Terrestrial carbon sequestration under future climate, nutrient and land use change and management scenarios: a national-scale UK case study
Yumashev, Dmitry; Janes-Bassett, Victoria; Redhead, John W. ORCID: https://orcid.org/0000-0002-2233-3848; Rowe, Ed C. ORCID: https://orcid.org/0000-0003-4784-7236; Davies, Jessica. 2022 Terrestrial carbon sequestration under future climate, nutrient and land use change and management scenarios: a national-scale UK case study. Environmental Research Letters, 17 (11), 114054. https://doi.org/10.1088/1748-9326/aca037
Before downloading, please read NORA policies.
|
Text
N533773JA.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (1MB) | Preview |
Abstract/Summary
Carbon sequestration (Cseq) in soils and plant biomass is viewed as an important means of mitigating climate change. Recent global assessments have estimated considerable potential for terrestrial Cseq, but generally lack sensitivity to climate warming, nutrient limitations and perspective on local land use. These are important factors since higher temperatures can accelerate the decomposition of soil organic matter, nutrient availability affects plant productivity, while land use pressures put broader constraints on terrestrial organic matter inputs and storage. Here, we explore the potential for Cseq under changing land use, climate and nutrient conditions in a UK-based national scale case study. We apply an integrated terrestrial C–N–P cycle model with representative ranges of high-resolution climate and land use scenarios to estimate Cseq potential across the UK. If realistic UK targets for grassland restoration and afforestation over the next 30 years are met, we estimate that an additional 120 TgC could be sequestered by 2100 (similar to current annual UK greenhouse gas emissions or roughly 7% of net emission cuts needed in meeting net zero), conditional on climate change of <2 °C. Conversely, we estimate that UK arable expansion would reduce terrestrial carbon storage by a similar magnitude. The most pessimistic climate trajectories are predicted to cause net losses in UK soil carbon storage under all land use scenarios. Warmer climates substantially reduce the potential total terrestrial carbon storage gains offered by afforestation and grassland restoration. We conclude that although concerted land use change could make an important moderate contribution to national level Cseq for countries like the UK, soil Cseq only provides a contribution if we are on a low emission pathway, and is therefore conditional on deep global cuts to emissions from fossil fuels, deforestation and soil degradation.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1088/1748-9326/aca037 |
UKCEH and CEH Sections/Science Areas: | Biodiversity (Science Area 2017-) Soils and Land Use (Science Area 2017-) |
ISSN: | 1748-9326 |
Additional Information. Not used in RCUK Gateway to Research.: | Open Access paper - full text available via Official URL link. |
Additional Keywords: | terrestrial carbon sequestration, soil organic carbon, land use change & management, climate change, nutrient cycling, future scenarios |
NORA Subject Terms: | Agriculture and Soil Science |
Date made live: | 29 Dec 2022 00:10 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/533773 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year