nerc.ac.uk

Calibrating estimates of ionospheric long-term change

Scott, Christopher John; Wild, Matthew N.; Barnard, Luke Anthony; Yu, Bingkun; Yokoyama, Tatsuhiro; Lockwood, Michael; Mitchell, Cathryn; Coxon, John; Kavanagh, Andrew ORCID: https://orcid.org/0000-0001-7360-7039. 2024 Calibrating estimates of ionospheric long-term change. Annales Geophysicae, 42 (2). 394-418. https://doi.org/10.5194/angeo-42-395-2024

Before downloading, please read NORA policies.
[img]
Preview
Text (Open Access)
© Author(s) 2024
angeo-42-395-2024.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (5MB) | Preview

Abstract/Summary

Long-term reduction (∼20 km) in the height of the ionospheric F2 layer, hmF2, is predicted to result from increased levels of tropospheric greenhouse gases. Sufficiently long sequences of ionospheric data exist in order for us to investigate this long-term change, recorded by a global network of ionosondes. However, direct measurements of ionospheric-layer height with these instruments is not possible. As a result, most estimates of hmF2 rely on empirical formulae based on parameters routinely scaled from ionograms. Estimates of trends in hmF2 using these formulae show no global consensus. We present an analysis in which data from the Japanese ionosonde station at Kokubunji were used to estimate monthly median values of hmF2 using an empirical formula. These were then compared with direct measurements of the F2 layer height determined from incoherent-scatter measurements made at the Shigaraki MU Observatory, Japan. Our results reveal that the formula introduces diurnal, seasonal, and long-term biases in the estimates of hmF2 of ≈±10% (±25 km at an altitude of 250 km). These are of similar magnitude to layer height changes anticipated as a result of climate change. The biases in the formula can be explained by changes in thermospheric composition that simultaneously reduce the peak density of the F2 layer and modulate the underlying F1 layer ionization. The presence of an F1 layer is not accounted for in the empirical formula. We demonstrate that, for Kokobunji, the ratios of F2/E and F2/F1 critical frequencies are strongly controlled by changes in geomagnetic activity represented by the am index. Changes in thermospheric composition in response to geomagnetic activity have previously been shown to be highly localized. We conclude that localized changes in thermospheric composition modulate the F2/E and F2/F1 peak ratios, leading to differences in hmF2 trends. We further conclude that the influence of thermospheric composition on the underlying ionosphere needs to be accounted for in these empirical formulae if they are to be applied to studies of long-term ionospheric change.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.5194/angeo-42-395-2024
ISSN: 0992-7689
Date made live: 02 Oct 2024 09:03 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/536232

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...