From the environment into the biomass: microplastic uptake in a protected lamprey species
Rendell-Bhatti, Flora; Bull, Colin; Cross, Richard ORCID: https://orcid.org/0000-0001-5409-6552; Cox, Ruairidh; Adediran, Gbotemi A. ORCID: https://orcid.org/0000-0001-6657-3336; Lahive, Elma ORCID: https://orcid.org/0000-0001-9975-8521. 2023 From the environment into the biomass: microplastic uptake in a protected lamprey species. Environmental Pollution, 323, 121267. 9, pp. https://doi.org/10.1016/j.envpol.2023.121267
Before downloading, please read NORA policies.
|
Text
N535447JA.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (2MB) | Preview |
Abstract/Summary
The relationship between the ubiquitous presence of microplastics in the environment and exposure of biota needs to be better understood, particularly for vulnerable species and their habitats. In this study, we address the presence of microplastics in the riverine habitat of a threatened lamprey species (Lampetra sp.), both in habitats with protective interventions in place (designated as Special Areas of Conservation), and those without these protective interventions. By sampling both riverbed sediments and larval lamprey, we provide a direct comparison of the microplastic loadings in both, and insights into how knowledge of sediment loadings might predict biological uptake. Microplastic particles, analysed using micro-Fourier transform infrared (μFTIR) spectroscopy, were detected in all samples of lamprey larvae and paired sediment, ranging in abundance from 1.00 to 27.47 particles g−1 in dry lamprey gastrointestinal tract (GIT) tissue, and 0.40 to 105.41 particles g−1 in dry sediment. The most urbanised catchment exhibited the highest average microplastic particle count in both lamprey and sediment. Across sites, the microplastic abundance in lamprey GIT tissue was not correlated with that of the surrounding sediment, suggesting that either specific polymer types are retained or other factors such as larvae residence time within sediment patches may influence biological uptake. The most encountered polymer types in lamprey from their immediate habitat were polyurethane, polyamide, and cellulose acetate. To the best of our knowledge, this is the first study to document microplastic contamination of larval lamprey in-situ, contributing another potential stressor to the population status of a vulnerable species. This highlights where further research on the impacts of plastic contamination of freshwater environments is needed to aid conservation management of this ecologically important species.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1016/j.envpol.2023.121267 |
UKCEH and CEH Sections/Science Areas: | Pollution (Science Area 2017-) |
ISSN: | 0269-7491 |
Additional Information. Not used in RCUK Gateway to Research.: | Open Access paper - full text available via Official URL link. |
Additional Keywords: | polymer, lamprey (Lampetra), Scotland, micro-FTIR, sediment, freshwater |
NORA Subject Terms: | Ecology and Environment |
Date made live: | 03 Nov 2023 16:14 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/535447 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year