nerc.ac.uk

Metal transfer to sediments, invertebrates and fish following waterborne exposure to silver nitrate or silver sulfide nanoparticles in an indoor stream mesocosm

Clark, Nathaniel; Vassallo, Joanne; Silva, Patrícia V.; Silva, Ana Rita R.; Baccaro, Marta; Medvešček, Neja; Grgić, Magdalena; Ferreira, Abel; Busquets-Fité, Martí; Jurkschat, Kerstin; Papadiamantis, Anastasios G.; Puntes, Victor; Lynch, Iseult; Svendsen, Claus ORCID: https://orcid.org/0000-0001-7281-647X; van den Brink, Nico W.; van Gestel, Cornelis A.M.; Loureiro, Susana; Handy, Richard D.. 2022 Metal transfer to sediments, invertebrates and fish following waterborne exposure to silver nitrate or silver sulfide nanoparticles in an indoor stream mesocosm. Science of the Total Environment, 850, 157912. 12, pp. https://doi.org/10.1016/j.scitotenv.2022.157912

Before downloading, please read NORA policies.
[img]
Preview
Text
N533767JA.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial 4.0.

Download (1MB) | Preview

Abstract/Summary

The fate of engineered nanomaterials in ecosystems is unclear. An aquatic stream mesocosm explored the fate and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) compared to silver nitrate (AgNO3). The aims were to determine the total Ag in water, sediment and biota, and to evaluate the bioavailable fractions of silver in the sediment using a serial extraction method. The total Ag in the water column from a nominal daily dose of 10 μg L−1 of Ag for the AgNO3 or Ag2S NP treatments reached a plateau of around 13 and 12 μg L−1, respectively, by the end of the study. Similarly, the sediment of both Ag-treatments reached ~380 μg Ag kg−1, and with most of it being acid-extractable/labile. The biota accumulated 4–59 μg Ag g−1 dw, depending on the type of Ag-treatment and organism. The oligochaete worm, Lumbriculus variegatus, accumulated Ag from the Ag2S exposure over time, which was similar to the AgNO3 treatment by the end of the experiment. The planarian, Girardia tigrina, and the chironomid larva, Chironomus riparius, showed much higher Ag concentrations than the oligochaete worms; and with a clearer time-dependent statistically significant Ag accumulation relative to the untreated controls. For the pulmonate snail, Physa acuta, bioaccumulation of Ag from AgNO3 and Ag2S NP exposures was observed, but was lower from the nano treatment. The AgNO3 exposure caused appreciable Ag accumulation in the water flea, Daphnia magna, but accumulation was higher in the Ag2S NP treatment (reaching 59 μg g−1 dw). In the rainbow trout, Oncorhynchus mykiss, AgNO3, but not Ag2S NPs, caused total Ag concentrations to increase in the tissues. Overall, the study showed transfer of total Ag from the water column to the sediment, and Ag bioaccumulation in the biota, with Ag from Ag2S NP exposure generally being less bioavailable than that from AgNO3.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.scitotenv.2022.157912
UKCEH and CEH Sections/Science Areas: Pollution (Science Area 2017-)
ISSN: 0048-9697
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - full text available via Official URL link.
Additional Keywords: freshwater sediments, engineered nanomaterials, benthic and planktonic invertebrates, trout, silver uptake, metal partitioning
NORA Subject Terms: Ecology and Environment
Date made live: 28 Dec 2022 16:00 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/533767

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...