nerc.ac.uk

Forecasting annual maximum water level for the Negro river at Manaus using dynamical seasonal predictions

Chevuturi, Amulya ORCID: https://orcid.org/0000-0003-2815-7221; Klingaman, Nicholas P.; Woolnough, Steven J.; Rudorff, Conrado M.; Coelho, Caio A.S.; Schöngart, Jochen. 2023 Forecasting annual maximum water level for the Negro river at Manaus using dynamical seasonal predictions [in special issue: Sub-seasonal to decadal predictions in support of climate services] Climate Services, 30, 100342. 12, pp. https://doi.org/10.1016/j.cliser.2023.100342

Before downloading, please read NORA policies.
[img]
Preview
Text
N533942JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (7MB) | Preview

Abstract/Summary

Early and skilful prediction of the Negro River maximum water levels at Manaus is critical for effective mitigation measures to safeguard lives and livelihoods. Using dynamical seasonal prediction hindcasts, from six prediction centres, we investigate extending the lead time of previously developed statistical models, which issue forecasts in March for Manaus. The original statistical forecast models used observed rainfall as the major predictor. We advance the capability to issue skilful forecasts earlier, in February. We develop ensemble forecasts by combining predictor data from observations and seasonal hindcasts. We compare those forecasts against the original statistical forecast models and forecasts using the observed climatology or persistence of predictors. The ensemble-mean forecasts, issued in February, using European Centre for Medium-Range Weather Forecasts (ECMWF) hindcast input, perform similarly as the original forecasts issued in March and gain one month of lead time. The ECMWF-based ensemble forecasts skilfully predict the likelihood of water levels exceeding the severe flood level of 29 m. Forecast performance reduces and ensemble spread increases with increasing lead time from February to January. We conclude that forecasts for Manaus maximum water levels can be produced using combined input from observations and real-time ECMWF forecasts.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.cliser.2023.100342
UKCEH and CEH Sections/Science Areas: Water Resources (Science Area 2017-)
ISSN: 2405-8807
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - full text available via Official URL link.
Additional Keywords: seasonal forecasts, flood level, Manaus, Negro river
NORA Subject Terms: Hydrology
Date made live: 31 Jan 2023 17:11 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/533942

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...