'Systems toxicology' approach identifies coordinated metabolic responses to copper in a terrestrian non-model invertebrate, the earthworm Lumbricus rubellus
Bundy, Jacob G.; Sidhu, Jasmin K.; Rana, Faisal; Spurgeon, David J. ORCID: https://orcid.org/0000-0003-3264-8760; Svendsen, Claus ORCID: https://orcid.org/0000-0001-7281-647X; Wren, Jodie F.; Sturzenbaum, Stephen R.; Morgan, A. John; Kille, Peter. 2008 'Systems toxicology' approach identifies coordinated metabolic responses to copper in a terrestrian non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biology, 6, 25. https://doi.org/10.1186/1741-7007-6-25
Full text not available from this repository.Abstract/Summary
Background: New methods are needed for research into non-model organisms, to monitor the effects of toxic disruption at both the molecular and functional organism level. We exposed earthworms (Lumbricus rubellus Hoffmeister) to sub-lethal levels of copper (10–480 mg/kg soil) for 70 days as a real-world situation, and monitored both molecular (cDNA transcript microarrays and nuclear magnetic resonance-based metabolic profiling: metabolomics) and ecological/functional endpoints (reproduction rate and weight change, which have direct relevance to population-level impacts). Results: Both of the molecular endpoints, metabolomics and transcriptomics, were highly sensitive, with clear copper-induced differences even at levels below those that caused a reduction in reproductive parameters. The microarray and metabolomic data provided evidence that the copper exposure led to a disruption of energy metabolism: transcripts of enzymes from oxidative phosphorylation were significantly over-represented, and increases in transcripts of carbohydrate metabolising enzymes (maltase-glucoamylase, mannosidase) had corresponding decreases in small-molecule metabolites (glucose, mannose). Treating both enzymes and metabolites as functional cohorts led to clear inferences about changes in energetic metabolism (carbohydrate use and oxidative phosphorylation), which would not have been possible by taking a 'biomarker' approach to data analysis. Conclusion: Multiple post-genomic techniques can be combined to provide mechanistic information about the toxic effects of chemical contaminants, even for non-model organisms with few additional mechanistic toxicological data. With 70-day no-observed-effect and lowest-observed-effect concentrations (NOEC and LOEC) of 10 and 40 mg kg-1 for metabolomic and microarray profiles, copper is shown to interfere with energy metabolism in an important soil organism at an ecologically and functionally relevant level.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1186/1741-7007-6-25 |
Programmes: | CEH Programmes pre-2009 publications > Biodiversity |
UKCEH and CEH Sections/Science Areas: | Hails |
ISSN: | 1741-7007 |
Additional Information. Not used in RCUK Gateway to Research.: | Open access journal. Follow Official URL for access to full-text. |
NORA Subject Terms: | Biology and Microbiology Ecology and Environment |
Date made live: | 09 Feb 2009 14:59 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/5619 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year