1	
2	
3	A deformed alkaline igneous rock – carbonatite complex from the
4	Western Sierras Pampeanas, Argentina: evidence for late
5	Neoproterozoic opening of the Clymene Ocean?
6	
0 7	
8	C. Casquet ^{a*} , R.J. Pankhurst ^b , C. Galindo ^a , C. Rapela ^c , C.M. Fanning ^d ,
9	E. Baldo ^e , J. Dahlquist ^e , J.M. González Casado ^{f†} F. Colombo ^e
10	
11	^a Dpto. Petrología y Geoquímica, Fac.Ciencias Geológicas, Inst. Geología Económica. (CSIC,
12	Universidad Complutense), 28040 Madrid, Spain
13	^b British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
14	^c Centro de Investigaciones Geológicas, Universidad de La Plata, 1900, La Plata, Argentina.
15	^d Research School of Earth Sciences, The Australian National University, Canberra, ACT 200,
16	Australia.
17	^e CICTERRA (Conicet-Universidad Nacional de Córdoba), Vélez Sarfield 1611, 5016 Córdoba,
18	Argentina.
19	^f Dpto. de Geología y Geoquímica, Universidad Autónoma, 28049 Madrid, Spain.
20	
21	
22	† deceased
23	
 21	• *Corresponding author Tel $+34.913944908 \cdot \text{fav} \cdot +34.91$
∠ +	
25	• E-mail address: casquet@geo.ucm.es

26 Abstract

27	A deformed ca. 570 Ma syenite–carbonatite body is reported from a Grenville-age (1.0 - 1.2
28	Ga) terrane in the Sierra de Maz, one of the Western Sierras Pampeanas of Argentina. This is
29	the first recognition of such a rock assemblage in the basement of the Central Andes. The two
30	main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-
31	grained foliated biotite-calcite carbonatite. Samples of carbonatite and syenite yield an
32	imprecise whole rock Rb–Sr isochron age of 582 ± 60 Ma (MSWD = 1.8; Sri = 0.7029);
33	SHRIMP U–Pb spot analysis of syenite zircons shows a total range of ²⁰⁶ Pb– ²³⁸ U ages
34	between 433 and 612 Ma, with a prominent peak at 560–580 Ma defined by homogeneous
35	zircon areas. Textural interpretation of the zircon data, combined with the constraint of the
36	Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of
37	the U–Pb system took place at 525 ± 7 Ma (Pampean orogeny) and at ca. $430 - 440$ Ma
38	(Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was
39	joined to Gondwana during both events. Highly unradiogenic ⁸⁷ Sr/ ⁸⁶ Sr values in calcites
40	(0.70275 - 0.70305) provide a close estimate for the initial Sr isotope composition of the
41	carbonatite magma. Sm–Nd data yield ϵ Nd ₅₇₀ values of +3.3 to +4.8. The complex was
42	probably formed during early opening of the Clymene Ocean from depleted mantle with a
43	component from Meso-/Neoproterozoic lower continental crust.
4.4	

44

45 Keywords: DARCs; Syenite; U-Pb SHRIMP zircon dating; Gondwana; Rodinia.

46 Introduction

47 The association of alkaline igneous rocks (particularly nepheline syenites) with 48 carbonatites is common in continental rift settings (Bailey, 1977, 1992; Bell, 1989; Burke et 49 al., 2003), where they are sometimes referred to by the acronym ARCs (Alkaline Rock – 50 Carbonatite complexes). Deformed, i.e., variably foliated concordant lenses (DARCs) are a 51 special case, in which they apparently match ancient sutures in basement regions (Burke et 52 al., 2003). Since sutures are indicative of orogenic continental collision at the end of a Wilson 53 cycle, one interpretation of these deformed rock associations is that they represent earlier rift-54 related ARC assemblages that eventually became involved in the collision zone (Burke and 55 Khan, 2006). An alternative interpretation, based on geochronological constraints, is that they 56 formed during syn-orogenic extension related to continental orogeny, e.g., along the 57 Dahomeyide suture zone of western Africa (Attoh et al., 2007). In a recent synthesis of the 58 many 650–500 Ma alkaline rocks and carbonatites related to the amalgamation of Gondwana, 59 Veevers (2003, 2007) favoured the location of these and other alkaline associations at 60 releasing bends along transcurrent faults driven by collisional oblique stresses and during 61 post-collisional relaxation. Vaughan and Scarrow (2003) outlined a model for the generation 62 of potassic mafic and ultramafic magmas by transtension of metasomatized mantle. 63 We describe here the case of a Neoproterozoic deformed syenite – carbonatite body 64 intruded into a Grenville-age (1.0 - 1.2 Ga) terrane in the Sierra de Maz, one of the Western 65 Sierras Pampeanas of Argentina. After Rodinia break-up this terrane was involved in an Early 66 Paleozoic collision, the Pampean orogeny, a stage in the amalgamation of SW Gondwana that 67 involved subduction-related granite magmatism and high-grade metamorphism, largely to the 68 east of the Western Sierras Pampeanas (Rapela et al., 2007). It is thus is a good test case for 69 geotectonic models for deformed ARC formation. Moreover, to our knowledge this is the first 70 recognition of such a rock assemblage of Precambrian age in the basement of the Central

71 Andes, which could prove to be of economic importance. Carbonatite and a diversity of 72 alkaline silicate rocks and related hydrothermal alteration products of Cretaceous age are 73 however well known from elsewhere in the Central Andes and its eastern foreland (e.g., 74 Schultz et al., 2004, and references therein). Geochronological constraints and isotope 75 geochemistry suggest that the first mode of deformed ARC formation above, i.e. early during 76 the Pampean Wilson cycle in the late Neoproterozoic, probably applies in the case of the Maz 77 syenite – carbonatite body. Moreover syenite and carbonatite magmas were coeval and were 78 mainly fed from a depleted mantle source, probably with a minor contribution from a poorly 79 radiogenic continental crust of Grenville age.

80

81 Geological and paleogeographical setting

82 The Sierras Pampeanas of Argentina are elongated blocks of pre-Andean crystalline 83 basement that were exposed to erosion by tilting during Cenozoic Andean tectonics (Fig. 1). 84 Three metamorphic and igneous belts have been distinguished (for a review, see Rapela et al., 85 1998a, 2002) (Fig. 1a): (1) The older is of 'Grenville' age, ca. 1.0 to 1.2 Ga, and crops out in 86 the Western Sierras Pampeanas. (2) The Pampean belt is of Early Cambrian age, between 530 87 and 515 Ma, and crops out in the Eastern Sierras Pampeanas. (3) The Famatinian belt of 88 Ordovician age, ca. 490 to 430 Ma, is located between the former two and is the best 89 preserved. Famatinian metamorphism, deformation and magmatism overprint with varied 90 extent and intensity the Grenvillian and Pampean belts. The Sierra de Maz (Fig. 1b) is one of 91 the Western Sierras Pampeanas where Grenville-age metamorphic and igneous rocks have 92 been recognized (Porcher et al., 2004; Casquet et al., 2005, 2006, 2008). Other larger outcrops 93 of Grenville-age rocks exist in the Sierra de Pie de Palo (see review by Ramos, 2004) and 94 Umango (Varela et al., 2003) (Fig. 1).

95	Paleogeographic reconstructions and dynamic interpretations of the proto-Andean margin
96	of Gondwana in the Mesoproterozoic to Ordovician time span have been strongly stimulated
97	over the past fifteen years by the hypothesis of allochthoneity of the Precordillera terrane
98	(e.g., Vaughan and Pankhurst, 2008). According to most supporters of the hypothesis, this
99	terrane consists of a Grenville-age basement that crops out in the Western Sierras Pampeanas
100	and a non-metamorphic Early Cambrian to Middle Ordovician passive margin cover
101	sequence, i.e., the Argentine Precordillera (Fig. 1) (for reviews see Thomas and Astini, 2003;
102	Ramos, 2004). In this paradigm, the Precordillera terrane is an exotic terrane rifted away from
103	the Ouachita embayment in the Appalachian margin of eastern Laurentia in the Early
104	Cambrian that collided with the proto-Andean margin of Gondwana in the Ordovician to
105	produce the Famatinian orogeny (Thomas, 1991; Thomas and Astini, 1996). However,
106	whether the Grenvillian outcrops in Western Sierras Pampeanas are part of the exotic terrane
107	or not has also been questioned (Galindo et al., 2004; Rapela et al., 2005; Casquet et al.,
108	2008). In a recent contribution Rapela et al. (2007) suggested that after initial break-up of
109	Rodinia the Western Sierras Pampeanas Grenville-age basement was part of a larger
110	continental mass embracing the Mesoproterozoic central and northern Arequipa-Antofalla
111	craton (Peru), and the Amazonia craton (Brazil). These continental domains coalesced during
112	the Sunsas (Grenville-age) orogeny (Loewy et al., 2004; Tohver et al., 2002, 2004; Casquet et
113	al., 2008). This large continent collided obliquely with the Rio de la Plata and Kalahari
114	cratons to the east (present coordinates) to produce the Pampean orogeny in the early
115	Cambrian, with the disappearance of the intervening Clymene Ocean (Trindade et al., 2006).
116	
117	Field description
118	The Maz deformed syenite-carbonatite complex forms a body ca. 4 km long and of

119 variable thickness (max. 120 m), striking 340–345° along the eastern margin of the Sierra de

120 Maz and dipping 65–70° E. (Figs 2, 3a). Host rocks are: 1) hornblende-biotite-garnet gneisses 121 and biotite-garnet gneisses with some interleaved quartzites and marbles, 2) ortho-122 amphibolites, metagabbros and local meta-peridotites; 3) massif-type anorthosites of $1070 \pm$ 123 41 Ma (Casquet et al., 2005) and a variety of coeval granitic orthogneisses. Host rocks to the 124 complex (Fig. 1b) belong to the Maz Central Domain (Casquet et al., 2008), which underwent 125 granulite facies metamorphism at ca. 1.2 Ga and retrogression under amphibolite facies 126 conditions at 431 ± 40 Ma (Casquet et al., 2006, 2008). The intrusion is largely concordant, 127 but locally discordant, to the foliation of the host rocks (Fig. 2). 128 Homogeneous medium- to coarse-grained syenite and fine-grained foliated biotite 129 carbonatite are the two main lithologies forming the body. They do not show a clear internal 130 arrangement, syenite ranging from elongated bodies tens of metres long down to few 131 centimetre-size spheroidal enclaves in the carbonatite. Carbonatite foliation wraps around the 132 syenite bodies that are locally foliated as well (Fig. 3b). Besides syenite, the carbonatite hosts 133 a number of other types of enclaves, notably large (up to several centimetres) isolated crystals 134 of albite and biotite, coarse-grained mafic enclaves, and enclaves of the host gneisses and 135 amphibolites with the internal foliation in places at a high angle to the carbonatite foliation 136 (Fig. 3c). Enclaves are rounded to sub-angular and vary from well- to poorly-sorted in terms 137 of size from place to place, and can be locally very abundant, giving the outcrop a breccia-like 138 aspect (Fig. 3d). Enclaves of an earlier carbonatite (also with enclaves) can be found within a 139 younger carbonatite. Variability in the number and sorting of the enclaves suggests that their 140 incorporation in the carbonatite magma was a multi-stage process (Fig. 3e). The syenites 141 contain visible pinkish zircon megacrysts that can attain few cm size (Fig. 3f), a feature also 142 recognized in carbonatite - syenite bodies elsewhere (Ashwal et al., 2007). Coarse-grained 143 calcite veins and interstitial calcite are locally found in syenites.

144

145 **Petrography and mineralogy**

146 The carbonatite consists of calcite, 10 to 30 % modal biotite, abundant anomalous biaxial 147 apatite, and minor magnetite, zircon, very scattered U-rich pyrochlore, and columbite. 148 Compositionally the calcite has up to 1.3 wt. % SrO, 2.5 wt. % FeO, and 0.41 wt. % ELREE 149 (Table 1 and microprobe data in the data repository; see below). Electron microprobe analyses of the biotite show an average Fe# value [Fe/(Mg+Fe)] of 0.74 and $Al^{IV} = 2.643-2.748$ a.f.u.; 150 151 the apatite has up to 2.76 wt. % F, the pyrochlore 18.60–30.23 wt. % UO₂ and the columbite 152 Nb/Nb+Ta = 0.98. Calcite crystals are fine-grained granoblastic with a slight preferred 153 orientation and narrow straight twins. Lattice-preferred orientation is weak but relics of larger 154 strained crystals of calcite are preserved within the foliated granoblastic groundmass, 155 suggesting that the latter probably arose by recrystallization of former coarser-grained, 156 probably primary, carbonate crystals. Groundmass biotite is found as individual plates but 157 more commonly as fine-grained recrystallized aggregates, often as rims on isolated rounded albite crystals or larger albite syenite spheroids. The visible foliation largely results from 158 159 preferred orientation of biotite. 160 The syenites are coarse-grained rocks that are locally foliated. They consist of albite 161 $(Ab_{95,0-97,5}An_{2,2-2,6}Or_{0,9-2,5})$ and biotite chemically similar to that in the carbonatite (Fe# = 162 0.83). Subordinate microcline is found at albite grain boundaries, as either replacement or 163 exolution. Undulose extinction and deformation bands in albite, and bending and kinking in 164 biotite, are common in non-foliated varieties. K-rich nepheline (Ks₂₁₋₂₂), variably converted to 165 a fine-grained micaceous aggregate, was found in several samples. Accessory minerals are 166 zircon, anomalous biaxial apatite and minor pyrochlore. Secondary minerals in the syenites 167 are calcite, muscovite-sericite after K-feldspar and chlorite and epidote after biotite. Syenite 168 spheroids within the carbonatite consist of an inner coarse-grained core and a continuous fine-169 grained mantle resembling a chilled margin, rimmed by fine-grained biotite, probably

170 indicative of liquid inmiscibility. Foliated syenites are medium-grained and show a

171 granoblastic orientation of albite and preferred orientation of biotite.

Besides large biotite and albite megacrysts, two types of mafic enclaves have been found in the carbonatite. One type consists of coarse-grained aegirine-augite ($Na_2O = 5.35-5.75$ wt. %) variably converted to katophorite amphibole, albite, Fe-rich calcite and magnetite. The second type consists of coarse-grained magnetite and biotite with accessory primary calcite (included in biotite), apatite and pyrochlore.

177

178 Analytical procedures

179 Full chemical analyses of four syenite and two carbonatite samples were performed at

180 ACTLABS (Canada): major oxides by ICP and trace elements by ICP-MS. Other

181 determinations at ACTLABS were Cl (INAA), CO₂ (COUL), F (FUS-ISE), and S (IR). Fe²⁺

182 was determined volumetrically at the Centro de Investigaciones Geológicas, La Plata. Major

and trace elements of one probably relic calcite megacryst were determined by XRF (Table 1)

184 and mineral compositions by electron microprobe at the Universidad Complutense, Madrid

185 (Supplementary Table obtainable from the Precambrian Research Data Repository).

186 Rb–Sr systematics were analysed in three samples of carbonatite, four of syenite, two vein

187 calcites in syenites, and four enclaves in carbonatite – an aegirine mafic enclave (see below)

188 and three megacrysts, two of biotite and one of albite. For Sm–Nd systematics five samples

189 were analysed: two syenites and three carbonatites. Samples were crushed and powdered to \sim

190 200 mesh. For the carbonatite samples, Sr and Nd isotope composition was obtained by

191 leaching 200 mg of each sample in10 ml of acetic acid for 12 hours. Whole-rock syenites and

- 192 silicate minerals were first decomposed in 4 ml HF and 2 ml HNO₃, in Teflon digestion
- 193 bombs during 48 hours at 120 °C and finally in 6M HCl. Elemental Rb, Sr, Sm and Nd in
- 194 carbonates and silicates were determined by isotope dilution using spikes enriched in ⁸⁷Rb,

⁸⁴Sr, ¹⁴⁹Sm and ¹⁵⁰Nd. Ion exchange techniques were used to separate the elements for
isotopic analysis. Rb, Sr and REE were separated using Bio-Rad AG50 x 12 cation exchange
resin. Sm and Nd were further separated from the REE group using Bio-beads coated with
10% HDEHP. All isotopic analyses were carried out on a VG Sector 54 multicollector mass
spectrometer at the Geocronología y Geoquímica Isotópica Laboratory, Complutense
University, Madrid, Spain. Isotope data are shown in Table 2. Errors in the initial ratios are
reported at 2σ.

202 U-Th-Pb analyses were performed on two samples using SHRIMP II at the Research

203 School of Earth Sciences, The Australian National University, Canberra. One was a euhedral

204 zircon megacryst up to 1.5 cm in width, extracted from a syenite; the second was a hand-

205 picked concentrate separated after milling another syenite. Zircon fragments were mounted in

206 epoxy together with chips of the Temora reference zircon, ground approximately half-way

207 through and polished. Reflected and transmitted light photomicrographs, and cathodo-

208 luminescence (CL) SEM images, were used to decipher the internal structures of the sectioned

209 grains and to target specific areas within the zircons. Each analysis consisted of 6 scans

210 through the mass range. The data were reduced in a manner similar to that described by

211 Williams (1998, and references therein), using the SQUID Excel Macro of Ludwig (2001).

212 Data for the geochronology samples are given in Table 3.

213

214 Geochemistry

215 Major and trace elements

216 The syenitic rocks display a relatively wide, alkali-rich compositional range from nepheline

217 monzosyenites (52% SiO₂) to normal syenites (58–64% SiO₂) (Table 1, Fig. 4), and are Na-

218 rich (K₂O/Na₂O mol \leq 0.33). They plot in the alkali and ferroan fields of the Frost et al.

219 (2001) diagram, clearly indicating an alkaline signature for the parental magma (Figs 4b, 4c).

220 The Zr content of the suite is remarkably high (716–1920 ppm), consistent with

221 experimental evidence indicating that Zr is more soluble in peralkaline than in metaluminous

222 melts (Watson, 1979; Watson and Harrison, 1983). A negative correlation between Zr and

223 Agpaitic Index (Fig. 5a) strongly suggests that the alkali content of the melt controlled the

224 crystallization of zircon. Zircon saturation temperatures (T_{Zr}) calculated from bulk-rock

compositions using the equations of Watson and Harrison (1983) and Miller et al. (2003),

226 yield initial temperatures of crystallization between 826°C and 1022°C, similar to those

227 recorded for basaltic magmas.

228 The syenitic suite shows a strong decrease in P_2O_5 , REE_{total}, Sr and Y with SiO₂ (Fig. 6).

229 REE patterns also change significantly with silica content, from $[La/Yb]_N = 26$ in the least

evolved rock, to a U-shaped pattern with $[La/Yb]_N = 2.33$ and a well-developed positive Eu

anomaly in the most evolved one (Fig. 7a). P_2O_5 contents decrease from 0.74% (1.9%)

normative apatite) in the least evolved syenite to 0.02% (0.05% normative apatite) in the most
evolved one.

The REE pattern of the nepheline monzosyenite (MAZ-12110, Fig. 7a) might reasonably

suggest control entirely by the modal content of apatite (Fig. 7b). However, the HREE

distribution cannot be explained by fractionation of apatite alone, particularly in the rocks of

237 intermediate composition, as the decreasing slope of the patterns suggests crystallization of a

238 mineral phase with a high partition coefficient for HREE, such as zircon (Fig. 7a and b). As

239 noted above, zircon is a conspicuous accessory mineral in the syenitic suite, with megacrysts

240 up to a few cm in size. Coupled fractionation of apatite and zircon may replicate the observed

241 REE patterns in the syenites of intermediate composition (SiO₂ = 58-61 %). The depletion of

242 REE in the most evolved syenites (SiO₂ = 64%) may be explained by the effective

243 fractionation of accessory minerals, leaving plagioclase-rich residual liquids (Fig. 7a and b).

244 The two carbonatite samples (Table 1) are silico-carbonatites that have steep, LREE-

enriched patterns with no Eu anomalies, and plot within the field defined for most world-wide

carbonatites (Fig. 7c). They also contain large amounts of Ti, Nb, Y, Sr and Ba (Table 1), as

- usually reported in carbonatite complexes (e.g., Culler and Graf, 1984). Compared with the
- 248 carbonatite whole-rock REE patterns, the REE analysis by XRF of a relic large homogeneous
- 249 crystal of calcite (Table 1, sample MAZ-12090), shows a parallel but slightly more enriched

250 pattern (Fig. 7c). The REE pattern of the least evolved member of the syenitic suite (MAZ-

251 12110) (Fig. 7a), has lower total REE content than associated carbonatites, but similar

252 LREE/HREE ratios (Fig. 7c), a characteristic that has been reported in several alkaline-

- carbonatite complexes (e.g., Culler and Graf, 1984; Villenueve and Relf, 1998).
- 254

255 Rb–Sr and Sm–Nd Isotope Systematics

256 The present-day Sr isotope compositions of the carbonatite calcite and vein calcite are similar and very unradiogenic (Table 2). The slightly higher ⁸⁷Sr/⁸⁶Sr values in the carbonatite 257 258 calcite (0.70299-0.70305) than in vein calcite (0.70275-0.70277) is probably due to very 259 minor contamination of the carbonatite leachate with Sr derived from biotite. In all cases the very low ⁸⁷Rb/⁸⁶Sr ratios of the calcites resulting from the very high Sr contents (3108–8493) 260 261 ppm), mean that the Sr isotope composition is almost invariant with age (Table 2) and the 262 present values can thus be taken as a close estimate for the initial Sr isotope composition of 263 the carbonatite magma at the time of formation, i.e., 0.7027 to 0.7030. When carbonatites and syenite data are plotted as 87 Rb/ 86 Sr vs. 87 Sr/ 86 Sr, an isochron age of 582 ± 60 Ma (MSWD = 264 265 1.8; $Sr_i = 0.7029$) is obtained (Fig. 8). For this plot only syenites MAZ-12057 and MAZ-266 12085 were used because they do not show evidence of significant alteration of primary 267 minerals (syenites MAZ-12058 and MAZ 12110 show deformation and strong alteration of

268 nepheline and biotite). The albite megacryst and the aegirine mafic enclave both have high Sr

contents (4211 and 3108 ppm, respectively) and low ⁸⁷Rb/⁸⁶Sr ratios (Table 2). When these 269 270 data are included in the isochron dataset an indistinguishable age is obtained (565 ± 60 Ma, 271 MSWD = 3.3, $Sr_i = 0.70300$). The two biotite megacrysts have model ages (assuming an initial 87 Sr/ 86 Sr of 0.703, of 490 ± 7 and 480 ± 11 Ma, indicating either late crystallization (or 272 273 loss of radiogenic Sr) – see below. The very unradiogenic nature of the carbonate Sr isotope 274 composition suggests a significant contribution to the magma from a depleted source. 275 Sm–Nd data (Table 2) yield epsilon values at the reference age of 570 Ma (ɛNd₅₇₀) between 276 +3.3 and +4.8, also suggesting a major contribution to the Nd isotope composition of magma 277 from a depleted mantle source. Nd model ages (T_{DM}^*) between 764 and 986 Ma are 278 significantly older than those obtained from the Rb-Sr data and zircon chronology (see 279 below). The Sm-Nd data for the five analysed whole-rock do not fit an isochron (MSWD 10.2), suggesting that Sm-Nd systematics were perturbed after magmatic crystallization; 280 281 chemical and geochronological evidence from zircon is consistent with this interpretation.

282

283 Zircon internal structure and U–Pb chronology

A feature of the syenite is the presence of euhedral mm-size pinkish zircon crystals, which has also been found in nepheline-syenite carbonatite complexes elsewhere (Ashwal et al., 2007). Megacrysts up to a few cm in size are also randomly distributed (Fig. 3f). Internal fractures are common. Back-scattered electron (BSE) images (Fig. 9a) show a complex zoning pattern probably resulting from post-crystallization modification. Light-coloured zones are enriched in Th, U and REE and are poorer in Hf compared to the darker ones.

290

291 Zircon megacryst,

One megacryst (MAZ-12089) was extracted in the field for initial study. Cathodoluminescence (CL) images (Fig. 9b) show that it has a very complex internal structure. The

294 oldest zircon in textural terms appears as internal areas of relatively uniform growth with low 295 luminescence; there are also areas of higher luminescence and rather irregular alternating 296 structure which are nevertheless relatively homogeneous. However, large irregular areas have 297 variable luminescence with complex internal structure which appears to be secondary. Within 298 the latter we distinguish areas of complex patchy texture, and areas in which highly 299 luminescent microveins penetrate the old homogeneous zones, apparently resulting from 300 replacement or recrystallization along cracks. Such complex textures are usually ascribed to 301 late or post-magmatic processes, including hydrothermal alteration, and metamorphism (see 302 Corfu et al., 2003, figures 6-16, 10-5 and 11-7). Finally, there is one peripheral area with 303 more regular oscillatory zoning that could represent newer growth. 304 SHRIMP U–Pb spot analysis (Table 3a) shows that the structural complexity 305 corresponds to a large extent with variable isotope systematics. The total range of apparent ²⁰⁶Pb-²³⁸U ages is 433–612 Ma, but most of the areas in relatively homogeneous domains 306 307 yield ages of 530–590 Ma (e.g., Fig. 9b), with a single anomalous age of 612 Ma, whereas the 308 mosaic areas generally yielded ages of <500 Ma. The outer oscillatory-zoned domain also 309 yielded younger ages of 450–495 Ma (spots 1, 2, 3), clearly reflecting much later re-growth. 310 Overall, there is no obvious correlation between age and either U content or Th/U ratio. Eight 311 results from the most homogeneous areas (spots 5,6, 10, 12, 14, 14 and 16 in Table 3) gave a 312 weighted mean age of 566 ± 8 Ma (MSWD 1.5) and three within the more complex areas 313 (spots 9, 11 and 18) gave 530 ± 19 Ma (MSWD 1.4). These results are illustrated in a Tera-314 Wasserburg plot and a probability density diagram (Fig. 10a and 10b, respectively). 315

316 Groundmass Zircon

317 Zircon extracted from whole-rock crushing of syenite MAZ-12057 consists entirely of
318 irregularly-shaped grains up to 500 μm in length of clear but heavily fractured zircon. The

319 internal structure revealed by CL predominantly corresponds to the more homogenous type 320 seen in the megacryst, albeit still with irregular cross-cutting zones with alternating structure 321 (Fig. 9c). The absence of euhedral grains and the incomplete internal structures indicate that 322 these grains are not individual crystals but fragments of larger grains, broken along internal 323 fractures either in a geological event or during the mineral separation process. The latter is 324 suggested by the occasional occurrence of mosaic patterned grains and is confirmed by 325 examination of *in situ* zircon crystals in petrographic thin sections of other samples of the 326 syenite (e.g., Fig. 9a) which show more complete zoned domains but extensive fractures. The ²⁰⁶Pb-²³⁸U ages obtained from the fragmented grains of MAZ-12057 (Table 3b) are 327 328 similar to those from the more homogeneous domains of the megacryst, ranging from 495 to 329 588 Ma (see Fig 11a, b). Even this more limited range is well outside the analytical 330 uncertainty of the individual results and encompasses a distribution that is at least bi-modal, 331 twenty-two of the ages clustering around a broad peak at 571 ± 5 Ma (albeit with MSWD 332 =2.8) and a smaller group of five defining a weighted mean of 525 ± 7 Ma (MSWD = 0.2) 333 and a single age at 495 Ma. As with the megacryst analyses there is no obvious relationship 334 between age and parameters such as U content or Th/U ratio. 335 336 Discussion 337 The Maz outcrop is an example of a *deformed alkaline rock – carbonatite* complex. 338 Beyond its potential economic importance (Nb, REE), this type of complex can be of value in 339 constraining geodynamic and paleogeographic models of continental dispersal and 340 amalgamation if the age of intrusion is defined. 341

342 *Chronological interpretation and geodynamic implications*

343	The Maz carbonatite – syenite was intruded into a Grenville-age basement that forms
344	the central and eastern side of the sierra. The local obliquity of the body to the regional
345	foliation and the fact that rotated blocks of the host gneisses are locally found in the
346	carbonatite, together with the zircon U-Pb geochronological data presented here, show that its
347	emplacement age is post-Grenvillian. In the absence of any textural indication of inheritance,
348	it is most probable that the older zircon ages, yielding means of 566 ± 7 Ma in the case of the
349	megacryst and 571 ± 5 Ma in that of the groundmass zircon, represent igneous crystallization
350	during the Late Neoproterozoic. It is difficult to know whether the spread of the latter group
351	indicated by the MSWD of 2.8 might signify more than one event; the most definitive
352	statement that can be made concerning the age of this carbonatite complex is that it was
353	emplaced within the interval 565-580 Ma, most probably at ca. 570 Ma, i.e., Ediacaran.
354	The Rb-Sr whole rock systematics reinforce this interpretation; the two calculated isochron
355	ages (582 \pm 60 Ma and 565 \pm 60 Ma) are within error of the U–Pb zircon ages. The large
356	uncertainties in these ages are due to the limited range of Rb/Sr ratios, and this might lead to
357	some doubts over the confidence of this result. However, we note that the whole-rock Rb-Sr
358	system in these rocks appears to have been resistant to disturbance during the amphibolite-
359	facies Famatinian metamorphism and deformation at ca. 430-440 Ma, which affected the
360	whole region (Lucassen and Becchio, 2003; Casquet et al., 2005, 2008). A significantly older
361	maximum possible age for the carbonatite – syenite complex might be suggested by the Sm-
362	Nd T_{DM}^* model ages of 764–986 Ma, but in view of the fact that the whole-rock syenites do
363	not yield a reasonable Sm-Nd isochron, these seem as likely to reflect metamorphic
364	disturbance of the Sm-Nd systems in a carbonate-rich environment, where REE are known to
365	be relatively mobile (McLennan and Taylor, 1979; Banner et al., 1988). Alternatively, pre-
366	crystallization Sm-Nd systematics may reflect some crustal contribution to the magma.

367 Consequently we conclude that the Maz carbonatite – syenite complex is the first evidence of
368 a Late Neoproterozoic rifting event in the Western Sierras Pampeanas.

369 In the case of the zircon megacryst it would be possible to interpret the few ages at \sim 520 370 Ma as due to partial Pb-loss. On the other hand, the well-defined age grouping at 525 ± 7 Ma 371 given by zoned zircon in the whole-rock syenite, where Famatinian reworking is clearly 372 minor (only one age of <500 Ma), seems to indicate a specific event related to rejuvenation at 373 the time of the Pampean orogeny (Rapela et al., 1998b). The zoned zircon areas that yield this 374 age are not texturally distinguishable from the older zircon (there is certainly no evidence for 375 any core-rim relationship indicating re-growth), implying that these Pampean ages represent 376 cryptic Pb-loss in a discrete event. 377 This interpretation of the \sim 525 Ma U–Pb zircon ages may be taken as further evidence of 378 the effects of the Early Cambrian Pampean orogeny in the Western Sierras Pampeanas. Until 379 now most reliable metamorphic ages in the Maz and Espinal area were either Grenville-age 380 (ca. 1.2 Ga) or Famatinian (430-440 Ma, e.g., Lucassen and Becchio, 2003; Porcher et al., 381 2004; Casquet et al., 2005, 2006, 2008; and our unpublished data). Involvement of the 382 Western Sierras Pampeanas Grenville-age basement in the Pampean orogeny has, however, 383 been recently emphasized by Rapela et al. (2007). Recent determinations of a single U-Pb 384 titanite age of ca. 530 Ma from the southern tip of the Sierra de Maz (Lucassen and Becchio, 385 2003) and of a metamorphic hornblende Ar-Ar age of ca. 515 Ma in the Grenvillian basement

- of the Sierra de Pie de Palo, south of Sierra de Maz (Mulcahy et al., 2007), strengthens this
- 387 geodynamic interpretation.
- 388 According to the majority of the textural evidence, the younger ages of 433–495 Ma,
- 389 particularly in the megacryst, are almost certainly related to minor zircon growth and variable
- 390 Pb-loss, in part caused by invasive fluids penetrating along fractures, and would correspond to
- 391 reactivation during Famatinian metamorphism. The highly fractured nature of the zircon

392 megacryst would probably also have facilitated fluid exchange processes. Evidence for

393 deformation and metamorphic rejuvenation under amphibolite facies conditions in the Maz

and Espinal area at ca. 430 - 440 Ma has been shown by Lucassen and Becchio (2003),

395 Porcher et al. (2004) and Casquet et al. (2005, 2008).

396

397 *Tectonic implications*

398 The rock association of alkali-syenite (+ nepheline) and carbonatite, with no evidence for 399 associated alkali basalts shows that this is not a high-thermal anomaly mantle plume scenario, 400 but was most probably related to an extensional environment. Vaughan and Scarrow (2003) 401 suggested transtensional tectonics in a metasomatized mantle, but this produces K-rich 402 magmas rather than Na-rich magmas responsible for the Sierra complex. Veevers (2003, 403 2007) suggested a similar mode of tectonic control for alkaline rocks and carbonatite (ARCs) 404 emplaced during Gondwana amalgamation. However, although strike-slip was important 405 during the Early Paleozoic assembly of this part of Gondwana (e.g., Rapela et al., 2007), the 406 geochronological data presented here suggests that this complex was formed some 50 Ma 407 before the mid-Cambrian Pampean orogeny, i.e., it was pre-orogenic. In particular, the 408 weight of the U-Pb SHRIMP data does not support the idea of melting and crystallization of 409 the svenite magma at 525 Ma, but merely suggests slight resetting at that time. We conclude 410 that deep continental rifting in the Neoproterozoic rather than collisional tectonics was the 411 likely cause of the alkaline-carbonatite magmatism, in accordance with conventional thinking 412 on carbonatite generation (e.g., Bell et al., 1999).

413

414 Paleogeographic implications

415 The Grenville-age basement of Maz and Espinal, along with equivalent outcrops in the

416 nearby Sierra de Umango (Fig. 1) (Varela et al., 2003), a Grenville-age ophiolite in the Sierra

417 de Pie de Palo (Fig. 1) (Vujovich and Kay, 1998; Vujovich et al., 2004), and the northern part 418 of the Arequipa–Antofalla craton in Perú were probably part of a continuous mobile belt of 419 that age along the paleo-margin of the Amazonia craton (Casquet et al., 2008). This mobile 420 belt has been considered as the result of collision between Amazonia and southernmost 421 Laurentia, supposedly during the amalgamation of Rodinia (Wingate et al., 1998; Loewy et 422 al., 2003, 2004; Tohver et al., 2002, 2004; Casquet et al., 2008). 423 Moreover, recent paleomagnetic evidence suggests that an ocean, i.e., the Clymene Ocean, 424 existed at ca. 550 Ma between the Amazonia craton on one side, and the Rio de la Plata, 425 Kalahari and Australia cratons on the other (Trindade et al., 2006). Rapela et al. (2007) have 426 provided geological, geochemical and geochronological evidence that the Western Sierras 427 Pampeanas Grenville-age basement was probably part of a larger continental mass that 428 embraced the Amazonia craton, the Arequipa block of SW Peru, and other minor cratons by 429 the time the Clymene Ocean existed. Furthermore, after consumption of the Clymene Ocean, 430 this large continental mass underwent right-lateral (present coordinates) collision with other 431 Gondwanan cratons to the east; e.g., collision with the Rio de la Plata and Kalahari cratons 432 triggered the short-lived Pampean-Saldanian orogeny of Argentina and South Africa in the 433 Early Cambrian (530–515 Ma; Rapela et al., 1998b; Rapela et al., 2007) (Fig. 2). 434 Opening of the Clymene Ocean could not be older than ca. 570 Ma, the age of the 435 youngest detrital zircons found in the sedimentary Puncoviscana Formation of the Eastern 436 Sierras Pampeanas (Schwartz and Gromet, 2004; Rapela et al., 2007). This largely turbiditic 437 sedimentary sequence of NW Argentina, was deposited along the Kalahari margin of the 438 Clymene ocean and moved to its present position adjacent to the Rio de la Plata craton by 439 right-lateral displacement during the Pampean collision (Schwartz and Gromet, 2004; Rapela 440 et al., 2007). Rifting at ca. 570 Ma leading to opening of the Clymene Ocean is the most 441 probable scenario for the intrusion of the Maz carbonatite – syenite complex.

The western suture of the Pampean block has so far not been recognized probably
because of strong Famatinian metamorphic overprint and Andean faulting throughout the
Sierras Pampeanas, but it should lie somewhere between the Western Sierras Pampeanas and
the easternmost Sierras de Córdoba (Fig.1). The model of DARC formation of Burke et al.
(2003) and Burke and Khan (2006), according to which alkaline rock – carbonatite complexes
formed at continental rifted margins at an early stage of a Wilson cycle and were finally
entrapped near the suture after ocean closure and continent-continent collision, seems to apply
here.
Nevertheless, the Pb-loss event recorded by some syenite zircons at ca. 525 Ma
support the idea that the Western Sierras Pampeanas basement was already joined to
continental Gondwana to the east by Pampean times., i.e., before the supposed Ordovician
arrival of the Precordillera terrane, and was therefore not exotic to it.
Reactivation of the Grenville-age basement during the Famatinian orogeny, involving
regional metamorphism and fluid infiltration under amphibolite facies and ductile
deformation, was responsible for the Pb-loss and overgrowths in zircons and probably also for
the fabric shown by the Maz carbonatite – syenite body. The latter is suggested by the fact
that annealing-recrystallization of calcite in carbonatite requires temperatures above ca. 500°C
(Griggs et al., 1960). Pampean deformation, if any is masked by Famatinian reworking.
Implications for the magma source
Low ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ ratios and the very positive ϵNd_{570} values suggest that the carbonatite
and syenite magmas were derived from a depleted mantle source. However, the two-stage Nd
model ages (T_{DM}^*) between 764 and 986 Ma imply that contamination with a Nd-isotope
component slightly less radiogenic than model depleted mantle at 570 Ma was involved. The

466 age of this source is likely to be Meso/Neoproterozoic and could correspond to a lower mafic

467	continental crust strongly depleted in light REEs during granulite facies metamorphism at ca.
468	1.2 Ga (Casquet et al., 2006). Petrographic, field, geochemical and geochronological evidence
469	suggests that the carbonatite and syenite magmas were coeval. Common genesis of the less
470	evolved syenitic magma and the carbonatites is also suggested by the parallel decrease in REE
471	content with increasing SiO_2 /carbonate ratio from carbonatite, to silico-carbonatite to
472	melano-foid syenite (Fig. 7), observed also in other alkaline-carbonatite complexes (e.g.,
473	Villeneuve and Relf, 1998). Chemical variation in the syenite probably arose by
474	differentiation involving apatite and zircon among other phases, in a deep magma chamber
475	prior to emplacement.
476	
477	Conclusions
478	The deformed sodic syenite-carbonatite complex of the Sierra de Maz is recognized as
479	a typical ARC in the sense of Burke et al. (2003), with very high concentrations of lithophile
480	elements such as REE, Nb. Deformation may well be due to its involvement in the early
481	Paleozoic orogenies of the Sierras Pampeanas, but its probable emplacement age of close to
482	570 Ma is consistent with Neoproterozoic lithospheric-scale rifting connected with the
483	opening of the Clymene ocean during the break-up and dispersal of an earlier supercontinent
484	such as Rodinia. This discovery may also have economic potential.
485	
486	Acknowledgments
487	Financial support for this work was provided by Spanish MEC grants BTE2001-1486 and

- 488 CGL2005-02065/BTE, Universidad Complutense grant PR1/05-13291 and Argentine public
- 489 grants (FONCYT PICT 07-10735; CONICET PIP 5719; CONICET PEI-6275). R.J.P.
- 490 acknowledges a NERC Small Research Grant. We are grateful to Kevin Burke, for

491 suggestions based on an earlier draft of this paper and to D.L. Ashwal and an anonymous

492 referee for their helpful comments to the manuscript.

```
494
```

```
495 References
```

- 496 Ashwal, L.D., Armstrong, R.A., Roberts, R.J., Schmitz, M.D., Corfu, F., Hetherington, C.J.,
- 497 Buerke, K. Gerber, M., 2007. Geochronology of large zircons from nepheline-bearing
- 498 gneisses as constraints on tectonic setting: an example from southern Malawi. Contrib.
- 499 Mineral. Petrol., 153, 389-403.
- 500 Attoh, K., Corfu, F., Nude, P.M., 2007. U-Pb zircon age of deformed carbonatite and alkaline
- 501 rocks in the Pan-African Dahomeyide suture zone, West Africa. Precambrian Res., 155,
- 502 251-260.
- Bailey, D.K., 1977. Lithospheric control of continental rift magmatism. J. Geol. Soc. London,
 133, 103-106.
- 505 Bailey, D.K., 1992. Episodic alkaline activity across Africa: implications for the causes of
- 506 continental break-up. In: Storey, B.C., Alabaster, A. and Pankhurst, R.J. (Eds), Magmatism
- and causes of continental break-up. Geol. Soc. London, Special Publications, 68, 91-98.
- 508 Baldo, E., Casquet, C., Pankhurst, R.J., Galindo, C., Rapela, C.W., Fanning, C.M., Dahlquist,
- 509 J., Murra, J., 2006. Neoproterozoic A-type magmatism in the Western Sierras Pampeanas
- 510 (Argentina): evidence for Rodinia break-up along a proto-Iapetus rift? Terra Nova, 18, 388-511 394.
- 512 Banner, J.L., Hanson, G.N., Myers, W.J., 1988. Rare earth element and Nd isotopic variations
- 513 in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian);
- 514 implications for REE mobility during carbonate diagenesis. J. Sedimentary Res., 58, 415-
- 515 432.

- 516 Bea, F., 1996. Residence of REE, Y, Th and U in granites and crustal protoliths; implications
- 517 for the chemistry of crustal melts. J. Petrology, 37, 521-552.
- 518 Bell, K., 1989. Carbonatites: genesis and evolution. Unwin Hyman, London.
- 519 Bell, K., Kjarsgaard, B.A., Simonetti, A., 1999. Carbonatites; into the twenty-first century. J.
- 520 Petrology, 39, 1839-1845.
- 521 Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorites studies. In:
- 522 Henderson, P. (Ed.), Rare Earth Element Geochemistry. Developments in Geochemistry, 2,
- 523 Elsevier, Amsterdam, 63-114.
- 524 Burke, K., Ashwal, L.D., Webb, S., 2003. New way to map old sutures using deformed
- alkaline rocks and carbonatites. Geology, 31, 391-394.
- 526 Burke, K. and Khan, S., 2006. Geoinformatic approach to global nepheline syenite and
- 527 carbonatite distribution: testing a Wilson cycle model. Geosphere, 2, 53-60.
- 528 Casquet, C., Rapela, C. W., Pankhurst, R.J., Galindo, C., Dahlquist, J., Baldo, E.G.,
- 529 Saavedra, J., Gonzalez Casado, J.M., Fanning, C.M., 2005. Grenvillian massif-type
- anorthosites in the Sierras Pampeanas. J. Geol. Soc. London, 162, 9-12.
- 531 Casquet, C., Pankhurst, R.J., Fanning, C.M., Baldo, E., Galindo, C., Rapela, C.W., González-
- 532 Casado, J.M., Dahlquist, J.A., 2006. U–Pb SHRIMP zircon dating of Grenvillian
- 533 metamorphism in Western Sierras Pampeanas (Argentina): correlation with the Arequipa
- 534 Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Res.,
- 535 9, 524**-**529.
- 536 Casquet, C., Pankhurst, R.J., Rapela, C., Galindo, C., Fanning, C.M., Chiaradia, M., Baldo,
- 537 E., González-Casado, J.M., Dahlquist, J.A., 2008. The Maz terrane: a Mesoproterozoic
- domain in the western Sierras Pampeanas (Argentina) equivalent to the Arequipa-Antofalla
- block of southern Peru? Implications for Western Gondwana margin evolution. Gondwana
- 540 Res., 13, 163-175.

- 541 Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. In:
- 542 Hanchar, J.M., Hoskin, P.W.O (Eds.), Zircon. Rev. Mineral. Geochem., 53, 469-500.
- 543 Culler, R.L., Graf, J.L., 1984. Rare earth elements in igneous rocks of the continental crust:
- 544 predominantly basic and ultrabasic rocks. In: Henderson, P. (Ed.), Rare Earth Element
- 545 Geochemistry. Developments in Geochemistry, 2, Elsevier, Amsterdam, 237-274.
- 546 DePaolo, D.J., Linn, A.M., Schubert, G., 1991. The continental crustal age distribution:
- 547 methods of determining mantle separation ages from Sm-Nd isotopic data and application
- to the Southwestern United States. J. Geophys. Res., B96, 2071-2088.
- 549 Frost, R.B., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A
- 550 geochemical classification for granitic rocks. J. Petrology, 42, 2033-2048.
- 551 Galindo, C., Casquet, C., Rapela, C., Pankhurst, R.J., Baldo, E., Saavedra, J., 2004. Sr, C and
- 552 O isotope geochemistry and stratigraphy of Precambrian and Lower Paleozoic carbonate
- sequences from the Western Sierras Pampeanas of Argentina: tectonic implications.
- 554 Precambrian Res., 131, 55-71.
- Griggs, D.T., Turner, F.J., Heard H.C., 1960. Deformation of rocks at 500 to 800°C. GSA
 Memoir, 79, 39-105.
- 557 Loewy, S.L., Connelly, J.N., Dalziel, I.W.D., Gower, C.F., 2003. Eastern Laurentia in
- Rodinia: constraints from whole-rock Pb and U/Pb geochronology. Tectonophysics, 375,
 169-197.
- 560 Loewy, S.L., Connelly, J.N., Dalziel, I.W.D., 2004. An orphaned basement block: the
- 561 Arequipa–Antofalla Basement of the central Andean margin of South America. GSA
- 562 Bulletin, 116, 171-187.

- 563 Ludwig, K.R., 1999. Isoplot /Ex Version 2.31, a geochronological toolkit for Microsoft Excel.
- Berkeley Geochronological Center Special Publication, 1, 2455 Ridge Road, Berkeley, Ca
 94709. USA.
- 566 Ludwig, K.R., 2001. SQUID 1.02. A user's manual. Berkeley Geochronological Center
- 567 Special Publication, 2, 2455 Ridge Road, Berkeley, Ca 94709, USA.
- 568 Lucassen, F., Becchio, R., 2003. Timing of high-grade metamorphism: Early Palaeozoic U-
- 569 Pb formation ages of titanite indicate long-standing high-T conditions at the western margin
- of Gondwana (Argentina, 26-29°S). J. Metamorphic Geol., 21, 649-662.
- 571 McLennan, S.M., Taylor, S.R., 1979. Rare earth element mobility associated with uranium
- 572 mineralisation. Nature, 282, 247-250.
- 573 Middlemost, E., 1997. Magmas, rocks and planetary development. A survey of
- 574 magma/igneous rock systems. Longman, London and New York, 299 pp.
- 575 Miller, C.F., Mc Dowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of
- 576 zircon saturation temperatures and preservation of inheritance. Geology, 31, 529–532.
- 577 Mulcahy, S.R., Roeske, S.M., McCleland, W.C., Nomade, S., Renne, P.R., 2007. Cambrian
- 578 initiation of the Las Pirquitas thrust on the western Sierras Pampeanas, Argentina:
- 579 Implications for the tectonic evolution of the proto-Andean margin of South America.
- 580 Geology, 35, 443-446.
- 581 Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and
- ordinary chondrites. Geochim. Cosmochim. Acta, 38, 757-775.
- 583 Nelson, D.R., Chivas, A.R., Chappell, B.W., McCulloch, M.T., 1988. Geochemical and
- isotopic systematics in carbonatite and implications for the evolution of ocean-island
- 585 sources. Geochim. Cosmochim. Acta, 52, 1–7.

- 586 Porcher, C.C., Fernandes, L.A.D., Vujovich, G.I., Chernicoff, C.J., 2004. Thermobarometry,
- 587 Sm/Nd ages and geophysical evidence for the location of the suture zone between Cuyania
- and Pampia terranes. In: Vujovich, G.I., Fernandes, L.A.D., Ramos, V.A. (Eds.), Cuyania:
- an exotic block to Gondwana. Gondwana Res., 7, 1057-1076.
- 590 Ramos, V.A., 2004. Cuyania, an exotic block to Gondwana: Review of a historical success
- and the present problems. In: Vujovich, G.I., Fernandes, L.A.D., Ramos, V.A. (Eds.),
- 592 Cuyania: An exotic block to Gondwana. Gondwana Res., 7, 1009-1026.
- 593 Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., Fanning,
- 594 C.M., 1998. The Pampean orogeny of the southern proto-Andes: Cambrian continental
- collision in the Sierras de Córdoba. In: Pankhurst, R.J., Rapela, C.W. (Eds), The Proto-
- Andean Margin of Gondwana. Geol. Soc. London, Special Publications, 142, 181-217.
- 597 Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., 1998. Early
- evolution of the proto-Andean margin of South America. Geology, 26, 707-710.
- 599 Rapela C. W., Casquet, C., Baldo, E., Dahlquist, J., Pankhurst, R.J., Galindo, C., Saavedra, J.,
- 600 2002. Orogénesis del Paleozoico Inferior en el margen proto-andino de Gondwana . Sierras
- 601 Pampeanas Argentina). J. Iberian Geol., 27, 23-41.
- 602 Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Galindo, C., Baldo, E., 2005.
- 603 Datación U–Pb SHRIMP de circones detríticos en para-anfibolitas neoproterozoicas de la
- 604 secuencia Difunta Correa (Sierras Pampeanas Occidentales, Argentina). Geogaceta, 38,
- 605 227-230.
- 606 Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Baldo, E., Gonzalez-Casado, J.M.,
- 607 Galindo, C., Dahlquist, J.A., 2007. The Río de La Plata craton and the assembly of SW
- 608 Gondwana. Earth-Sci. Rev., 83, 49-82.
- 609 Schwartz, J.J., Gromet, L.P., 2004. Provenance of Late Proterozoic Early Cambrian basin,
- 610 Sierras de Córdoba, Argentina. Precambrian Res., 129, 1-21.

- 611 Schultz, F., Lehmann, B., Tawackoli, S., Rossling, R., Belyatsky, B., Dulski, P., 2004.
- 612 Carbonatite diversity in the Central Andes: The Ayopaya alkaline province, Bolivia.
- 613 Contrib. Mineral. Petrol., 148, 391–408.
- 614 Thomas, W.A., 1991. The Appalachian Ouachita rifted margin of southeastern North
- 615 America. GSA Bulletin, 103, 415-431.
- 616 Thomas, W.A., Astini, R.A., 1996. The Argentine Precordillera: a traveler from the Ouachita
- 617 embayment of North America Laurentia. Science, 273, 752-757.
- 618 Thomas, W.A., Astini, R.A., 2003. Ordovician accretion of the Argentine Precordillera
- 619 terrane to Gondwana: a review. J. South Am. Earth Sci., 16, 67-79.
- 620 Thompson, R.N., 1982. British Tertiary volcanic province. Scottish J. Geol., 18, 49-107.
- 621 Tohver, E., van der Pluijm, B.A., Van der Voo, R., Rizzotto, G., Scandolara, J.E., 2002.
- 622 Paleogeography of the Amazon craton at 1.2 Ga: early Grenville collision with the llano
- 623 segment of Laurentia. Earth Planet. Sci. Lett., 199, 185-200.
- Tohver, E., Bettencourt, J.S., Tosdal, R., Mezger, K., Leite, W.B., Payolla, B.L., 2004.
- 625 Terrane transfer during the Grenville orogeny: tracing the Amazonian ancestry of southern
- 626 Appalachian basement through Pb and Nd isotopes. Earth Planet. Sci. Lett., 228, 161-176.
- 627 Trindade, R.I.F., D'Agrella-Filho, M.S., Epof, I., Brito Neves, B.B., 2006. Paleomagnetism of
- Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana.
- 629 Earth Planet. Sci. Lett., 244, 361-377.
- 630 Varela, R., Sato, A., Bassei, M.A.S., Siga Jr, O., 2003. Proterozoico medio y Paleozoico
- 631 inferior de la Sierra de Umango, antepais andino (29° S), Argentina: edades U–Pb y
- 632 caracteristicas isotópicas. Revista Geol. Chile, 30, 265-284.
- 633 Vaughan, A.P.M., Pankhurst, R.J., 2008. Tectonic overview of the West Gondwana margin.
- 634 Gondwana Res., 13, 150–162.

- 635 Vaughan, A.P.M., Scarrow, J.H., 2003. K-rich mantle metasomatism control of localization
- and initiation of lithospheric strike-slip faulting. Terra Nova, 15, 163–169.
- 637 Veevers, J.J., 2003. Pan-African is Pan-Gondwanaland: Oblique convergence drives rotation
- 638 during 650-500Ma assembly. Geology, 31, 501-504.
- 639 Veevers, J.J., 2007. Pan-Gondwanaland post-collisional extension marked by 650-500 Ma
- alkaline rocks and carbonatites and related detrital zircons: A review. Earth-Sci. Rev., 83,
- 641 1-47.
- 642 Villenueve, M.E., Relf, C., 1998. Tectonic setting of 2.6 Ga carbonatites in the Slave
- 643 Province, NW Canada. J. Petrology, 39, 1975-1986.
- 644 Vujovich, G.I., Kay, S.M., 1998. A Laurentian? Grenville-age oceanic arc/back-arc terrane in
- 645 the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina. In: Pankhurst, R.J.,
- Rapela, C.W. (Eds.) The Proto-Andean margin of Gondwana. Geol. Soc. London, Special
 Publication, 142, 159-180.
- 648 Vujovich, G.I., Van Staal, C.R., Davis, W., 2004. Age constraints and the tectonic evolution
- and provenance of the Pie de Palo Complex, Cuyania composite terrane, and the
- Famatinian orogeny in the Sierra de Pie de Palo, San Juán, Argentina. Gondwana Res., 7,
- 651 1041-1056.
- Watson, E.B., 1979. Zircon saturation in felsic liquids: experimental results and applications
- to trace element geochemistry. Contrib. Mineral. Petrol., 70, 407–419.
- 654 Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: Temperature and
- 655 composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett., 64, 295–
- 656 304.

657	Williams, I.S.,	1998.	U-Th-Pb	geochrono	logy by i	on microprobe.	In: McKibben, M.A.,
-----	-----------------	-------	---------	-----------	-----------	----------------	---------------------

- 658 Shanks, W.C. III, Ridley, W.I. (Eds.), Applications of microanalytical techniques to
- understanding mineralizing processes. Rev. Econ. Geol., 7, 1-35.
- 660 Wingate, M.T.D., Campbell, I.H., Compston, W., Gibson, G.M., 1998. Ion microprobe U–Pb
- ages for Neoproterozoic-basaltic magmatism in south-central Australia and implications for
- the breakup of Rodinia. Precambrian Res., 87, 135-159.
- 663
- 664
- 665

666 Figure captions

- Figure 1. (a) Sketch map of the Sierras Pampeanas (light grey) and the Argentine
- 668 Precordillera (PRE) (dark grey). (A) Ancasti, (Ch) Chepes, (Co) Córdoba, (F) Famatina, (PP)
- 669 Pié de Palo, (SL) San Luís, (UME), Umango, Maz and Espinal, (V) Velasco. Mobile belts
- 670 where either Grenville-age (1.0 1.2 Ga), Pampean (540 520 Ma) or Famatinian (490 435 Ma)
- 671 Ma) deformation and metamorphism predominate are distinguished. (b) Geological sketch
- map of the Sierra del Maz and surrounding areas based on Casquet et al., (2006). The box
- 673 indicates the location of the study area.
- 674
- Figure 2. Geological map of NE Sierra de Maz based on fieldwork and interpretation ofsatellite raster images.
- 677
- Figure 3. (a) South-facing view of the carbonatite syenite body at its contact with the host
 Grenville-age gneisses and amphibolites. A screen of gneisses is visible in the centre of the
 - 28

680	image, view width ca. 100 m. (b) Rounded coarse-grained syenite enclave wrapped in a weak
681	foliated carbonatite matrix. (c) Very poorly-sorted and weakly-foliated breccia. Clasts consist
682	of syenite and gneiss. The large gneiss clast is discordant to the carbonatite foliation which is
683	parallel to the knife. (d) Carbonatite breccia. Unorientated, moderately-sorted, rounded
684	syenite clasts in carbonatite matrix. (e) Two-stage breccia. Poorly-sorted syenite breccia
685	(angular clasts), sharply bounded by a well-sorted weakly foliated microbreccia. Matrix is
686	carbonatite in both facies. (f) Coarse-grained syenite with large euhedral zircon crystals.
687	
688	Figure 4. (a) Nomenclature of plutonic rocks and different suite lineages, after Middlemost
689	(1997). (b) FeOt/(FeOt + MgO) vs. SiO ₂ wt. %, showing the Frost et al., (2001) boundary
690	between ferroan and magnesian plutonic rocks, as well as the field of A-type granites. (c) Plot
691	of $Na_2O + K_2O - CaO$ against SiO ₂ wt. % for the syenitic suite of Sierra de Maz. Limits for
692	the rock series and field of A-type granites are from Frost et al., (2001).
693	
694	Figure 5. Plot of Zr vs. $N_{a2}O + K_2O/Al_2O_3$ (mol) for the syenitic suite of Sierra de Maz.
695	
696	Figure 6. Eu/Eu*, P ₂ O ₅ , Sr and Y vs. SiO ₂ wt. % for the syenitic suite of Sierra de Maz.
697	
698	Figure 7. (a) Chondrite-normalized REE abundances of the syenitic suite of the Sierra de Maz
699	complex. (b) Selected REE patterns of apatite, zircon and plagioclase from alkaline rocks and
700	U-rich granites, from Bea (1996). Note that a modelled REE pattern for a rock with 1.9%
701	of normative apatite closely resembles the pattern of the least evolved member of the syenitic
702	suite (sample MAZ-12110). (c) REE, Sr and Zr plot of two silico-carbonatite samples from
703	the Sierra de Maz complex. The open circle represents a single homogeneous crystal of
704	carbonate separated from the carbonatite. The general carbonatite field is taken from13

705	samples reported by Nelson et al., (1988), whereas open squares are carbonatites reported by
706	Villeneuve and Relf (1998). Data are normalized to chondritic values of Nakamura (1974);
707	other normalizing data from Boynton (1984) for Tb, Ho, Tm, and Sr and Thompson (1982)
708	for Zr.
709	
710	Figure 8. Rb-Sr isochron plot of whole-rock samples from the Maz carbonatite and syenite
711	complex
712	
713	Figure 9. (a) back-scattered electron image of zircon in thin-section of syenite sample MAZ-
714	12085, showing complex internal structure of a euhedral grain. NB in the latter image the
715	dark areas are those relatively depleted in U and REE, whereas in the CL images such
716	composition result in high luminescence. (b) cathodo-luminescence (CL) image of part of the
717	analysed zircon megacryst from the Sierra de Maz syenite, showing the complex internal
718	structure and the U-Pb ages determined from SHRIMP analyses. (c) CL image of typical
719	fragmented crystals of zircon separated from syenite sample MAZ-12057, together with the
720	U-Pb ages obtained from SHRIMP analyses.
721	
722	Figure 10. (a) Tera-Wasserburg plot of U-Pb SHRIMP data for the zircon megacryst

density plot (Ludwig 1999) of ²⁰⁷Pb-corrected ²⁰⁶Pb-²³⁸U ages. Shading reflects groupings
identified in the text.

extracted from the syenite (Fig. 9b), error ellipses are 95% confidence limits; (b) Probability

726

723

727	Figure 11. (a) Tera-Wasserburg plot of U-Pb SHRIMP data for separated zircon from MAZ-
728	12057 (Fig. 9c), error ellipses are 95% confidence limits; (b) Probability density plot (Ludwig
729	1999) of ²⁰⁷ Pb-corrected ²⁰⁶ Pb- ²³⁸ U ages. Shading reflects groupings identified in the text.
730	
731	Figure 12. a) The Clymene ocean separated a large continental mass that embraced Amazonía
732	(AM), the Western Sierras Pampeanas (WSP), and the Arequipa-Antofalla craton (AAC)
733	among others, from eastern Gondwana cratons (KC: Kalahari craton; RPC: Rio de la Plata
734	craton). The Maz syenite – carbonatite body was intruded at ca. 570 Ma at the southern tip of
735	this continental mass. Emplacement took place during early continental rifting that eventually
736	led to opening of the Clymene Ocean. The Puncoviscana Formation was deposited on the
737	eastern side of the Clymene Ocean (present coordinates), b) Oblique right-lateral collision
738	produced the Pampean orogeny between 540 and 520 Ma. Paleogeographic model according
739	to Rapela et al. (2007).
740	

1	
2	
3	A deformed alkaline igneous rock – carbonatite complex from the
4	Western Sierras Pampeanas, Argentina: evidence for late
5	Neoproterozoic opening of the Clymene Ocean?
6	
7	
8	C. Casquet ^{a*} , R.J. Pankhurst ^b , C. Galindo ^a , C. Rapela ^c , C.M. Fanning ^d ,
9	E. Baldo ^e , J. Dahlquist ^e , J.M. González Casado ^{f†} F. Colombo ^e
10	
11	^a Dpto. Petrología y Geoquímica, Fac.Ciencias Geológicas, Inst. Geología Económica. (CSIC,
12	Universidad Complutense), 28040 Madrid, Spain
13	^b British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
14	^c Centro de Investigaciones Geológicas, Universidad de La Plata, 1900, La Plata, Argentina.
15	^d Research School of Earth Sciences, The Australian National University, Canberra, ACT 200,
16	Australia.
17	^e CICTERRA (Conicet-Universidad Nacional de Córdoba), Vélez Sarfield 1611, 5016 Córdoba,
18	Argentina.
19	^f Dpto. de Geología y Geoquímica, Universidad Autónoma, 28049 Madrid, Spain.
20	
21	
22	† deceased
23	
 24	• *Corresponding author. Tel $+34.913944908 \cdot fax \cdot +34.91$
24	• Concepting aution. 101. 104 210244200, lax. 704 21
25	• E-mail address: casquet@geo.ucm.es

26 Abstract

27	A deformed ca. 570 Ma syenite–carbonatite body is reported from a Grenville-age (1.0 - 1.2
28	Ga) terrane in the Sierra de Maz, one of the Western Sierras Pampeanas of Argentina. This is
29	the first recognition of such a rock assemblage in the basement of the Central Andes. The two
30	main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-
31	grained foliated biotite-calcite carbonatite. Samples of carbonatite and syenite yield an
32	<u>imprecise</u> whole rock Rb–Sr isochron age of 582 ± 60 Ma (MSWD = 1.8; Sri = 0.7029);
33	SHRIMP U-Pb spot analysis of syenite zircons shows a total range of ²⁰⁶ Pb- ²³⁸ U ages
34	between 433 and 612 Ma, with a prominent peak at 560–580 Ma defined by homogeneous
35	zircon areas. Textural interpretation of the zircon data, combined with the constraint of the
36	Rb_Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of
37	the U-Pb system took place at 525 ± 7 Ma (Pampean orogeny) and at ca. $430 - 440$ Ma
38	(Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was
39	joined to Gondwana during both events. Highly unradiogenic ⁸⁷ Sr/ ⁸⁶ Sr values in calcites
40	(0.70275 - 0.70305) provide a close estimate for the initial Sr isotope composition of the
41	carbonatite magma. Sm–Nd data yield ϵ Nd ₅₇₀ values of +3.3 to +4.8. The complex was
42	probably formed during early opening of the Clymene Ocean from depleted mantle with a
43	component from Meso-/Neoproterozoic lower continental crust.
44	

45 Keywords: DARCs; Syenite; U-Pb SHRIMP zircon dating; Gondwana, Rodinia.

Deleted: -

46 Introduction

47		The association of alkaline igneous rocks (particularly nepheline syenites) with
48		carbonatites is common in continental rift settings (Bailey, 1977, 1992; Bell, 1989; Burke et
49		al., 2003), where they are sometimes referred to by the acronym ARCs (Alkaline Rock -
50		Carbonatite complexes). Deformed, i.e., variably foliated concordant lenses are a special case,
51		in which they apparently match ancient sutures in basement regions (Burke et al., 2003).
52		Since sutures are indicative of orogenic continental collision at the end of a Wilson cycle, one
53		interpretation of these deformed rock associations is that they represent earlier rift-related
54		ARC assemblages that eventually became involved in the collision zone (Burke and Khan,
55		2006). An alternative interpretation, based on geochronological constraints, is that they
56		formed during syn-orogenic extension related to continental orogeny, e.g., along the
57	1	Dahomeyide suture zone of western Africa (Attoh et al., 2007). In a recent synthesis of the
58	I	many 650-500 Ma alkaline rocks and carbonatites related to the amalgamation of Gondwana,
59		Veevers (2003, 2007) favoured the location of these and other alkaline associations at
60		releasing bends along transcurrent faults driven by collisional oblique stresses and during
61	1	post-collisional relaxation. Vaughan and Scarrow (2003) outlined a model for the generation
62		of potassic mafic and ultramafic magmas by transtension of metasomatized mantle.
63	I	We describe here the case of a Neoproterozoic deformed syenite – carbonatite body
64		intruded into a Grenville-age $(1.0 - 1.2 \text{ Ga})$ terrane in the Sierra de Maz, one of the Western
65		Sierras Pampeanas of Argentina. After Rodinia break-up this terrane was involved in an Early
66		Paleozoic collision, the Pampean orogeny, a stage in the amalgamation of SW Gondwana that
67		involved subduction-related granite magmatism and high-grade metamorphism, largely to the
68		east of the Western Sierras Pampeanas (Rapela et al., 2007). It is thus is a good test case for
69		geotectonic models for deformed ARC formation. Moreover, to our knowledge this is the first
70		recognition of such a rock assemblage of Precambrian age in the basement of the Central

Deleted: Moreover, Deleted: i

71	Andes, which could prove to be of economic importance. Carbonatite and a diversity of
72	alkaline silicate rocks and related hydrothermal alteration products of Cretaceous age are
73	however well known from elsewhere in the Central Andes and its eastern foreland (e.g.,
74	Schultz et al., 2004, and references therein). Geochronological constraints and isotope
75	geochemistry suggest that the first mode of deformed ARC formation above, i.e. early during
76	the Pampean Wilson cycle in the late Neoproterozoic, probably applies in the case of the Maz
77	syenite - carbonatite body. Moreover syenite and carbonatite magmas were coeval and were
78	mainly fed from a depleted mantle source, probably with a minor contribution from a poorly
79	radiogenic continental crust of Grenville age.
80	
81	Geological and paleogeographical setting
82	The Sierras Pampeanas of Argentina are elongated blocks of pre-Andean crystalline
83	basement that were exposed to erosion by tilting during Cenozoic Andean tectonics (Fig. 1).
84	Three metamorphic and igneous belts have been distinguished (for a review, see Rapela et al.,
85	1998a, 2002). (1) The older is of 'Grenville' age, ca. 1.0 to 1.2 Ga, and crops out in the
86	Western Sierras Pampeanas. (2) The Pampean belt is of Early Cambrian age, between 530 and
87	515 Ma, and crops out in the Eastern Sierras Pampeanas. (3) The Famatinian belt of
88	Ordovician age, ca. 490 to 430 Ma, is located between the former two and is the best
89	preserved. Famatinian metamorphism, deformation and magmatism overprint with varied
90	extent and intensity the Grenvillian and Pampean belts. The Sierra de Maz is one of the
91	Western Sierras Pampeanas where Grenville-age metamorphic and igneous rocks have been
92	recognized (Porcher et al., 2004; Casquet et al., 2005, 2006, 2008). Other larger outcrops of
93	Grenville-age rocks exist in the Sierra de Pie de Palo (see review by Ramos, 2004) and
94	Umango (Varela et al., 2003) (Fig. 1).

95	Paleogeographic reconstructions and dynamic interpretations of the proto-Andean margin
96	of Gondwana in the Mesoproterozoic to Ordovician time span have been strongly stimulated
97	over the past fifteen years by the hypothesis of allochthoneity of the Precordillera terrane
98	(e.g., Vaughan and Pankhurst, 2008). According to most supporters of the hypothesis, this
99	terrane consists of a Grenville-age basement that crops out in the Western Sierras Pampeanas
100	and a non-metamorphic Early Cambrian to Middle Ordovician passive margin cover
101	sequence, i.e., the Argentine Precordillera (Fig. 1) (for reviews see Thomas and Astini, 2003;
102	Ramos, 2004). In this paradigm, the Precordillera terrane is an exotic terrane rifted away from
103	the Ouachita embayment in the Appalachian margin of eastern Laurentia in the Early
104	Cambrian that collided with the proto-Andean margin of Gondwana in the Ordovician to
105	produce the Famatinian orogeny (Thomas, 1991; Thomas and Astini, 1996). However,
106	whether the Grenvillian outcrops in Western Sierras Pampeanas are part of the exotic terrane
107	or not has also been questioned (Galindo et al., 2004; Rapela et al., 2005; Casquet et al.,
108	2008). In a recent contribution Rapela et al. (2007) suggested that after initial break-up of
109	Rodinia the Western Sierras Pampeanas Grenville-age basement was part of a larger
110	continental mass embracing the Mesoproterozoic central and northern Arequipa-Antofalla
111	craton (Peru), and the Amazonia craton (Brazil). These continental domains coalesced during
112	the Sunsas (Grenville-age) orogeny (Loewy et al., 2004; Tohver et al., 2002, 2004; Casquet et
113	al., 2008). This large continent collided obliquely with the Rio de la Plata and Kalahari
114	cratons to the east (present coordinates) to produce the Pampean orogeny in the early
115	Cambrian, with the disappearance of the intervening Clymene Ocean (Trindade et al., 2006).
116	
117	Field description
118	The Maz deformed syenite-carbonatite complex forms a body ca. 4 km long and of

119 variable thickness (max. 120 m), striking 340–345° along the eastern margin of the Sierra de
120	Maz and dipping 65–70° E. (Figs 2, 3a). Host rocks are: 1) hornblende-biotite-garnet gneisses
121	and biotite-garnet gneisses with some interleaved quartzites and marbles, 2) ortho-
122	amphibolites, metagabbros and local meta-peridotites; 3) massif-type anorthosites of 1070 \pm
123	41 Ma (Casquet et al., 2005) and a variety of coeval granitic orthogneisses. Host rocks to the
124	complex (Fig. 1b) belong to the Maz Central Domain (Casquet et al., 2008), which underwent
125	granulite facies metamorphism at ca. 1.2 Ga and retrogression under amphibolite facies
126	conditions at 431 ± 40 Ma (Casquet et al., 2006, 2008). The intrusion is largely concordant,
127	but locally discordant, to the foliation of the host rocks (Fig. 2).
128	Homogeneous medium- to coarse-grained syenite and fine-grained foliated biotite
129	carbonatite are the two main lithologies forming the body. They do not show a clear internal
130	arrangement, syenite ranging from elongated bodies tens of metres long down to few
131	centimetre-size spheroidal enclaves in the carbonatite. Carbonatite foliation wraps around the
132	syenite bodies that are locally foliated as well (Fig. 3b). Besides syenite, the carbonatite hosts
133	a number of other types of enclaves, notably large (up to several centimetres) isolated crystals
134	of albite and biotite, coarse-grained mafic enclaves, and enclaves of the host gneisses and
135	amphibolites with the internal foliation in places at a high angle to the carbonatite foliation
136	(Fig. 3c). Enclaves are rounded to sub-angular and vary from well- to poorly-sorted in terms
137	of size from place to place, and can be locally very abundant, giving the outcrop a breccia-like
138	aspect (Fig. 3d). Enclaves of an earlier carbonatite (also with enclaves) can be found within a
139	younger carbonatite. Variability in the number and sorting of the enclaves suggests that their
140	incorporation in the carbonatite magma was a multi-stage process (Fig. 3e). The syenites
141	contain visible pinkish zircon megacrysts that can attain few cm size (Fig. 3f), a feature also
142	recognized in carbonatite - syenite bodies elsewhere (Ashwal et al., 2007). Coarse-grained
143	calcite veins and interstitial calcite are locally found in syenites.
144	

145 **Petrography and mineralogy**

146	The carbonatite consists of calcite, 10 to 30 % modal biotite, abundant anomalous biaxial
147	apatite, and minor magnetite, zircon, very scattered U-rich pyrochlore, and columbite.
148	Compositionally the calcite has up to 1.3 wt. % SrO, 2.5 wt. % FeO, and 0.41 wt. % $\Sigma LREE$
149	(Table 1 and microprobe data not included here). Electron microprobe analyses of the biotite
150	show an average Fe# value [Fe/(Mg+Fe)] of 0.74 and $Al^{IV} = 2.643-2.748$ a.f.u.; the apatite
151	has up to 2.76 wt. % F, the pyrochlore 18.60–30.23 wt. % UO_2 and the columbite Nb/Nb+Ta
152	= 0.98. Calcite crystals are fine-grained granoblastic with a slight preferred orientation and
153	narrow straight twins. Lattice-preferred orientation is weak but relics of larger strained
154	crystals of calcite are preserved within the foliated granoblastic groundmass, suggesting that
155	the latter probably arose by recrystallization of former coarser-grained, probably primary,
156	carbonate crystals. Groundmass biotite is found as individual plates but more commonly as
157	fine-grained recrystallized aggregates, often as rims on isolated rounded albite crystals or
158	larger albite syenite spheroids. The visible foliation largely results from preferred orientation
159	of biotite.
160	The syenites are coarse-grained rocks that are locally foliated. They consist of albite
161	$(Ab_{95.0-97.5}An_{2.2-2.6}Or_{0.9-2.5})$ and biotite chemically similar to that in the carbonatite (Fe# =
162	0.83). Subordinate microcline is found at albite grain boundaries, as either replacement or
163	exolution, Undulose extinction and deformation bands in albite, and bending and kinking in
164	biotite, are common in non-foliated varieties. K-rich nepheline (Ks ₂₁₋₂₂), variably converted to
165	a fine-grained micaceous aggregate, was found in several samples. Accessory minerals are
166	zircon, anomalous biaxial apatite and minor pyrochlore. Secondary minerals in the syenites
167	are calcite, muscovite-sericite after K-feldspar and chlorite and epidote after biotite. Syenite
168	spheroids within the carbonatite consist of an inner coarse-grained core and a continuous fine-
169	grained mantle resembling a chilled margin, rimmed by fine-grained biotite. Foliated syenites

Deleted: s

Deleted: s

are medium-grained and show a granoblastic orientation of albite and preferred orientation ofbiotite.

Besides large biotite and albite megacrysts, two types of mafic enclaves have been found in the carbonatite. One type consists of coarse-grained aegirine-augite ($Na_2O = 5.35-5.75$ wt. %) variably converted to katophorite amphibole, albite, Fe-rich calcite and magnetite. The second type consists of coarse-grained magnetite and biotite with accessory primary calcite (included in biotite), apatite and pyrochlore.

177

178 Analytical procedures

179 Full chemical analyses of four syenite and two carbonatite samples were performed at

180 ACTLABS (Canada): major oxides by ICP and trace elements by ICP-MS. Other

181 determinations at ACTLABS were Cl (INAA), CO₂ (COUL), F (FUS-ISE), and S (IR). Fe²⁺

182 was determined volumetrically at the Centro de Investigaciones Geológicas, La Plata. Major

and trace elements of one probably relic calcite megacryst were determined by XRF (Table 1)

184 and mineral compositions by electron microprobe at the Universidad Complutense, Madrid

185 (Supplementary Table obtainable from the Precambrian Research Data Repository).

186 Rb–Sr systematics were analysed in three samples of carbonatite, four of syenite, two vein

187 calcites in syenites, and four enclaves in carbonatite – an aegirine mafic enclave (see below)

and three megacrysts, two of biotite and one of albite. For Sm–Nd systematics five samples

189 were analysed: two syenites and three carbonatites. Samples were crushed and powdered to \sim

190 200 mesh. For the carbonatite samples, Sr and Nd isotope composition was obtained by

191 leaching 200 mg of each sample in10 ml of acetic acid for 12 hours. Whole-rock syenites and

192 silicate minerals were first decomposed in 4 ml HF and 2 ml HNO₃, in Teflon digestion

bombs during 48 hours at 120 °C and finally in 6M HCl. Elemental Rb, Sr, Sm and Nd in

194 carbonates and silicates were determined by isotope dilution using spikes enriched in ⁸⁷Rb,

195	⁸⁴ Sr, ¹⁴⁹ Sm and ¹⁵⁰ Nd. Ion exchange techniques were used to separate the elements for
196	isotopic analysis. Rb, Sr and REE were separated using Bio-Rad AG50 x 12 cation exchange
197	resin. Sm and Nd were further separated from the REE group using Bio-beads coated with
198	10% HDEHP. All isotopic analyses were carried out on a VG Sector 54 multicollector mass
199	spectrometer at the Geocronología y Geoquímica Isotópica Laboratory, Complutense
200	University, Madrid, Spain. Isotope data are shown in Table 2. Errors in the initial ratios are
201	reported at 2σ .
202	U-Th-Pb analyses were performed on two samples using SHRIMP II at the Research
203	School of Earth Sciences, The Australian National University, Canberra. One was a euhedral
204	zircon megacryst up to 1.5 cm in width, extracted from a syenite; the second was a hand-
205	picked concentrate separated after milling another syenite. Zircon fragments were mounted in
206	epoxy together with chips of the Temora reference zircon , ground approximately half-way
207	through and polished. Reflected and transmitted light photomicrographs, and cathodo-
208	luminescence (CL) SEM images, were used to decipher the internal structures of the sectioned
209	grains and to target specific areas within the zircons. Each analysis consisted of 6 scans
210	through the mass range. The data were reduced in a manner similar to that described by
211	Williams (1998, and references therein), using the SQUID Excel Macro of Ludwig (2001).
212	Data for the geochronology samples are given in Table 3.
213	
214	Geochemistry

- 215 *Major and trace elements*
- 216 The syenitic rocks display a relatively wide, alkali-rich compositional range from nepheline
- 217 monzosyenites (52% SiO₂) to normal syenites (58-64% SiO₂) (Table 1, Fig. 4), and are Na-
- 218 rich (K₂O/Na₂O mol \leq 0.33). They plot in the alkali and ferroan fields of the Frost et al.
- 219 (2001) diagram, clearly indicating an alkaline signature for the parental magma (Figs 4b, 4c).

220	The Zr content of the suite is remarkably high (716–1920 ppm), consistent with
221	experimental evidence indicating that Zr is more soluble in peralkaline than in metaluminous
222	melts (Watson, 1979; Watson and Harrison, 1983). A negative correlation between Zr and
223	Agpaitic Index (Fig. 5a) strongly suggests that the alkali content of the melt controlled the
224	crystallization of zircon. Zircon saturation temperatures (T _{Zr}) calculated from bulk-rock
225	compositions using the equations of Watson and Harrison (1983) and Miller et al. (2003),
226	yield initial temperatures of crystallization between 826°C and 1022°C, similar to those
227	recorded for basaltic magmas.
228	The syenitic suite shows a strong decrease in P_2O_5 , REE _{total} , Sr and Y with SiO ₂ (Fig. 6).
229	REE patterns also change significantly with silica content, from $[La/Yb]_N = 26$ in the least
230	evolved rock, to a U-shaped pattern with $[La/Yb]_N = 2.33$ and a well-developed positive Eu
231	anomaly in the most evolved one (Fig. 7a). P_2O_5 contents decrease from 0.74% (1.9%)
232	normative apatite) in the least evolved syenite to 0.02% (0.05% normative apatite) in the most
233	evolved one.
234	The REE pattern of the nepheline monzosyenite (MAZ-12110, Fig. 7a) might reasonably
235	suggest control entirely by the modal content of apatite (Fig. 7b). However, the HREE
236	distribution cannot be explained by fractionation of apatite alone, particularly in the rocks of
237	intermediate composition, as the decreasing slope of the patterns suggests crystallization of a
238	mineral phase with a high partition coefficient for HREE, such as zircon (Fig. 7a and b). As
239	noted above, zircon is a conspicuous accessory mineral in the syenitic suite, with megacrysts
240	up to a few cm in size. Coupled fractionation of apatite and zircon may replicate the observed
241	REE patterns in the syenites of intermediate composition (SiO ₂ = 58–61 %). The depletion of
242	REE in the most evolved syenites (SiO ₂ = 64%) may be explained by the effective
243	fractionation of accessory minerals, leaving plagioclase-rich residual liquids (Fig. 7a and b).

244	The two carbonatite samples (Table 1) are silico-carbonatites that have steep, LREE-
245	enriched patterns with no Eu anomalies, and plot within the field defined for most world-wide
246	carbonatites (Fig. 7c). They also contain large amounts of Ti, Nb, Y, Sr and Ba (Table 1), as
247	usually reported in carbonatite complexes (e.g., Culler and Graf, 1984). Compared with the
248	carbonatite whole-rock REE patterns, the REE analysis by XRF of a relic large homogeneous
249	crystal of calcite (Table 1, sample MAZ-12090), shows a parallel but slightly more enriched
250	pattern (Fig. 7c). The REE pattern of the least evolved member of the syenitic suite (MAZ-
251	12110) (Fig. 7a), has lower total REE content than associated carbonatites, but similar
252	LREE/HREE ratios (Fig. 7c), a characteristic that has been reported in several alkaline-
253	carbonatite complexes (e.g., Culler and Graf, 1984; Villenueve and Relf, 1998).
254	
255	Rb–Sr and Sm–Nd Isotope Systematics
256	The present-day Sr isotope compositions of the carbonatite calcite and vein calcite are
257	similar and very unradiogenic (Table 2). The slightly higher ⁸⁷ Sr/ ⁸⁶ Sr values in the carbonatite
258	calcite (0.70299–0.70305) than in vein calcite (0.70275–0.70277) is probably due to very
259	minor contamination of the carbonatite leachate with Sr derived from biotite. In all cases the
260	very low ⁸⁷ Rb/ ⁸⁶ Sr ratios of the calcites resulting from the very high Sr contents (3108–8493
261	ppm), mean that the Sr isotope composition is almost invariant with age (Table 2) and the
262	present values can thus be taken as a close estimate for the initial Sr isotope composition of
263	the carbonatite magma at the time of formation, i.e., 0.7027 to 0.7030. When carbonatites and
264	syenite data are plotted as 87 Rb/ 86 Sr vs. 87 Sr/ 86 Sr, an isochron age of 582 ± 60 Ma (MSWD =
265	1.8; $Sr_i = 0.7029$) is obtained (Fig. 8). For this plot only syenites MAZ-12057 and MAZ-
266	12085 were used because they do not show evidence <u>of</u> significant alteration of primary
267	minerals (syenites MAZ-12058 and MAZ 12110 show deformation and strong alteration of
268	nepheline and biotite). The albite megacryst and the aegirine mafic enclave both have high Sr

Deleted: for

269	contents (4211 and 3108 ppm, respectively) and low ⁸⁷ Rb/ ⁸⁶ Sr ratios (Table 2). When these
270	data are included in the isochron dataset an indistinguishable age is obtained (565 ± 60 Ma,
271	MSWD = 3.3, $Sr_i = 0.70300$). The two biotite megacrysts have model ages (assuming an
272	initial 87 Sr/ 86 Sr of 0.703, of 490 ± 7 and 480 ± 11 Ma, indicating either late crystallization (or
273	loss of radiogenic Sr) – see below. The very unradiogenic nature of the carbonate Sr isotope
274	composition suggests a significant contribution to the magma from a depleted source.
275	Sm–Nd data (Table 2) yield epsilon values at the reference age of 570 Ma (ϵ Nd ₅₇₀) between
276	+3.3 and +4.8, also suggesting a major contribution to the Nd isotope composition of magma
277	from a depleted mantle source. Nd model ages (T_{DM} *) between 764 and 986 Ma are
278	significantly older than those obtained from the Rb-Sr data and zircon chronology (see
279	below). The Sm-Nd data for the five analysed whole-rock do not fit an isochron (MSWD
280	10.2), suggesting that Sm-Nd systematics were perturbed after magmatic crystallization;
281	chemical and geochronological evidence from zircon is consistent with this interpretation.
282	
283	Zircon internal structure and U–Pb chronology
284	A feature of the syenite is the presence of euhedral mm-size pinkish zircon crystals, which
285	has also been found in nepheline-syenite carbonatite complexes elsewhere (Ashwal et al.,
286	2007). Megacrysts up to a few cm in size are also randomly distributed (Fig. 3f). Internal
287	fractures are common. Back-scattered electron (BSE) images (Fig. 9a) show a complex
288	zoning pattern probably resulting from post-crystallization modification. Light-coloured
289	zones are enriched in Th, U and REE and are poorer in Hf compared to the darker ones.
290	
291	Zircon megacryst,
292	One megacryst (MAZ-12089) was extracted in the field for initial study. Cathodo-
293	luminescence (CL) images (Fig. 9b) show that it has a very complex internal structure. The

294	oldest zircon in textural terms appears as internal areas of relatively uniform growth with low
295	luminescence; there are also areas of higher luminescence and rather irregular alternating
296	structure which are nevertheless relatively homogeneous. However, large irregular areas have
297	variable luminescence with complex internal structure which appears to be secondary. Within
298	the latter we distinguish areas of complex patchy texture, and areas in which highly
299	luminescent microveins penetrate the old homogeneous zones, apparently resulting from
300	replacement or recrystallization along cracks. Such complex textures are usually ascribed to
301	late or post-magmatic processes, including hydrothermal alteration, and metamorphism (see
302	Corfu et al., 2003, figures 6-16, 10-5 and 11-7). Finally, there is one peripheral area with
303	more regular oscillatory zoning that could represent newer growth.
304	SHRIMP U-Pb spot analysis (Table 3a) shows that the structural complexity
305	corresponds to a large extent with variable isotope systematics. The total range of apparent
306	206 Pb- 238 U ages is 433–612 Ma, but most of the areas in relatively homogeneous domains
307	yield ages of 530–590 Ma (e.g., Fig. 9b), with a single anomalous age of 612 Ma, whereas the
308	mosaic areas generally yielded ages of <500 Ma. The outer oscillatory-zoned domain also
309	yielded younger ages of 450–495 Ma (spots 1, 2, 3), clearly reflecting much later re-growth.
310	Overall, there is no obvious correlation between age and either U content or Th/U ratio. Eight
311	results from the most homogeneous areas (spots 5,6, 10, 12, 14, 14 and 16 in Table 3) gave a
312	weighted mean age of 566 ± 8 Ma (MSWD 1.5) and three within the more complex areas
313	(spots 9, 11 and 18) gave 530 ± 19 Ma (MSWD 1.4). These results are illustrated in a Tera-
314	Wasserburg plot and a probability density diagram (Fig. 10a and 10b, respectively).
315	
316	Groundmass Zircon

317 Zircon extracted from whole-rock crushing of syenite MAZ-12057 consists entirely of
 318 irregularly-shaped grains up to 500 μm in length of clear but heavily fractured zircon. The

319	internal structure revealed by CL predominantly corresponds to the more homogenous type
320	seen in the megacryst, albeit still with irregular cross-cutting zones with alternating structure
321	(Fig. 9c). The absence of euhedral grains and the incomplete internal structures indicate that
322	these grains are not individual crystals but fragments of larger grains, broken along internal
323	fractures either in a geological event or during the mineral separation process. The latter is
324	suggested by the occasional occurrence of mosaic patterned grains and is confirmed by
325	examination of <i>in situ</i> zircon crystals in petrographic thin sections of other samples of the
326	syenite (e.g., Fig. 9a) which show more complete zoned domains but extensive fractures.
327	The ²⁰⁶ Pb- ²³⁸ U ages obtained from the fragmented grains of MAZ-12057 (Table 3b) are
328	similar to those from the more homogeneous domains of the megacryst, ranging from 495 to
329	588 Ma (see Fig 11a, b). Even this more limited range is well outside the analytical
330	uncertainty of the individual results and encompasses a distribution that is at least bi-modal,
331	twenty-two of the ages clustering around a broad peak at 571 ± 5 Ma (albeit with MSWD
332	=2.8) and a smaller group of five defining a weighted mean of 525 ± 7 Ma (MSWD = 0.2)
333	and a single age at 495 Ma. As with the megacryst analyses there is no obvious relationship
334	between age and parameters such as U content or Th/U ratio.
335	
336	Discussion
337	The Maz outcrop is an example of a <i>deformed alkaline rock – carbonatite</i> complex.
338	This is the first such complex to be described from the crystalline basement of the Andes.
339	Beyond its potential economic importance (Nb, REE), this type of complex can be of value in
340	constraining geodynamic and paleogeographic models of continental dispersal and
341	amalgamation if the age of intrusion is defined.
342	
343	Chronological interpretation and geodynamic implications

344	The Maz carbonatite – syenite was intruded into a Grenville-age basement that forms
345	the central and eastern side of the sierra. The local obliquity of the body to the regional
346	foliation and the fact that rotated blocks of the host gneisses are locally found in the
347	carbonatite, together with the zircon U-Pb geochronological data presented here, show that its
348	emplacement age is post-Grenvillian. In the absence of any textural indication of inheritance,
349	it is most probable that the older zircon ages, yielding means of 566 ± 7 Ma in the case of the
350	megacryst and 571 ± 5 Ma in that of the groundmass zircon, represent igneous crystallization
351	during the Late Neoproterozoic. It is difficult to know whether the spread of the latter group
352	indicated by the MSWD of 2.8 might signify more than one event; the most definitive
353	statement that can be made concerning the age of this carbonatite complex is that it was
354	emplaced within the interval 565–580 Ma, most pro <u>b</u> ably at ca. 570 Ma, i.e., Ediacaran.
355	The Rb–Sr whole rock systematics reinforce this interpretation; the two <u>calculated</u> isochron
356	ages (582 \pm 60 Ma and 565 \pm 60 Ma) are within error of the U–Pb zircon ages. <u>The large</u>
357	uncertainties in these ages are due to the limited range of Rb/Sr ratios, and this might lead to
358	some doubts over the confidence of this result. However, we note that the whole-rock Rb-Sr
359	system in these rocks appears to have been resistant to disturbance, during the amphibolite-
360	facies Famatinian metamorphism and deformation at ca. 430–440 <u>Ma, which</u> affected the
361	whole region (Lucassen and Becchio, 2003; Casquet et al., 2005, 2008). A significantly older
362	maximum possible age for the carbonatite - syenite complex might be suggested by the Sm-
363	Nd T_{DM}^* model ages of 764–986 Ma, but in view of the fact that the whole-rock syenites do
364	not yield a reasonable Sm-Nd isochron, these seem as likely to reflect metamorphic
365	disturbance of the Sm-Nd systems in a carbonate-rich environment, where REE are known to
366	be relatively mobile (McLennan and Taylor, 1979; Banner et al., 1988). Alternatively, pre-
367	crystallization Sm-Nd systematics may reflect some crustal contribution to the magma.

Ι	Deleted: T
Ϊ	Deleted: was
1	Deleted: is supported by the fact that it was not reset
-1	Deleted: Ma
-	Deleted: that

368 Consequently we conclude that the Maz carbonatite – syenite complex is the first evidence of
a Late Neoproterozoic rifting event in the Western Sierras Pampeanas.

370 In the case of the zircon megacryst it would be possible to interpret the few ages at \sim 520 371 Ma as due to partial Pb-loss. On the other hand, the well-defined age grouping at 525 ± 7 Ma 372 given by zoned zircon in the whole-rock syenite, where Famatinian reworking is clearly 373 minor (only one age of <500 Ma), seems to indicate a specific event related to rejuvenation at 374 the time of the Pampean orogeny (Rapela et al., 1998b). The zoned zircon areas that yield this 375 age are not texturally distinguishable from the older zircon (there is certainly no evidence for 376 any core-rim relationship indicating re-growth), implying that these Pampean ages represent 377 cryptic Pb-loss in a discrete event. 378 This interpretation of the ~525 Ma U-Pb zircon ages may be taken as further evidence of 379 the effects of the Early Cambrian Pampean orogeny in the Western Sierras Pampeanas. Until 380 now most reliable metamorphic ages in the Maz and Espinal area were either Grenville-age 381 (ca. 1.2 Ga) or Famatinian (430–440 Ma, e.g., Lucassen and Becchio, 2003; Porcher et al., 382 2004; Casquet et al., 2005, 2006, 2008; and our unpublished data). Involvement of the 383 Western Sierras Pampeanas Grenville-age basement in the Pampean orogeny has, however, 384 been recently emphasized by Rapela et al. (2007). Recent determinations of a single U-Pb 385 titanite age of ca. 530 Ma from the southern tip of the Sierra de Maz (Lucassen and Becchio, 386 2003) and of a metamorphic hornblende Ar-Ar age of ca. 515 Ma in the Grenvillian basement 387 of the Sierra de Pie de Palo, south of Sierra de Maz (Mulcahy et al., 2007), strengthens this 388 geodynamic interpretation. 389 According to the majority of the textural evidence, the younger ages of 433–495 Ma, 390 particularly in the megacryst, are almost certainly related to minor zircon growth and variable 391 Pb-loss, in part caused by invasive fluids penetrating along fractures, and would correspond to 392 reactivation during Famatinian metamorphism. The highly fractured nature of the zircon

393	megacryst would probably also have facilitated fluid exchange processes. Evidence for
394	deformation and metamorphic rejuvenation under amphibolite facies conditions in the Maz
395	and Espinal area at ca. 430 - 440 Ma has been shown by Lucassen and Becchio (2003),
396	Porcher et al. (2004) and Casquet et al. (2005, 2008).
397	
398	Tectonic implications
399	The rock association of alkali-syenite (+ nepheline) and carbonatite, with no evidence for
400	associated alkali basalts shows that this is not a high-thermal anomaly mantle plume scenario,
401	but was most probably related to an extensional environment. Vaughan and Scarrow (2003)
402	suggested transtensional tectonics in a metasomatized mantle, but this produces K-rich
403	magmas rather than Na-rich magmas responsible for the Sierra complex. Veevers (2003,
404	2007) suggested a similar mode of tectonic control for alkaline rocks and carbonatite (ARCs)
405	emplaced during Gondwana amalgamation. However, although strike-slip was important
406	during the Early Paleozoic assembly of this part of Gondwana (e.g., Rapela et al., 2007), the
407	geochronological data presented here suggests that this complex was formed some 50 Ma
408	before the mid-Cambrian Pampean orogeny, i.e., it was pre-orogenic. In particular, the
409	weight of the U-Pb SHRIMP data does not support the idea of melting and crystallization of
410	the syenite magma at 525 Ma, but merely suggests slight resetting at that time. We conclude
411	that deep continental rifting in the Neoproterozoic rather than collisional tectonics was the
412	likely cause of the alkaline-carbonatite magmatism, in accordance with conventional thinking
413	on carbonatite generation.
414	
415	Paleogeographic implications
416	The Grenville-age basement of Maz and Espinal, along with equivalent outcrops in the

- The Grentine age basement of that and Espinal, along while equivalent outerops in the
- 417 nearby Sierra de Umango (Fig. 1) (Varela et al., 2003), a Grenville-age ophiolite in the Sierra

418	de Pie de Palo (Fig. 1) (Vujovich and Kay, 1998; Vujovich et al., 2004), and the northern part
419	of the Arequipa-Antofalla craton in Perú were probably part of a continuous mobile belt of
420	that age along the paleo-margin of the Amazonia craton (Casquet et al., 2008). This mobile
421	belt has been considered as the result of collision between Amazonia and southernmost
422	Laurentia, supposedly during the amalgamation of Rodinia (Wingate et al., 1998; Loewy et
423	al., 2003, 2004; Tohver et al., 2002, 2004; Casquet et al., 2008).
424	Moreover, recent paleomagnetic evidence suggests that an ocean, i.e., the Clymene Ocean,
425	existed at ca. 550 Ma between the Amazonia craton on one side, and the Rio de la Plata,
426	Kalahari and Australia cratons on the other (Trindade et al., 2006). Rapela et al. (2007) have
427	provided geological, geochemical and geochronological evidence that the Western Sierras
428	Pampeanas Grenville-age basement was probably part of a larger continental mass that
429	embraced the Amazonia craton, the Arequipa block of SW <u>Peru</u> , and other minor cratons by
430	the time the Clymene Ocean existed. Furthermore, after consumption of the Clymene Ocean,
431	this large continental mass underwent right-lateral (present coordinates) collision with other
432	Gondwanan cratons to the east; e.g., collision with the Rio de la Plata and Kalahari cratons
433	triggered the short-lived Pampean-Saldanian orogeny of Argentina and South Africa in the
434	Early Cambrian (530-515 Ma; Rapela et al., 1998b; Rapela et al., 2007) (Fig. 2).
435	Opening of the Clymene Ocean could not be older than ca. 570 Ma, the age of the
436	youngest detrital zircons found in the sedimentary Puncoviscana Formation of the Eastern
437	Sierras Pampeanas (Schwartz and Gromet, 2004; Rapela et al., 2007). This largely turbiditic
438	sedimentary sequence of NW Argentina, was deposited along the Kalahari margin of the
439	Clymene ocean and moved to its present position adjacent to the Rio de la Plata craton by
440	right-lateral displacement during the Pampean collision (Schwartz and Gromet, 2004; Rapela
441	et al., 2007). Rifting at ca. 570 Ma leading to opening of the Clymene Ocean is the most
442	probable scenario for the intrusion of the Maz carbonatite – syenite complex.

Deleted: Perú

443	The western suture of the Pampean block has so far not been recognized probably
444	because of strong Famatinian metamorphic overprint and Andean faulting throughout the
445	Sierras Pampeanas, but it should lie somewhere between the Western Sierras Pampeanas and
446	the easternmost Sierras de Córdoba (Fig.1). The model of DARC formation of Burke et al.
447	(2003) and Burke and Khan (2006), according to which alkaline rock – carbonatite complexes
448	formed at continental rifted margins at an early stage of a Wilson cycle and were finally
449	entrapped near the suture after ocean closure and continent-continent collision, seems to apply
450	here.
451	Nevertheless, the Pb-loss event recorded by some syenite zircons at ca. 525 Ma
452	support the idea that the Western Sierras Pampeanas basement was already joined to
453	continental Gondwana to the east by Pampean times., i.e., before the supposed Ordovician
454	arrival of the Precordillera terrane, and was therefore not exotic to it.
455	Reactivation of the Grenville-age basement during the Famatinian orogeny, involving
456	regional metamorphism and fluid infiltration under amphibolite facies and ductile
457	deformation, was responsible for the Pb-loss in zircons and probably also for the fabric shown
458	by the Maz carbonatite – syenite body. The latter is suggested by the fact that annealing-
459	recrystallization of calcite in carbonatite requires temperatures above ca. 500°C (Griggs et al.,
460	1960).
461	
462	Implications for the magma source
463	Low ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ ratios and the very positive ϵNd_{570} values suggest that the carbonatite
464	and syenite magmas were derived from a depleted mantle source. However, the two-stage Nd
465	model ages (T_{DM} *) between 764 and 986 Ma imply that contamination with a Nd-isotope
466	component slightly less radiogenic than model depleted mantle at 570 Ma was involved. The

467 age of this source is likely to be Meso/Neoproterozoic and could correspond to a lower mafic

468	continental crust strongly depleted in light REEs during granulite facies metamorphism at ca.
469	1.2 Ga (Casquet et al., 2006). Petrographic, field, geochemical and geochronological evidence
470	suggests that the carbonatite and syenite magmas were coeval. Common genesis of the less
471	evolved syenitic magma and the carbonatites is also suggested by the parallel decrease in REE
472	content with increasing SiO ₂ /carbonate ratio from carbonatite, to silico-carbonatite to
473	melano-foid syenite (Fig. 7), observed also in other alkaline-carbonatite complexes (e.g.,
474	Villeneuve and Relf, 1998). Chemical variation in the syenite probably arose by
475	differentiation involving apatite and zircon among other phases, in a deep magma chamber
476	prior to emplacement.
477	Formatted Fort Bold
478	<u>Conclusions</u>
479	The deformed sodic syenite-carbonatite complex of the Sierra de Maz is recognized as
480	a typical ARC in the sense of Burke et al. (2003), with very high concentrations of lithophile
481	elements such as REE, Nb. Deformation may well be due to its involvement in the mid-
482	Cambrian Pampean orogeny of the Sierras Pampeanas, but its probable emplacement age of
483	close to 570 Ma is consistent with Neoproterozoic lithospheric-scale rifting connected with
484	the openinbg of the Clymene ocean during the break-up and dispersal of an earlier
485	supercontinent such as Rodinia. This discovery may also have economic potential.
486	
487	Acknowledgments
488	Financial support for this work was provided by Spanish MEC grants BTE2001-1486 and
489	CGL2005-02065/BTE, Universidad Complutense grant PR1/05-13291 and Argentine public
490	grants (FONCYT PICT 07-10735; CONICET PIP 5719; CONICET PEI-6275). R.J.P.
491	acknowledges a NERC Small Research Grant. We are grateful to Kevin Burke, for

- 492 suggestions based on an earlier draft of this paper and to D.L. Ashwal and an anonymous
- 493 referee for their helpful comments to the manuscript.
- 494
- 495

496	References

- 497 Ashwal, L.D., Armstrong, R.A., Roberts, R.J., Schmitz, M.D., Corfu, F., Hetherington, C.J.,
- 498 Buerke, K. Gerber, M., 2007. Geochronology of large zircons from nepheline-bearing
- 499 gneisses as constraints on tectonic setting: an example from southern Malawi. Contrib.
- 500 Mineral. Petrol., 153, 389-403.
- 501 Attoh, K., Corfu, F., Nude, P.M., 2007. U-Pb zircon age of deformed carbonatite and alkaline
- 502 rocks in the Pan-African Dahomeyide suture zone, West Africa. Precambrian Res., 155,
- 503 251-260.
- Bailey, D.K., 1977. Lithospheric control of continental rift magmatism. J. Geol. Soc. London,
 133, 103-106.
- 506 Bailey, D.K., 1992. Episodic alkaline activity across Africa: implications for the causes of
- 507 continental break-up. In: Storey, B.C., Alabaster, A. and Pankhurst, R.J. (Eds), Magmatism
- and causes of continental break-up. Geol. Soc. London, Special Publications, 68, 91-98.
- 509 Baldo, E., Casquet, C., Pankhurst, R.J., Galindo, C., Rapela, C.W., Fanning, C.M., Dahlquist,
- 510 J., Murra, J., 2006. Neoproterozoic A-type magmatism in the Western Sierras Pampeanas
- 511 (Argentina): evidence for Rodinia break-up along a proto-Iapetus rift? Terra Nova, 18, 388512 394.
- 513 Banner, J.L., Hanson, G.N., Myers, W.J., 1988. Rare earth element and Nd isotopic variations
- 514 in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian);
- 515 implications for REE mobility during carbonate diagenesis. J. Sedimentary Res., 58, 415-
- 516 432.

- 517 Bea, F., 1996. Residence of REE, Y, Th and U in granites and crustal protoliths; implications
- 518 for the chemistry of crustal melts. J. Petrology, 37, 521-552.
- 519 Bell, K., 1989. Carbonatites: genesis and evolution. Unwin Hyman, London.
- 520 Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorites studies. In:
- 521 Henderson, P. (Ed.), Rare Earth Element Geochemistry. Developments in Geochemistry, 2,
- 522 Elsevier, Amsterdam, 63-114.
- 523 Burke, K., Ashwal, L.D., Webb, S., 2003. New way to map old sutures using deformed
- alkaline rocks and carbonatites. Geology, 31, 391-394.
- 525 Burke, K. and Khan, S., 2006. Geoinformatic approach to global nepheline syenite and
- 526 carbonatite distribution: testing a Wilson cycle model. Geosphere, 2, 53-60.
- 527 Casquet, C., Rapela, C. W., Pankhurst, R.J., Galindo, C., Dahlquist, J., Baldo, E.G.,
- 528 Saavedra, J., Gonzalez Casado, J.M., Fanning, C.M., 2005. Grenvillian massif-type
- anorthosites in the Sierras Pampeanas. J. Geol. Soc. London, 162, 9-12.
- 530 Casquet, C., Pankhurst, R.J., Fanning, C.M., Baldo, E., Galindo, C., Rapela, C.W., González-
- 531 Casado, J.M., Dahlquist, J.A., 2006. U–Pb SHRIMP zircon dating of Grenvillian
- 532 metamorphism in Western Sierras Pampeanas (Argentina): correlation with the Arequipa
- 533 Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Res.,
- *9*, 524-529.
- 535 Casquet, C., Pankhurst, R.J., Rapela, C., Galindo, C., Fanning, C.M., Chiaradia, M., Baldo,
- 536 E., González-Casado, J.M., Dahlquist, J.A., 2008. The Maz terrane: a Mesoproterozoic
- 537 domain in the western Sierras Pampeanas (Argentina) equivalent to the Arequipa-Antofalla
- 538 block of southern Peru? Implications for Western Gondwana margin evolution. Gondwana
- 539 Res., 13, 163-175.
- 540 Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. In:
- 541 Hanchar, J.M., Hoskin, P.W.O (Eds.), Zircon. Rev. Mineral. Geochem., 53, 469-500.

- 542 Culler, R.L., Graf, J.L., 1984. Rare earth elements in igneous rocks of the continental crust:
- 543 predominantly basic and ultrabasic rocks. In: Henderson, P. (Ed.), Rare Earth Element
- 544 Geochemistry. Developments in Geochemistry, 2, Elsevier, Amsterdam, 237-274.
- 545 DePaolo, D.J., Linn, A.M., Schubert, G., 1991. The continental crustal age distribution:
- 546 methods of determining mantle separation ages from Sm-Nd isotopic data and application
- to the Southwestern United States. J. Geophys. Res., B96, 2071-2088.
- 548 Frost, R.B., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A
- 549 geochemical classification for granitic rocks. J. Petrology, 42, 2033-2048.
- 550 Galindo, C., Casquet, C., Rapela, C., Pankhurst, R.J., Baldo, E., Saavedra, J., 2004. Sr, C and
- 551 O isotope geochemistry and stratigraphy of Precambrian and Lower Paleozoic carbonate
- sequences from the Western Sierras Pampeanas of Argentina: tectonic implications.
- 553 Precambrian Res., 131, 55-71.
- Griggs, D.T., Turner, F.J., Heard H.C., 1960. Deformation of rocks at 500 to 800°C. GSA
 Memoir, 79, 39-105.
- 556 Loewy, S.L., Connelly, J.N., Dalziel, I.W.D., Gower, C.F., 2003. Eastern Laurentia in
- Rodinia: constraints from whole-rock Pb and U/Pb geochronology. Tectonophysics, 375,169-197.
- 559 Loewy, S.L., Connelly, J.N., Dalziel, I.W.D., 2004. An orphaned basement block: the
- Arequipa–Antofalla Basement of the central Andean margin of South America. GSA
 Bulletin, 116, 171-187.
- 562 Ludwig, K.R., 1999. Isoplot /Ex Version 2.31, a geochronological toolkit for Microsoft Excel.
- 563 Berkeley Geochronological Center Special Publication, 1, 2455 Ridge Road, Berkeley, Ca
- 564 94709. USA.

- 565 Ludwig, K.R., 2001. SQUID 1.02. A user's manual. Berkeley Geochronological Center
- 566 Special Publication, 2, 2455 Ridge Road, Berkeley, Ca 94709, USA.
- 567 Lucassen, F., Becchio, R., 2003. Timing of high-grade metamorphism: Early Palaeozoic U-
- 568 Pb formation ages of titanite indicate long-standing high-T conditions at the western margin
- of Gondwana (Argentina, 26-29°S). J. Metamorphic Geol., 21, 649-662.
- 570 McLennan, S.M., Taylor, S.R., 1979. Rare earth element mobility associated with uranium
- 571 mineralisation. Nature, 282, 247-250.
- 572 Middlemost, E., 1997. Magmas, rocks and planetary development. A survey of
- 573 magma/igneous rock systems. Longman, London and New York, 299 pp.
- 574 Miller, C.F., Mc Dowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of
- zircon saturation temperatures and preservation of inheritance. Geology, 31, 529–532.
- 576 Mulcahy, S.R., Roeske, S.M., McCleland, W.C., Nomade, S., Renne, P.R., 2007. Cambrian
- 577 initiation of the Las Pirquitas thrust on the western Sierras Pampeanas, Argentina:
- 578 Implications for the tectonic evolution of the proto-Andean margin of South America.
- 579 Geology, 35, 443-446.
- 580 Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and
- 581 ordinary chondrites. Geochim. Cosmochim. Acta, 38, 757-775.
- 582 Nelson, D.R., Chivas, A.R., Chappell, B.W., McCulloch, M.T., 1988. Geochemical and
- isotopic systematics in carbonatite and implications for the evolution of ocean-island
- 584 sources. Geochim. Cosmochim. Acta, 52, 1–7.
- 585 Porcher, C.C., Fernandes, L.A.D., Vujovich, G.I., Chernicoff, C.J., 2004. Thermobarometry,
- 586 Sm/Nd ages and geophysical evidence for the location of the suture zone between Cuyania
- 587 and Pampia terranes. In: Vujovich, G.I., Fernandes, L.A.D., Ramos, V.A. (Eds.), Cuyania:
- an exotic block to Gondwana. Gondwana Res., 7, 1057-1076.

- 589 Ramos, V.A., 2004. Cuyania, an exotic block to Gondwana: Review of a historical success
- and the present problems. In: Vujovich, G.I., Fernandes, L.A.D., Ramos, V.A. (Eds.),
- 591 Cuyania: An exotic block to Gondwana. Gondwana Res., 7, 1009-1026.
- 592 Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., Fanning,
- 593 C.M., 1998. The Pampean orogeny of the southern proto-Andes: Cambrian continental
- 594 collision in the Sierras de Córdoba. In: Pankhurst, R.J., Rapela, C.W. (Eds), The Proto-
- 595 Andean Margin of Gondwana. Geol. Soc. London, Special Publications, 142, 181-217.
- 596 Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., 1998. Early
- evolution of the proto-Andean margin of South America. Geology, 26, 707-710.
- 598 Rapela C. W., Casquet, C., Baldo, E., Dahlquist, J., Pankhurst, R.J., Galindo, C., Saavedra, J.,
- 599 2002. Orogénesis del Paleozoico Inferior en el margen proto-andino de Gondwana . Sierras
 600 Pampeanas Argentina). J. Iberian Geol., 27, 23-41.
- Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Galindo, C., Baldo, E., 2005.
- 602 Datación U–Pb SHRIMP de circones detríticos en para-anfibolitas neoproterozoicas de la
- secuencia Difunta Correa (Sierras Pampeanas Occidentales, Argentina). Geogaceta, 38,
- 604 227-230.
- 605 Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Baldo, E., Gonzalez-Casado, J.M.,
- Galindo, C., Dahlquist, J.A., 2007. The Río de La Plata craton and the assembly of SW
- 607 Gondwana. Earth-Sci. Rev., 83, 49-82.
- 608 Schwartz, J.J., Gromet, L.P., 2004. Provenance of Late Proterozoic Early Cambrian basin,
- 609 Sierras de Córdoba, Argentina. Precambrian Res., 129, 1-21.
- 610 Schultz, F., Lehmann, B., Tawackoli, S., Rossling, R., Belyatsky, B., Dulski, P., 2004.
- 611 Carbonatite diversity in the Central Andes: The Ayopaya alkaline province, Bolivia.
- 612 Contrib. Mineral. Petrol., 148, 391–408.

- 613 Thomas, W.A., 1991. The Appalachian Ouachita rifted margin of southeastern North
- 614 America. GSA Bulletin, 103, 415-431.
- 615 Thomas, W.A., Astini, R.A., 1996. The Argentine Precordillera: a traveler from the Ouachita
- embayment of North America Laurentia. Science, 273, 752-757.
- 617 Thomas, W.A., Astini, R.A., 2003. Ordovician accretion of the Argentine Precordillera
- 618 terrane to Gondwana: a review. J. South Am. Earth Sci., 16, 67-79.
- 619 Thompson, R.N., 1982. British Tertiary volcanic province. Scottish J. Geol., 18, 49-107.
- 620 Tohver, E., van der Pluijm, B.A., Van der Voo, R., Rizzotto, G., Scandolara, J.E., 2002.
- 621 Paleogeography of the Amazon craton at 1.2 Ga: early Grenville collision with the llano
- 622 segment of Laurentia. Earth Planet. Sci. Lett., 199, 185-200.
- Tohver, E., Bettencourt, J.S., Tosdal, R., Mezger, K., Leite, W.B., Payolla, B.L., 2004.
- Terrane transfer during the Grenville orogeny: tracing the Amazonian ancestry of southern
- Appalachian basement through Pb and Nd isotopes. Earth Planet. Sci. Lett., 228, 161-176.
- 626 Trindade, R.I.F., D'Agrella-Filho, M.S., Epof, I., Brito Neves, B.B., 2006. Paleomagnetism of
- Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana.
- 628 Earth Planet. Sci. Lett., 244, 361-377.
- 629 Varela, R., Sato, A., Bassei, M.A.S., Siga Jr, O., 2003. Proterozoico medio y Paleozoico
- 630 inferior de la Sierra de Umango, antepais andino (29° S), Argentina: edades U–Pb y
- 631 caracteristicas isotópicas. Revista Geol. Chile, 30, 265-284.
- 632 Vaughan, A.P.M., Pankhurst, R.J., 2008. Tectonic overview of the West Gondwana margin.
- 633 Gondwana Res., 13, 150–162.
- 634 <u>Vaughan, A.P.M., Scarrow, J.H., 2003. K-rich mantle metasomatism control of localization</u>
 635 and initiation of lithospheric strike-slip faulting. Terra Nova, 15, 163–169.

- Veevers, J.J., 2003. Pan-African is Pan-Gondwanaland: Oblique convergence drives rotation
 during 650-500Ma assembly. Geology, 31, 501-504.
- 638 Veevers, J.J., 2007. Pan-Gondwanaland post-collisional extension marked by 650-500 Ma
- alkaline rocks and carbonatites and related detrital zircons: A review. Earth-Sci. Rev., 83,

640 1-47.

- 641 Villenueve, M.E., Relf, C., 1998. Tectonic setting of 2.6 Ga carbonatites in the Slave
- 642 Province, NW Canada. J. Petrology, 39, 1975-1986.
- 643 Vujovich, G.I., Kay, S.M., 1998. A Laurentian? Grenville-age oceanic arc/back-arc terrane in
- the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina. In: Pankhurst, R.J.,
- Rapela, C.W. (Eds.) The Proto-Andean margin of Gondwana. Geol. Soc. London, Special
 Publication, 142, 159-180.
- 647 Vujovich, G.I., Van Staal, C.R., Davis, W., 2004. Age constraints and the tectonic evolution
- and provenance of the Pie de Palo Complex, Cuyania composite terrane, and the
- Famatinian orogeny in the Sierra de Pie de Palo, San Juán, Argentina. Gondwana Res., 7,

650 1041-1056.

- 651 Watson, E.B., 1979. Zircon saturation in felsic liquids: experimental results and applications
- to trace element geochemistry. Contrib. Mineral. Petrol., 70, 407–419.
- 653 Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: Temperature and
- 654 composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett., 64, 295–
- 655 304.
- 656 Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A.,
- 657 Shanks, W.C. III, Ridley, W.I. (Eds.), Applications of microanalytical techniques to
- understanding mineralizing processes. Rev. Econ. Geol., 7, 1-35.

659	Wingate, M.T.D., Campbell, I.H., Compston, W., Gibson, G.M., 1998. Ion microprobe U-Pb
660	ages for Neoproterozoic-basaltic magmatism in south-central Australia and implications for
661	the breakup of Rodinia. Precambrian Res., 87, 135-159.
662	
663	
664	
665	Figure captions
666	Figure 1. (a) Sketch map of the Sierras Pampeanas (light grey) and the Argentine
667	Precordillera (PRE) (dark grey). (A) Ancasti, (Ch) Chepes, (Co) Córdoba, (F) Famatina, (PP)
668	Pié de Palo, (SL) San Luís, (UME), Umango, Maz and Espinal, (V) Velasco. Mobile belts
669	where either Grenville-age $(1.0 - 1.2 \text{ Ga})$, Pampean $(540 - 520 \text{ Ma})$ or Famatinian $(490 - 435 \text{ Ma})$
670	Ma) deformation and metamorphism predominate are distinguished. (b) Geological sketch
671	map of the Sierra del Maz and surrounding areas based on Casquet et al., (2006). The box
672	indicates the location of the study area.
673	
674	Figure 2. Geological map of NE Sierra de Maz based on fieldwork and interpretation of
675	satellite raster images.
676	
677	Figure 3. (a) South-facing view of the carbonatite – syenite body at its contact with the host
678	Grenville-age gneisses and amphibolites. A screen of gneisses is visible in the centre of the
679	image, view width ca. 100 m. (b) Rounded coarse-grained syenite enclave wrapped in a weak
680	foliated carbonatite matrix. (c) Very poorly-sorted and weakly-foliated breccia. Clasts consist
681	of syenite and gneiss. The large gneiss clast is discordant to the carbonatite foliation which is

682	parallel to the knife. (d) Carbonatite breccia. Unorientated, moderately-sorted, rounded
683	syenite clasts in carbonatite matrix. (e) Two-stage breccia. Poorly-sorted syenite breccia
684	(angular clasts), sharply bounded by a well-sorted weakly foliated microbreccia. Matrix is
685	carbonatite in both facies. (f) Coarse-grained syenite with large euhedral zircon crystals.
686	
687	Figure 4. (a) Nomenclature of plutonic rocks and different suite lineages, after Middlemost
688	(1997). (b) FeOt/(FeOt + MgO) vs. SiO ₂ wt. %, showing the Frost et al., (2001) boundary
689	between ferroan and magnesian plutonic rocks, as well as the field of A-type granites. (c) Plot
690	of Na ₂ O + K ₂ O – CaO against SiO ₂ wt. % for the syenitic suite of Sierra de Maz. Limits for
691	the rock series and field of A-type granites are from Frost et al., (2001).
692	
693	Figure 5. Plot of Zr vs. $N_{a2}O + K_2O/Al_2O_3$ (mol) for the syenitic suite of Sierra de Maz.
694	
695	Figure 6. Eu/Eu*, P ₂ O ₅ , Sr and Y vs. SiO ₂ wt. % for the syenitic suite of Sierra de Maz.
696	
697	Figure 7. (a) Chondrite-normalized REE abundances of the syenitic suite of the Sierra de Maz
698	complex. (b) Selected REE patterns of apatite, zircon and plagioclase from alkaline rocks and
699	U-rich granites, from Bea (1996). Note that a modelled REE pattern for a rock with 1.9%
700	of normative apatite closely resembles the pattern of the least evolved member of the syenitic
701	suite (sample MAZ-12110). (c) REE, Sr and Zr plot of two silico-carbonatite samples from
702	the Sierra de Maz complex. The open circle represents a single homogeneous crystal of
703	carbonate separated from the carbonatite. The general carbonatite field is taken from13
704	samples reported by Nelson et al., (1988), whereas open squares are carbonatites reported by
705	Villeneuve and Relf (1998). Data are normalized to chondritic values of Nakamura (1974);

other normalizing data from Boynton (1984) for Tb, Ho, Tm, and Sr and Thompson (1982)for Zr.

708

Figure 8. Rb-Sr isochron plot of whole-rock samples from the Maz carbonatite and syenitecomplex

712	Figure 9. (a) back-scattered electron image of zircon in thin-section of syenite sample MAZ-
713	12085, showing complex internal structure of a euhedral grain. NB in the latter image the
714	dark areas are those relatively depleted in U and REE, whereas in the CL images such
715	composition result in high luminescence. (b) cathodo-luminescence (CL) image of part of the
716	analysed zircon megacryst from the Sierra de Maz syenite, showing the complex internal
717	structure and the U-Pb ages determined from SHRIMP analyses. (c) CL image of typical
718	fragmented crystals of zircon separated from syenite sample MAZ-12057, together with the
719	U-Pb ages obtained from SHRIMP analyses.
720	
721	Figure 10. (a) Tera-Wasserburg plot of U-Pb SHRIMP data for the zircon megacryst
722	extracted from the syenite (Fig. 9b), error ellipses are 95% confidence limits; (b) Probability
723	density plot (Ludwig 1999) of ²⁰⁷ Pb-corrected ²⁰⁶ Pb- ²³⁸ U ages. Shading reflects groupings
724	identified in the text.
725	
726	Figure 11. (a) Tera-Wasserburg plot of U-Pb SHRIMP data for separated zircon from MAZ-
727	12057 (Fig. 9c), error ellipses are 95% confidence limits; (b) Probability density plot (Ludwig
728	1999) of ²⁰⁷ Pb-corrected ²⁰⁶ Pb- ²³⁸ U ages. Shading reflects groupings identified in the text.
729	

730	Figure 12. a) The Clymene ocean separated a large continental mass that embraced Amazonía
731	(AM), the Western Sierras Pampeanas (WSP), and the Arequipa-Antofalla craton (AAC)
732	among others, from eastern Gondwana cratons (KC: Kalahari craton; RPC: Rio de la Plata
733	craton). The Maz syenite – carbonatite body was intruded at ca. 570 Ma at the southern tip of
734	this continental mass. Emplacement took place during early continental rifting that eventually
735	led to opening of the Clymene Ocean. The Puncoviscana Formation was deposited on the
736	eastern side of the Clymene Ocean (present coordinates), b) Oblique right-lateral collision
737	produced the Pampean orogeny between 540 and 520 Ma. Paleogeographic model according
738	to Rapela et al. (2007).

		matitar	Calcite				
Samplas	MA712110	Syenii MA 712085	MAZ 12059	MAZ 12057	Carbo MAZ 12004	MAZ 12017	megacrysi
Samples	MAZ12110	MAZ12085	MAZ-12038	MAZ-12037	MAZ-15004	MAZ-1501/	MAZ-12090
Major oxides (v	wt%)						
SiO ₂	52.59	58.46	61.14	64.05	18.18	19.97	0.04
TiO	0.28	0.2	0.44	0.35	0.75	2.08	0
AlaOa	19.88	22.91	19.71	19 38	5 93	6 71	0.01
Fe O	0.46	0.30	1 00	0.21	10.38	13 29	2.74
$\Gamma c_2 C_3$	0.40	0.57	1.99	0.21	10.50	15.29	2.74
FeO.	2.55	1.84	2.89	3.38	nd	nd	nd
MnO	0.08	0.04	0.07	0.05	0.96	0.33	1.28
MgO C-O	0.56	0.29	0.44	0.23	2	3.4	0.42
CaO	5.55	1.7	1.02	0.58	32.38	28.06	69.11
Na ₂ O	7.92	9.37	/.8/	9.02	1.03	1.33	0.08
K_2O	3.77	2.52	2.79	2.09	1.23	2.49	0.01
P_2O_5	0.74	0.15	0.14	0.02	2.15	2.57	0.02
LOI	4.94	1.41	0.78	0.67	24.24	19.61	nd
CO_2	nd	nd	nd	nd	24.5	19.7	nd
F	nd	nd	nd	nd	0.19	0.17	nd
CI	nd	nd	nd	nd	0.04	0.03	nd
SO3	nd	nd	nd	nd	0	0	0.02
Total S	nd	nd	nd	nd	0.07	0.03	nd
TOTAL	99.32	99.28	99.28	100.03	100.14	100.03	73.73
Trace elements	(ppm)	2.6		0.0	1.0	1.5	(1
Cs	1.1	2.6	I.I	0.8	1.2	1.7	61
Rb	132	/8	116	69	/0	140	28
Sr	1702	14/6	1135	1120	6248	6480	11086
Ва	886	1161	896	1041	035	2028	/59
La	41.8	22.4	5.99	0.8	287	405	2042
Dr	94.2	25.4	9.80	1.5	581	901	2043
ri Nd	10.8	2.03	5.01	0.13	240	380	11u 856
Sm	7.24	1.71	0.94	0.44	249 46 2	64.9	141
Fu	2 47	0.74	0.54	0.14	15	20	nd
Gd	6.07	1.57	0.89	0.08	36.5	47.2	nd
Th	0.87	0.25	0.13	0.02	5.83	7.04	nd
Dv	4.23	1.46	0.71	0.12	29.4	33.1	nd
Ho	0.69	0.29	0.15	0.03	4.83	5.22	nd
Er	1.68	0.79	0.47	0.14	12.8	12.8	nd
Tm	0.2	0.11	0.07	0.03	1.66	1.49	nd
Yb	1.07	0.67	0.54	0.23	9.47	7.8	27
Lu	0.14	0.09	0.1	0.04	1.34	1.01	nd
U	8.31	12.2	0.77	0.93	2.65	1.85	42
Th	1.44	4.31	0.33	0.25	0.93	4.26	21
Y	17.3	7	3.6	1	150	157	393
Nb	90.8	53.5	119	107	360	93.3	nd
Zr	764	1920	1338	716	226	298	39
Hf	19.3	27.4	25.2	11	3	4.1	37
Та	31	11	9.3	12.7	16.7	5.2	nd
Ga	16	21	18	21	21	24	nd
Ge	1	0.7	1	0.9	1.4	1.9	nd

Table 1. Representative chemical analyses of the Sierra de Maz carbonatite-syenite suite

Major oxides were determined by ICP and trace elements were determined by ICP-MS at ACTLABS, Canada. Fe determined volumetrically at CIG, La Plata. LOI = loss on ignition

		Rb	Sr					Sm	Nd							
Sample		ppm	ррт	Rb/Sr	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr ₀	ppm	ppm	Sm/Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd ₀	εNd ₀	T _{DM}	T _{DM} *
MAZ																
12057	Syenite	69	1120	0.0616	0.1782	0.704456	0.70301	0.08	0.44	0.1818						
MAZ																
12058	Ne-syenite	116	1135	0.1022	0.2956	0.704837	0.70243	0.94	5.01	0.1876						
MAZ																
12085	Ne-syenite	78	1476	0.0528	0.1528	0.704216	0.70297	1.71	9.81	0.1743	0.1054	0.512474	0.512080	3.5	837	970
MAZ																
12110	Ne-syenite	132	1702	0.0776	0.2243	0.704482	0.70266	7.24	40.8	0.1775	0.1073	0.512486	0.512085	3.6	835	961
MAZ-																
12056	carbonatite calcite	11.884	3108	0.0038	0.0111	0.702997	0.70291	23.13	95.10	0.2432	0.1470	0.512741	0.512192	5.6	760	764
MAZ-																
12086	carbonatite calcite	6.951	4211	0.0017	0.0048	0.703056	0.70302	24.63	91.84	0.2682	0.1621	0.512756	0.512150	4.8	913	843
MAZ-																
11001	carbonatite calcite	13.015	8493	0.0015	0.0044	0.703000	0.70296	22.37	91.72	0.2439	0.1474	0.512622	0.512072	3.3	1005	986
MAZ-	D		101		100101											
12061	Biotite megracryst	393	106	3.7240	10.8494	0.778719	0.69055									
MAZ-		054	502	1 (002	4.0075	0 72((70	0 (0(()									
12107	Biotite megracryst	854	503	1.6983	4.9275	0./366/9	0.09003									
MAZ-	Aegirine maric	2 421	701	0.0044	0.0127	0 702175	0 70207									
12039 MAZ	enclave	3.421	/81	0.0044	0.0127	0./031/3	0.70307									
12060	Albita magaarust	6 707	1557	0.0044	0.0126	0 702168	0 70207									
12000 MAZ	Alone megaciyst	0.797	1557	0.0044	0.0120	0.703108	0.70307									
12000b	Vain coloita					0 702772										
120900 MAZ	v eni calene					0.702772										
12000a	Vein calcite					0 702757										
12090a	v chi calche					0.702757										

Table 2. Sr and Nd Isotopic Data for Sierra de Maz Syenite–Carbonatite Complex.

Sr and Nd isotopic ratios were normalized to 86 Sr/ 88 Sr = 0.1194 and 146 Nd/ 144 Nd = 0.7219, respectively. NBS987 standard gave a mean 87 Sr/ 86 Sr ratio of 0.710234 ± 0.00005 (n = 12) and La Jolla Nd standard gave a mean 143 Nd/ 144 Nd of 0.511861 ± 0.00002 (n = 2). The 2 σ analytical errors are 1% in 87 Rb/ 86 Sr, 0.1% in 147 Sm/ 144 Nd, 0.01% in 87 Sr/ 86 Sr and 0.006% in 143 Nd/ 144 Nd

Decay constants used were $\lambda Rb = 1.42 \times 10^{-11} a^{-1}$ and $\lambda Sm = 6.54 \times 10^{-12} a^{-1}$.

 T_{DM}^{*} is model age according to DePaolo *et al.* (1991). ¹⁴⁷Sm/¹⁴⁴Nd and ¹⁴³Nd/¹⁴⁴Nd values assumed to be 0.1967 and 0.512636 for CHUR, and 0.222 and 0.513114 for depleted mantle respectively

Table 3. U-Pb SHRIMP data for zircon

						_		Tota	al	Radioge	enic	Age (Ma)		
Spot	U	Th	Th/U	²⁰⁶ Pb*	²⁰⁴ Pb/	f ₂₀₆	²³⁸ U/		²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁶ Pb/	
	(ppm)	(ppm)		(ppm)	²⁰⁶ Pb	%	²⁰⁶ Pb	±	²⁰⁶ Pb	±	²³⁸ U	±	²³⁸ U	±
(a) Me	gacryst i	n syenite	e (MAZ-	-12089).										
1	331	313	0.95	22.7	0.00011	0.21	12.5123	0.1391	0.0588	0.0005	0.0798	0.0009	494.6	5.4
2	36	10	0.28	2.4	0.00018	0.02	12.9951	0.2427	0.0568	0.0019	0.0769	0.0015	477.8	8.8
3	39	17	0.44	2.4	0.00099	0.64	13.8073	0.2510	0.0611	0.0023	0.0720	0.0013	448.0	8.1
4	448	203	0.45	26.8	0.00006	0.16	14.3597	0.1565	0.0568	0.0005	0.0695	0.0008	433.3	4.6
5	88	14	0.16	6.9	-	0.41	10.9412	0.1545	0.0622	0.0012	0.0910	0.0013	561.6	7.8
6	22	5	0.23	1.7	0.00097	0.88	10.9459	0.2411	0.0659	0.0024	0.0906	0.0020	558.8	12.1
7	595	486	0.82	38.3	-	0.19	13.3401	0.1427	0.0579	0.0004	0.0748	0.0008	465.1	4.9
8	1115	1086	0.97	88.9	0.00002	0.05	10.7726	0.1118	0.0596	0.0003	0.0928	0.0010	571.9	5.8
9	405	92	0.23	29.7	0.00005	<0.01	11.6974	0.1293	0.0576	0.0005	0.0855	0.0010	529.0	5.7
10	36	9	0.25	2.8	0.00090	0.54	11.0190	0.2023	0.0632	0.0018	0.0903	0.0017	557.1	10.1
11	453	66	0.15	33.8	0.00001	0.16	11.5392	0.1260	0.0595	0.0006	0.0865	0.0010	534.9	5.7
12	94	36	0.38	7.4	0.00023	<0.01	10.9050	0.1517	0.0572	0.0011	0.0919	0.0013	566.8	7.7
13	222	163	0.74	13.3	0.00042	0.33	14.3887	0.1729	0.0582	0.0008	0.0693	0.0008	431.7	5.1
14	27	4	0.15	2.1	0.00135	<0.01	10.9319	0.2272	0.0563	0.0023	0.0918	0.0020	566.0	11.6
15	56	10	0.17	4.6	0.00033	<0.01	10.4643	0.1678	0.0590	0.0024	0.0956	0.0016	588.8	9.4
16	163	39	0.24	12.6	0.00003	0.17	11.0752	0.1378	0.0601	0.0009	0.0901	0.0011	556.4	6.8
17	369	64	0.17	31.6	0.00009	0.12	10.0324	0.1116	0.0612	0.0006	0.0996	0.0011	611.8	6.6
18	31	7	0.23	2.2	0.00143	0.59	11.9436	0.2403	0.0624	0.0021	0.0832	0.0017	515.4	10.2
19	384	348	0.90	24.7	0.00017	0.26	13.3870	0.1725	0.0584	0.0006	0.0745	0.0010	463.2	5.8
20	500	527	1.05	33.1	0.00007	0.10	12.9963	0.1410	0.0574	0.0005	0.0769	0.0008	477.4	5.1
	Error in	Tomora	referen		calibration v	NOS 0 65	% for the an	alutical so	seion					
	(not inclu	uded in a	above e	errors but	required wh	en comp	aring data fr	om differe	nt mounts).					
(a) Ziro	con grair	is from s	syenite s	sample M	IAZ-12057.									
1.1	132	31	0.23	9.6	0.00019	0.17	11.8406	0.1381	0.0592	0.0008	0.0843	0.0010	521.8	6.0
2.1	156	63	0.41	12.3	0.00011	<0.01	10.9227	0.1246	0.0589	0.0007	0.0916	0.0011	564.7	6.3
3.1	51	11	0.22	4.2	-	0.19	10.5115	0.2263	0.0611	0.0018	0.0949	0.0021	584.7	12.3
4.1	15	2	0.11	1.1	0.00084	0.25	11.7823	0.2423	0.0599	0.0026	0.0847	0.0018	523.9	10.6
5.1	65	17	0.26	5.3	0.00009	0.04	10.5699	0.1380	0.0598	0.0011	0.0946	0.0013	582.5	7.4
6.1	508	513	1.01	41.4	0.00003	0.04	10.5318	0.1107	0.0598	0.0004	0.0949	0.0010	584.5	6.0
7.1	159	48	0.30	12.8	-	0.13	10.6742	0.1551	0.0603	0.0007	0.0936	0.0014	576.6	8.2
8.1	82	25	0.31	6.5	0.00030	0.11	10.9082	0.1648	0.0599	0.0012	0.0916	0.0014	564.8	8.4
9.1	226	117	0.52	18.5	0.00003	<0.01	10.4898	0.1158	0.0594	0.0005	0.0954	0.0011	587.1	6.3
10.1	28	5	0.17	2.1	-	<0.01	11.8505	0.4234	0.0537	0.0015	0.0848	0.0031	524.8	18.3
11.1	104	31	0.30	8.0	0.00024	<0.01	11.1549	0.1404	0.0584	0.0008	0.0897	0.0012	553.6	6.8
12.1	279	141	0.50	22.7	0.00000	0.04	10.5359	0.1144	0.0598	0.0005	0.0949	0.0011	584.3	6.2
13.1	26	5	0.19	1.8	0.00043	<0.01	12.5276	0.2281	0.0570	0.0024	0.0798	0.0015	495.1	8.9
14.1	105	15	0.14	8.1	0.00020	0.09	11.1599	0.1388	0.0593	0.0011	0.0895	0.0011	552.7	6.7
15.1	51	4	0.07	3.9	0.00012	<0.01	11.1513	0.3850	0.0586	0.0018	0.0897	0.0032	553.6	18.7
16.1	463	419	0.91	36.7	-	0.08	10.8333	0.1235	0.0597	0.0004	0.0922	0.0011	568.7	6.3
17.1	70	20	0.29	5.8	0.00015	<0.01	10.4887	0.1365	0.0584	0.0010	0.0955	0.0013	587.8	7.5
18.1	270	129	0.48	21.5	0.00007	<0.01	10.7867	0.1196	0.0582	0.0005	0.0928	0.0011	572.2	6.2
19.1	453	420	0.93	35.9	0.00001	0.01	10.8307	0.1144	0.0591	0.0004	0.0923	0.0010	569.2	5.9
20.1	142	66	0.47	11.0	-	0.20	11.0545	0.1292	0.0604	0.0007	0.0903	0.0011	557.2	6.4
21.1	156	70	0.45	11.4	0.00004	<0.01	11.7096	0.1355	0.0577	0.0007	0.0854	0.0010	528.4	6.0
22.1	34	5	0.15	2.5	0.00062	<0.01	11.3710	0.3692	0.0566	0.0016	0.0881	0.0029	544.5	17.3
24.1	232	104	0.45	18.6	0.00005	<0.01	10.7277	0.1192	0.0585	0.0006	0.0933	0.0011	575.0	6.2
23.1	121	47	0.39	9.3	0.00003	<0.01	11.1435	0.1583	0.0583	0.0008	0.0898	0.0013	554.2	7.7
25.1	50	8	0.17	3.9	-	<0.01	10.9988	0.1673	0.0583	0.0013	0.0910	0.0014	561.3	8.4
26.2	84	19	0.23	6.7	0.00008	< 0.01	10.6714	0.1370	0.0587	0.0010	0.0938	0.0012	577.8	7.3
11.3	98	29	0.29	7.1	0.00015	<0.01	11.8105	0.1492	0.0569	0.0009	0.0848	0.0011	524.5	6.5
27.1	71	17	0.24	5.5	-	<0.01	11.0560	0.1478	0.0573	0.0011	0.0906	0.0012	559.2	7.3
	Error in	Temora	referen	ce zircon	calibration v	was 0.59	% and 0.61%	% for the a	nalytical se	ssions (sp	ots 1-21 and	d 22-27 re	spectively	

(not included in above errors but required when comparing data from different mounts).

Note that analyses 11.2 and 26.1 were not completed

Notes 1. Uncertainties given at the one σ level.
2. f₂₀₆ % denotes the percentage of ²⁰⁶Pb that is common Pb.
3. Correction for common Pb made using the measured ²³⁸U/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb ratios

following Tera and Wasserburg (1972) as outlined in Williams (1998).

Figure Click here to download high resolution image

Fig. 8

Fig. 9

Figure Click here to download high resolution image

Fig 10

Figure Click here to download high resolution image

Fig 11

Fig. 12

Sample	MAZ-12061	MAZ-12061	MAZ-12061	MAZ-12091	MAZ-12091	MAZ-12091	MAZ-12091	MAZ-12086
Analysis	10	11	9	2	4	5	8	11
Mineral	apatite							
SiO2								
FeO	0.25	0.15	0.11	0.13	0.16	0.13	0.16	0.13
MnO	0.22	0.24	0.20	0.12	0.07	0.16	0.13	0.13
MgO	0.01	bdl	bdl	0.03	bdl	bdl	bdl	bdl
CaO	54.08	53.89	54.12	54.97	55.73	55.29	55.61	52.71
Na2O	0.29	0.28	0.24	0.13	0.09	0.13	0.10	0.49
K2O	bdl	bdl	bdl	0.02	bdl	bdl	0.01	0.00
P2O5	41.44	41.43	41.61	41.85	42.10	41.38	42.04	40.52
F	2.64	2.71	2.65	2.98	2.38	2.37	2.44	2.76
Cl	bdl	0.06						
Total	98.93	98.70	98.92	100.22	100.53	99.46	100.48	96.78
CO2±OH	1.07	1.30	1.08	bdl	bdl	0.54	bdl	3.22
Fe2	0.017	0.01	0.007	0.009	0.011	0.009	0.011	0.009
Mn	0.016	0.017	0.014	0.008	0.005	0.011	0.009	0.009
Mg	0.001	0	0	0.003	0	0	0	
Sr	0	0	0	0	0	0	0	
Са	4.751	4.745	4.748	4.78	4.806	4.83	4.802	4.742
Na	0.046	0.044	0.039	0.02	0.014	0.021	0.015	0.079
K	0	0	0	0.002	0	0	0.001	
Si	0	0	0	0	0	0	0	
Р	2.877	2.882	2.885	2.875	2.869	2.856	2.868	2.88
S	0	0	0	0	0	0	0	
Cations	7.708	7.698	7.693	7.697	7.705	7.727	7.706	7.719
CF	1.37	1.408	1.372	1.527	1.211	1.222	1.242	1.466
CCl	0	0	0	0.016	0.016	0.016	0.016	0.016
0	12	12	12	12	12	12	12	12

Page 1