Insights on long-term ecosystem changes from stable isotopes in historical squid beaks
Golikov, A.V.; Xavier, J.C. ORCID: https://orcid.org/0000-0002-9621-6660; Ceia, F.R.; Queiros, J.P.; Bustamante, P.; Couperus, B.; Guillou, G.; Larionova, A.M.; Sabirov, R.M.; Somes, C.J.; Hoving, H-J.. 2024 Insights on long-term ecosystem changes from stable isotopes in historical squid beaks. BMC Ecology and Evolution, 24 (90), 90. 16, pp. https://doi.org/10.1186/s12862-024-02274-7
Before downloading, please read NORA policies.
|
Text (Open Access)
© The Author(s) 2024. s12862-024-02274-7.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (2MB) | Preview |
Abstract/Summary
Background - Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa. Moreover, there are currently no retrospective stable isotopic studies on various other ecological and taxonomic groups of Arctic biota. To test whether climate-driven shifts in marine ecosystems are reflected in the ecology of short-living mesopredators, ontogenetic changes in stable isotope signatures in chitinous hard body structures were analysed in two abundant squids (Gonatus fabricii and Todarodes sagittatus) from the low latitude Arctic and adjacent waters, collected between 1844 and 2023. Results - We detected a temporal increase in diet and habitat-use generalism (= opportunistic choice rather than specialization), trophic position and niche width in G. fabricii from the low latitude Arctic waters. These shifts in trophic ecology matched with the Atlantification of the Arctic ecosystems, which includes increased generalization of food webs and higher primary production, and the influx of boreal species from the North Atlantic as a result of climate change. The Atlantification is especially marked since the late 1990s/early 2000s. The temporal patterns we found in G. fabricii's trophic ecology were largely unreported in previous Arctic retrospective isotopic ecology studies. Accordingly, T. sagittatus that occur nowadays in the high latitude North Atlantic have a more generalist diet than in the XIXth century. Conclusions - Our results suggest that abundant opportunistic mesopredators with short life cycles (such as squids) are good candidates for retrospective ecology studies in the marine ecosystems, and to identify ecosystem shifts driven by climate change. Enhanced generalization of Arctic food webs is reflected in increased diet generalism and niche width in squids, while increased abundance of boreal piscivorous fishes is reflected in squids' increased trophic position. These findings support opportunism and adaptability in squids, which renders them as potential winners of short-term shifts in Arctic ecosystems.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1186/s12862-024-02274-7 |
ISSN: | 2730-7182 |
Additional Keywords: | Climate change, Food web, Arctic, North atlantic, Cephalopoda, Predator, Prey, Stable isotope analysis, Environmental conditions, Warming |
Date made live: | 12 Jul 2024 14:03 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/537709 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year