nerc.ac.uk

Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era

Béjard, Thibauld M.; Rigual-Hernández, Andrés S.; Flores, José A.; Tarruella, Javier P.; Durrieu de Madron, Xavier; Cacho, Isabel; Haghipour, Neghar; Hunter, Aidan ORCID: https://orcid.org/0000-0003-2621-9978; Sierro, Francisco J.. 2023 Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era. Biogeosciences, 20 (7). 1505-1528. https://doi.org/10.5194/bg-20-1505-2023

Before downloading, please read NORA policies.
[img]
Preview
Text (Open Access)
© Author(s) 2023.
bg-20-1505-2023.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (7MB) | Preview

Abstract/Summary

The Mediterranean Sea sustains a rich and fragile ecosystem currently threatened by multiple anthropogenic impacts that include, among others, warming, pollution, and changes in seawater carbonate speciation associated to increasing uptake of atmospheric CO2. This environmental change represents a major risk for marine calcifiers such as planktonic foraminifera, key components of pelagic Mediterranean ecosystems and major exporters of calcium carbonate to the sea floor, thereby playing a major role in the marine carbon cycle. In this study, we investigate the response of planktic foraminifera calcification in the northwestern Mediterranean Sea on different timescales across the industrial era. This study is based on data from a 12-year-long sediment trap record retrieved in the in the Gulf of Lions and seabed sediment samples from the Gulf of Lions and the promontory of Menorca. Three different planktic foraminifera species were selected based on their different ecology and abundance: Globigerina bulloides, Neogloboquadrina incompta, and Globorotalia truncatulinoides. A total of 273 samples were weighted in both sediment trap and seabed samples. The results of our study suggest substantial different seasonal calcification patterns across species: G. bulloides shows a slight calcification increase during the high productivity period, while both N. incompta and G. truncatulinoides display a higher calcification during the low productivity period. The comparison of these patterns with environmental parameters indicate that controls on seasonal calcification are species-specific. Interannual analysis suggests that both G. bulloides and N. incompta did not significantly reduce their calcification between 1994 and 2005, while G. truncatulinoides exhibited a constant and pronounced increase in its calcification that translated in an increase of 20 % of its shell weight. The comparison of these patterns with environmental data reveals that optimum growth conditions affect positively and negatively G. bulloides and G. truncatulinoides calcification, respectively. Sea surface temperatures (SSTs) have a positive influence on N. incompta and G. truncatulinoides calcification, while carbonate system parameters appear to affect positively the calcification of three species in the Gulf of Lions throughout the 12-year time series. Finally, comparison between sediment trap data and seabed sediments allowed us to assess the changes of planktic foraminifera calcification during the late Holocene, including the pre-industrial era. Several lines of evidence indicate that selective dissolution did not bias the results in any of our data sets. Our results showed a weight reduction between pre-industrial and post-industrial Holocene and recent data, with G. truncatulinoides experiencing the largest weight loss (32 %–40 %) followed by G. bulloides (18 %–24 %) and N. incompta (9 %–18 %). Overall, our results provide evidence of a decrease in planktic foraminifera calcification in the western Mediterranean, most likely associated with ongoing ocean acidification and regional SST trends, a feature consistent with previous observations in other settings of the world's oceans.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.5194/bg-20-1505-2023
ISSN: 1726-4189
Date made live: 09 May 2023 09:08 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/534476

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...