Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries
Holland, Paul R. ORCID: https://orcid.org/0000-0001-8370-289X; O'Connor, Gemma K.; Bracegirdle, Thomas J. ORCID: https://orcid.org/0000-0002-8868-4739; Dutrieux, Pierre ORCID: https://orcid.org/0000-0002-8066-934X; Naughten, Kaitlin A. ORCID: https://orcid.org/0000-0001-9475-9162; Steig, Eric J.; Schneider, David P.; Jenkins, Adrian; Smith, James A. ORCID: https://orcid.org/0000-0002-1333-2544. 2022 Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries. The Cryosphere, 16 (12). 5085-5105. https://doi.org/10.5194/tc-16-5085-2022
Before downloading, please read NORA policies.
|
Text (Open Access)
© Author(s) 2022. tc-16-5085-2022.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (3MB) | Preview |
Abstract/Summary
Ocean-driven ice loss from the West Antarctic Ice Sheet is a significant contributor to sea-level rise. Recent ocean variability in the Amundsen Sea is controlled by near-surface winds. We combine palaeoclimate reconstructions and climate model simulations to understand past and future influences on Amundsen Sea winds from anthropogenic forcing and internal climate variability. The reconstructions show strong historical wind trends. External forcing from greenhouse gases and stratospheric ozone depletion drove zonally uniform westerly wind trends centred over the deep Southern Ocean. Internally generated trends resemble a South Pacific Rossby wave train and were highly influential over the Amundsen Sea continental shelf. There was strong interannual and interdecadal variability over the Amundsen Sea, with periods of anticyclonic wind anomalies in the 1940s and 1990s, when rapid ice-sheet loss was initiated. Similar anticyclonic anomalies probably occurred prior to the 20th century but without causing the present ice loss. This suggests that ice loss may have been triggered naturally in the 1940s but failed to recover subsequently due to the increasing importance of anthropogenic forcing from greenhouse gases (since the 1960s) and ozone depletion (since the 1980s). Future projections also feature strong wind trends. Emissions mitigation influences wind trends over the deep Southern Ocean but has less influence on winds over the Amundsen Sea shelf, where internal variability creates a large and irreducible uncertainty. This suggests that strong emissions mitigation is needed to minimise ice loss this century but that the uncontrollable future influence of internal climate variability could be equally important.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.5194/tc-16-5085-2022 |
ISSN: | 1994-0424 |
Date made live: | 22 Dec 2022 17:07 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/533756 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year