a power law pdf of flight durations.

The gamma distribution (2) hasµ = 1 − s = 0.69. This is such a slow power-

law decay that it is non-normalizable unless there is truncation. Hence, unlike

the truncated Lévy flight3 where1 < µ ≤ 3, equation (2) cannot be interpreted

as a power law with exponential truncation. Superdiffusionremains possible, but

through directional persistence only, not Lévy flights.

The longest flight in 2004 was 14.9 h, whereas for the original1992 data7,

25 of the 363 flights were> 15 h. In 1992, for six of the trips the birds were

also fitted with a satellite transmitter (Platform TerminalTransmitter, PTT) which

provided locations at irregular intervals. While these data are also too coarse to

determine flight distances between landings (and were not available for ref. 7),

we use them here to determine when each bird left and returnedto Bird Island

(see Methods). Figure 2 shows the wet/dry data for these six trips, together with

the estimated departure and return times based on the PTT data. For trip 3B, for

example, the first dry sequence, based solely on the salt-water-logger data, is 46 h.

However, the PTT data reveal that the bird did not leave Bird Island until 41 h after
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the logger was switched on. Thus the true duration of the firstflight was only 5 h.

For the remaining five trips, the original dry sequences fromthe loggers (in

the order of Fig. 2) of 44, 69, 26, 67 and 23 h, represent, in reality, flight records

of only 4, 3, 1,< 1 and< 1 h, respectively. Similarly, for final flights the raw

logger data values of 4, 8, 13, 9, 34 and 9 h, get corrected to true flight records of

4, 5, 8, 2, 3 and 7 h, respectively.

However, in ref. 7 the raw logger data were assumed to represent true flights.

We adjust the data for the remaining 13 trips, for which no PTTdata were col-

lected, by eliminating the initial and final dry sequences (see Methods). Using

these adjusted data, in Fig. 3a we compute a corrected version of the original log-

log histogram shown in Fig. 3a of ref. 7. There are now no flightdurations in the

two largest bins, and the longest flight is only 20 h compared to the original 99 h.

The data thus no longer span two orders of magnitude, and the points clearly lie

on a curve, not a straight line that would indicate a power law.

The data are also consistent with coming from a shifted gammadistribution

of the form (2), illustrated in Fig. 3b. The resulting confidence intervals fors

andr are much larger than those for the 2004 data, because of the smaller sample
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size, lack of data< 1 h, and lower resolution of the data. Figure 3c shows the

uncorrected and corrected data as a rank/frequency plot, asin Fig. 1. We conclude

that, when time spent by the birds on the nests is accounted for, the original 1992

albatross data do not support Lévy flight behaviour.

The original albatross study7 was followed by reports of Lévy flight be-

haviour by deer (Dama dama)10 and bumblebees (Bombus terricola)10. The deer

data were plotted as a standard histogram log-transformed (LT in terminology of

ref. 24), the bees data as a smoothed histogram log-transformed10, and straight

lines were compared to the tails. The problematic24, 25 LT method was then used

to conclude Lévy flight behaviour in other studies13, 15–17, 26, and the LBN method

used in ref. 14. In no cases were alternative distributions properly considered, or

goodness-of-fit tests performed. In Box 1 we present a new method to overcome

these shortcomings. We now illustrate this approach by re-analyzing the deer and

bumblebee data10.

Following ref. 10, we digitized data from ref. 27 concerningforaging times

of deer in unfenced and fenced areas, and digitized data fromref. 28 concerning

flights of bumblebees between flower-heads in high- and low-food situations. In

ref. 10 these data were all assumed to relate to distances travelled between food
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items. Likelihood functions modified from those in Box 1 are calculated in the

Supplementary Information (requiring numerical maximization), to account for

the data only being available already binned. The resultingAkaike weightsw1 for

the unbounded power-law tail were< 10−8 for both deer data sets, and 0.40 and

0.001 for the bees (and for the 0.40 case,µ is outside the Lévy range). Given such

negligible support for the unbounded power law in the Lévy range, we also tested

both models over the bounded ranges[a, b] assumed in ref. 10; see Table 1.

We find that for the deer scenarios the exponential distribution is favoured

by Akaike weights of 0.9994 and 0.95. Furthermore, the reported power-lawµ

values10 lie outside the 95% CIs for the MLE values, and are inconsistent with

the data. Figure 4 shows the log-log histograms of the deer data and reported

power laws from ref. 10, plus the exponential distributionscalculated in Table 1.

By eye the two distributions do not appear as different as concluded statistically.

However, the log-log nature of Fig. 4 acts to minimize (to theeye) any differences,

and de-emphasizes the fact that there are far more data represented by some points

(bins) than others. This illustrates the problems involvedwith fitting lines (or

curves) to histograms plotted on a log-log scale.

For the high-food bees the Akaike weights essentially favour neither model

9



(Table 1). For the low-food bees the power law is favoured, but not convincingly.

However, we have assumed maximum attainable flight values (b) based simply

on the ranges of the power-law lines drawn in ref. 10. This assumption favours

preference for the power law, and relaxing it slightly (since it is very unlikely

to hold) eliminates the marginal preference for the power law in the low-food

bees scenario (see Supplementary Information). Hence, none of the four data sets

exhibit evidence for the power law over the exponential.

Furthermore, the deer foraging times10 actually correspond to times spent

cropping and processing food (i.e. handling times)at a particular feeding site

(pages 608 and 610 in ref. 27), rather than time spent movingbetweensites.

Also the bumblebee data actually represent the distances between successively

visited flower heads, rather than the flight times or distances flown (Fig. 1 in

ref. 28). Therefore, neither of these data sets was ideal fortesting for Lévy flight

search behaviour. Nonetheless, we have re-analyzed these data sets to demon-

strate the problems with inferring Lévy flight behaviour byfitting (or drawing)

a straight line through points on a log-log histogram, not considering alternative

distributions, and not performing goodness-of-fit tests. Our approach used here is

grounded in the statistical theory of likelihood18, 19, avoids any binning, and does
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not ignore bins with zero counts25. Given these issues relating to the identifica-

tion of power laws, we query whether the current evidence forLévy flights would

withstand more rigorous statistical analysis. This then raises questions as to when

might a foraging animal satisfy the necessary conditions for a Lévy flight to be an

optimal2, 10 search strategy.

METHODS SUMMARY

Maximum likelihood estimates were obtained by numericallymaximizing the ap-

propriate log-likelihood functions, and 95% CIs were computed using the profile

likelihood-ratio test18. All goodness-of-fit tests were performed using the G-test

(likelihood-ratio test) with Williams’s correction29. Akaike weights were com-

puted according to ref. 19, with bias-adjusted AICc used for high-food bees due

to the small sample size. Computations were performed usingR, version 2.2.0

(www.r-project.org).

Full Methods are available in the online version of the paper at www.nature.com/nature.

METHODS

Initial and final albatross flights. A salt-water logger only detects whether a
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bird is sitting on the water or not, and its clock starts when it is switched on at

a computer. Thus a logger is recording before being attachedto a bird, and also,

crucially, while the bird sits on a nest21. The logger is dry, but the bird is not flying.

So the initial sequence of dry readings includes pre-take-off time plus time spent

in flight before first landing on water. For the 2004 data we used the GPS data to

determine when the birds left Bird Island, and hence obtained the duration of the

initial flights (to within an hour), eliminating the time spent on the nest. Return

times to the island were used to determine durations of final flights, eliminating

the dry period between landing and logger retrieval.

In 1992, PTT devices were used in 6 of the 19 trips (Fig. 2). Departure and

return times were calculated to within 2 h (typically 1 h) from a combination of

the PTT fixes and direct observations of the birds. For the remaining 13 trips,

departure and return times remain unknown. As each trip’s initial and final dry

sequences were potentially spurious, we omitted them from the data. If the alba-

trosses really exhibited Lévy flight behaviour then there would be nothing special

about the first and last flights, so eliminating these 26 dry sequences should not

markedly impact the results. However, the 14 longest dry sequences (for the 13

trips), ranging from 21-99 h, all occurred at the start or endof trips and were
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eliminated. These were much longer than the maximum flight of14.9 h in 2004.

Albatross data analysis. The 2004 data consisted of a wet/dry reading every

10 s. A flight is therefore represented by a sequence of consecutive dry readings

in between two wet readings. For example, a sequence wet-dry-dry-dry-dry-wet

gives a record of 4 dry readings, and represents a flight in therange 30-50 s. We

assume 30 s to be the minimum time after take off for a bird to start searching for

new food sources. This excludes instances where a bird may have only lifted its

leg out of the water to scratch (yielding a sequence wet-dry-wet), or abandoned a

take off.

The 1992 data consisted of the number of 15 s intervals withineach hour

for which a bird was considered wet (e.g. Fig. 1 of ref. 7). Flights< 1 h could not

be directly inferred from the data. In ref. 7, consecutive hourly wet counts of 0

(i.e. fully dry hours), in between non-zero hours, were usedto infer flight times of

1, 2, 3, ... h. A sequence of hours wet-dry-wet was then assumed to be a flight of

1 h. However, such a record could come from a true flight anywhere in the range

1-3 h. In the Supplementary Information we derive the likelihood functions for

each data set, taking into account the respective sampling protocols.
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Deer and bumblebee data analysis.We digitized the deer and bumblebee data

from the original histograms27, 28 and from ref. 10. For the deer data the origi-

nal linear histograms27 were log-transformed10 (LT method24), as reproduced in

Fig. 4 from the original data27. Whereas the bumblebee bins28 were smoothed

using running averaging and then lumped to produce log-log histograms10 (see

Supplementary Information). However, our likelihood approach and results in

Table 1 do not involve any smoothing or lumping of the original binned data.

We fit the power-law and exponential distributions over unbounded,[a,∞),

and bounded,[a, b], ranges. For the bounded power law we consider the pdf

f(x) = Cx−µ, x ∈ [a, b], (3)

whereC is the normalization constant given byC = (µ − 1)/(a1−µ − b1−µ). For

the bounded exponential distribution, we have

f(x) = Ae−λx, x ∈ [a, b], (4)

whereA is the normalization constant given byA = λ/(e−λa − e−λb). The data

were digitized from histograms27, 28, and so are already binned. In the Supplemen-

tary Information we derive the likelihood functions for each distribution, modified

from those in Box 1 to account for the pre-binned data and the bounded ranges.
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For each scenario in Table 1, we took[a, b] to be the ranges implied by the power-

law straight lines drawn in ref. 10. These ranges imply that it is impossible to

obtain data larger than that observed, an assumption that isvery unlikely to be

true in practice, but that we find favours preference for the power law over the

exponential. We investigate sensitivity tob in the Supplementary Information,

showing that the result of the power law being slightly favoured for the low-food

bees (Table 1) is not robust to relaxation of this assumption.
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Re-analysis of data sets for which Ĺevy flight behaviour was concluded10

Data set Reported MLE for µ MLE for λ Akaike weights

µ (95% CI) (95% CI) Power law Exponential

G, p G, p

Deer, 2.0 1.57 0.0264 0.0006 0.9994

unfenced (1.29, 1.85) (0.0214, 0.0318)

19.0, 0.0003 4.2, 0.24

Deer, 2.1 1.44 0.0290 0.05 0.95

fenced (1.06, 1.83) (0.0212, 0.0372)

4.87, 0.088 1.08, 0.58

Bees, 3.5 3.68 0.0153 0.59 0.41

high food (2.14, 5.42) (0.0086, 0.0234)

0.16, 0.69 0.59, 0.44

Bees, 2.0 2.20 0.00609 0.78 0.22

low food (1.84, 2.60) (0.00497, 0.00732)

11.3, 0.19 13.1, 0.11

Table 1:
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Table and Figure Captions

Table 1. Re-analysis of data sets for which Ĺevy flight behaviour was concluded10.

Tests are over bounded ranges[a, b], with a, b and reported power-law exponents

for µ taken from ref. 10. Goodness-of-fit valuesG andp are for the G-test29 (n and

df for the four scenarios are, respectively, 141 and 3, 112 and 2, 25 and 1, and 129

and 8). For both deer scenarios, the reportedµ values10 lie outside the 95% CIs.

For the unfenced deer, the data are inconsistent with comingfrom a power law at

the MLE value (and so are certainly inconsistent with the reportedµ, for which

we calculateG = 27.9, p < 10−5). The Akaike weights overwhelmingly favour

the exponential. For the fenced deer, the data are consistent with coming from

a power law with the MLE exponent ofµ = 1.44 (though not with the reported

exponent ofµ = 2.1, for which G = 16.7, p = 0.0002). The Akaike weights

favour the exponential fairly convincingly. For the high-food bees the data were

considered to follow a power law10, but with the reportedµ lying outside the Lévy

range1 < µ ≤ 3. The CI computed here does overlap the Lévy range, but the

Akaike weights favour neither the power law or exponential.For the low-food

bees the reportedµ lies within the 95% CI, and the power law is indeed favoured

(using the MLE value forµ), but not convincingly.
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Figure 1. Rank/frequency plot23 of 2004 wandering albatross data, showing

no evidence for Ĺevy flight behaviour. Circles show number of flights≥ t for

each flight durationt (calculated by ranking flights by size). Red curve is the fit

to the shifted gamma distribution (2) with maximum likelihood estimates (MLEs)

of s = 0.31 (95% Confidence Interval (CI): 0.27-0.34) andr = 0.41 h−1 (95%

CI:0.36-0.46), obtained by maximizing the multinomial likelihood function that

takes into account the discrete sampling nature of the loggers (see Supplementary

Information). The data are consistent with coming from thisdistribution (n =

1416, df=37, G = 28.9, p = 0.83). Flights are correct to within±10 s (see

Supplementary Information). If the flights≥ 1 h followed the power law with

exponentµ = 2 as in ref. 7, the points would lie on the straight blue line23 (that

has been vertically shifted slightly for clarity) – this is clearly not the case. Inset

shows the 2004 data as a conventional histogram on linear axes, with number of

flights against flight duration in hours.

Figure 2. Data for the six wandering albatross trips in 1992 that have known

departure and return times. Red lines are hours for which a logger was com-

pletely dry, blue lines indicate hours when a logger was wet for some part of that

hour, and grey lines indicate switches between these regimes. Black lines indicate
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when each bird departed from and returned to Bird Island, based on the PTT data.

Time 0 is when the loggers were switched on at a computer – thusintervals before

the first black lines include time taken to affix the logger to abird plus time spent

by the bird sitting on its nest before departing. All birds remained on Bird Island

for long periods before departing, but such periods were considered to be flights

in the original study7. Intervals after the final black lines correspond to time the

bird sat on its nest after returning plus time spent retrieving the logger, but these

were also originally considered as flights7.

Figure 3. When corrected, the 1992 wandering albatross flight durations no

longer follow a power law. aBlue open circles show original log-log histogram

of 1992 data (Fig. 3a of ref. 7). Breakpoints of bins are at 1, 2, 4, 8, 16, 32, 64

and 128 h (with bin intervals1 ≤ t < 2, 2 ≤ t < 4, etc.), and results are plotted

at the geometric means. The frequencies are each normalizedby their respec-

tive bin widths to yield frequency densities that compensate for the increasing bin

widths30 (termed logarithmic binning with normalization, LBN, in ref. 24). The

straight line indicates a power law of exponentµ = 2 (ref. 7). Red filled circles are

adjusted flight durations that take into account time spent on Bird Island, binned

in the same manner, showing no power-law behaviour.b The gamma distribution
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fitted to the (unbinned) flight durations (red curve) has MLE valuess = 0.73 (95%

CI: 0.19-1.32) andr = 0.33 h−1 (95% CI: 0.22-0.46), and the data are consistent

with coming from this distribution (n = 335, df=8,G = 11.9, p = 0.16). This dis-

tribution yields expected counts in each bin (black open circles), which are what

should be compared with the binned data. Our multinomial likelihood approach

accounts for the fact that the loggers’ memory limitations meant that a record of

1 h could correspond to a flight anywhere in the range 1-3 h. This fact plus the

effects of the binning procedure result in the differences between the red curve

and black circles (note the log scale); see Supplementary Information.c Original

(blue open circles) and adjusted (red closed circles) data as a rank/frequency plot.

Each record yields a point, and since the resolution of the logger data was 1 h,

there can be multiple points for each given flight durationt. The ordinate shows

proportion rather than number of flights, because of the different sizes of the data

sets.

Figure 4. Foraging times of deer previously concluded to demonstrate Lévy

flight behaviour10. a Digitized data of foraging times of unfenced deer from

Fig. 3 of ref. 27, as plotted in Fig. 3c of ref. 10. Circles are percentages of foraging

times in each bin. Bins are each 20 s wide, though the axes are logarithmic (the
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LT method24). Blue line is power law of exponentµ = 2 from ref. 10, and red

curve is superior fit of an exponential tail (see Table 1).b As for a, but for deer

in fenced areas. Blue line is power law of exponentµ = 2.1 from ref. 10, and red

curve is superior fit of an exponential tail.

Box 1: When is a power law not a power law?

The approach widely used to test for biological Lévy flight search patterns

has been: (i) plot the move-length data as some form of histogram on log-log

axes; (ii) draw or fit a straight line across the full range of data or just the tail;

(iii) defineµ to be the negative of the slope of the line; (iv) conclude thatthe data

follow a power law of exponentµ (across the full range or just the tail); (v) then

if 1 < µ ≤ 3 conclude that the organism performs a Lévy flight with exponentµ.

It is well known that log-log axes tend to make relationshipslook straight,

and so it is problematic to only plot the data on a log-log plotand then conclude

that the data lie on a straight line. One should at least consider an alternative move-

length distribution, such as the exponential that corresponds to a simple uncorre-

lated Poisson random process. Ref. 16 did also test the exponential, though used

the unreliable24, 25 LT method for the power law and compared the distributions
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by comparing coefficients of variation29 (R2), which is not useful for choosing

between models19.

Here we summarize how to use modern statistical methods of model selection19, 20

to test whether a given data setx = {x1, x2, x3, ..., xn} provides more evidence

for a power-law tail or an exponential tail. Considering thetail to start ata, the

power-law tail has pdf

f1(x) = Cx−µ, x ≥ a, (5)

where the normalization constantC = (µ − 1)aµ−1, and the exponential tail has

pdf

f2(x) = λe−λ(x−a), x ≥ a. (6)

The log-likelihood function18, 19 for the power law is23

log[L1(µ|datax)] = n log(µ − 1) + n(µ − 1) log a − µ
n∑

j=1

log xj , (7)

where L1(µ|datax) is the likelihood of a particular value of the unknown param-

eterµ given the known datax (andlog is natural log). For the exponential model

the unknown parameter isλ, and

log[L2(λ|datax)] = n log λ + nλa − λ
n∑

j=1

xj . (8)
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Solving for the maximum likelihood estimates (MLEs) analytically23 gives

µ̂ = 1 − n/(n log a −
∑n

j=1 log xj) andλ̂ = 1/(
∑n

j=1 xj/n − a). Akaike’s Infor-

mation Criterion18, 19 (AIC) for modeli (i = 1, 2) is

AICi = −2 log[Li(θ̂i|datax)] + 2Ki (9)

whereθ̂1 = µ̂, θ̂2 = λ̂, andKi is the number of parameters being estimated for

model i (K1 = K2 here). The best model is the one with the minimum AIC,

AICmin. Then, AIC differences are given by∆i = AICi − AICmin. The Akaike

weights19 are relative likelihoods of each model, given by

wi =
e−∆i/2

e−∆1/2 + e−∆2/2
, (10)

normalized so the weights sum to 1. The weightwi is considered as the weight

of evidence in favour of modeli being the best model for the given data, out of

the models considered. Multiple models of varying complexity may also be si-

multaneously considered19. Natural data that follow a power law must be finitely

truncated; any approach that neglected this would suffer tosome degree (see Sup-

plementary Information). Future work could explore the problem of inference of

truncated3 Lévy flights.

The likelihood approach clarifies what is meant by the ‘tail’of the data

(permitting goodness-of-fit tests), eliminates binning problems associated with
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log-log histograms (outlined in ref. 24), and yields 95% CIs(computed using the

profile likelihood-ratio test18). Furthermore, if the power law is supported by the

data, then the MLE forµ is more accurate (AME, in prep.) than the estimate

obtained from the LBN method.
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