

GDGMV Borehole Database Interface User Guide

BGS Global Open Report OR/21/018

BRITISH GEOLOGICAL SURVEY

BGS GLOBAL PROGRAMME INTERNAL REPORT OR/21/018

Keywords

Report; borehole log; geodatabase; borehole coding; digital workflow; borehole database.

Bibliographical reference

Graham, R.L., Lawrie, K.I.G., Nayembil, M.L., Nguyen Ho. K., Dao Trung, H., Le Quoc, H Ford, J., and Bricker, S. 2020. GDGMV Borehole Database Interface User Guide. *British Geological Survey Internal Report*, OR/21/018. 44pp.

Copyright in materials derived from the British Geological Survey's work is owned by UK Research and Innovation (UKRI). You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth,

e-mail ipr@bgs.ac.uk. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract.

GDGMV Borehole Database Interface User Guide

Graham¹, R.L., Lawrie², K.I.G., Nayembil¹, M.L., Nguyen³ Ho. K., Dao³ Trung, H., Le Quoc³, H., Ford¹, J., and Bricker¹, S.

- ¹ British Geological Survey, Keyworth
- ² British Geological Survey, Edinburgh
- ³ General Department of Geology and Minerals, Vietnam

BRITISH GEOLOGICAL SURVEY

The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com

The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.

We publish an annual catalogue of our maps and other publications; this catalogue is available online or from any of the BGS shops.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as basic research projects. It also undertakes programmes of technical aid in geology in developing countries.

The British Geological Survey is a component body of UK Research and Innovation.

British Geological Survey offices

Nicker Hill, Keyworth,

Nottingham NG12 5GG Tel 0115 936 3100

BGS Central Enquiries Desk

Tel 0115 936 3143 email enquiries@bgs.ac.uk

BGS Sales

Tel 0115 936 3241 email sales@bgs.ac.uk

The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP

Tel 0131 667 1000 email scotsales@bgs.ac.uk

Natural History Museum, Cromwell Road, London SW7 5BD

Tel 020 7589 4090 Tel 020 7942 5344/45 email bgslondon@bgs.ac.uk

Cardiff University, Main Building, Park Place, Cardiff CF10 3AT

Tel 029 2167 4280

Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB Tel 01491 838800

Geological Survey of Northern Ireland, Department of Enterprise, Trade & Investment, Dundonald House, Upper Newtownards Road, Ballymiscaw, Belfast, BT4 3SB

Tel 01232 666595 www.bgs.ac.uk/gsni/

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU

Fax 01793 411501

www.nerc.ac.uk

UK Research and Innovation, Polaris House, Swindon SN2 1FL

Tel 01793 444000 www.ukri.org

Tel 01793 411500

Website www.bgs.ac.uk Shop online at www.geologyshop.com

Foreword

This report is the published product of a collaboration between the British Geological Survey (BGS) and the General Department of Geology and Minerals Vietnam (GDGMV) and Ministry of Natural Resources and Environment (MONRE) as part of the Hanoi Urban Geology Project. The project has been ongoing since 2016, funded through the by BGS NC-ODA: Geoscience for Sustainable Futures Programme. The project delivers against three priority themes:

1) Development of Digital Systems and Workflows

- 2) Urban Geology for Planning Policy and Construction
- 3) Training, Knowledge Exchange and Stakeholder Engagement

These tasks are delivering new digital data technology, new working practices, and increased institutional capacity with respect to urban geoscience.

The GDGMV Borehole Database Interface outlined in this document is one of many systems developed and put in place. This report should be used in conjunction with the other reports related to this collaboration, including:

OR/21/019 - GDGMV Lexicon Database User Guide

OR/20/55 – Considerations for Borehole Coding and Coded Borehole Data Checking

There is also a toolbox of documents, data tools, and workflows available.

Acknowledgements

Within the BGS, the authors would like to acknowledge the support of Martin Smith, Andrew McKenzie, Martin Nice and the large number of individuals from GDGMV who have been instrumental in guiding this process, and we thank them all. In addition to the collection of data, many individuals have freely given their time and advice, and provided the local knowledge so important to this collaboration being a success. We would particularly like to thank the geologists and data scientists at the General Dept. of Geology and Minerals Vietnam and the Centre for Information and Archive of Geology, Vietnam for their support, guidance and regular input. This project was funded as part of the BGS NC-ODA: Geoscience for Sustainable Futures Programme (Grant no. NE/R000069/1).

Contents

For	eword	l	i
Ack	nowle	edgements	i
Cor	ntents		ii
1	Intro	duction	1
2	Interf	ace set up	2
-	2.1	Prerequisites	2
3	Interf	ace log in	5
4	How	to create and select a project	6
5	The I	Borehole Entry Form – Main Sections	8
	5.1	Borehole Index data entry - simplified	
	5.2	Borehole index data entry - extended	
	5.3	Lithology log data entry	
	5.4	Lithology log Additional properties data entry	
	5.5	Stratigraphic log data entry	
	5.6	Stratigraphy	
	5.7	Stratigraphy Notes	
	5.8	Top / Base / thickness	
	5.9	Depth reliability	
	5.10	Base Bed	
	_		
6	Bore	hole search function	23
	6.1	Order By	23
	6.2	Search by Location ID	23
	6.3	Search by name	23
7	Dictio	pnary Control	
	7.1	Examining some of the more important and regularly used dictionaries	
8	Bore	hole Entry Form – Additional sections	27
	8.1	Rock Quality Designation	
	8.2	Weathering Assessment	
	8.3	Standard Penetration Test	
	8.4	Water Levels	
	8.5	Aquifer Property Log	
9	Data	Export	29
	9.1	Data Export Form	29
Арр	pendix	1	30
	Exan	nple	30
Ref	erenc	es	

FIGURES

Figure 1: Steps for creating an ODBC link	3
Figure 2: Linking the application to the database	4
Figure 3: Forms to Database table mapping	4
Figure 4: GDW Logon form for the Borehole Data Entry System.	5
Figure 5: Enable Content for the Borehole Data Entry System.	5
Figure 6: GDW Switchboard form (initial view) for the Borehole Data Entry System	6
Figure 7: GDW Activity form for the Borehole Data Entry System	7
Figure 8 - Borehole Entry form for the Borehole Data Entry System – opening view	8
Figure 9: The Lithology Log tab of the Borehole Data Entry form	. 13
Figure 10: Example of Colour data entry in the Additional Properties form.	. 15
Figure 11: Colour Qualifier drop down demonstrated	. 15
Figure 12: Example of Mineralogical Qualifier data entry in the Additional Properties form	. 16
Figure 13: Example of Sedimentary Structure data entry in the Additional Properties form	. 16
Figure 14: Example of Grain Sorting data entry in the Additional Properties form	. 16
Figure 15: Example of Dominant Grain Size data entry in the Additional Properties form	. 17
Figure 16: Illustration of grain shape and relationship of triaxial dimensions. Alternative terminology includes: Oblate – Disc; Equant – Spheroid; Prolate – Rod. Modified after	10
Nichols, 1999.	10
Figure 17: Example of Grain Shape Properties data entry in the Additional Properties form	10
Figure 10: Crain appendix and Crain angularity Medified from Deward 1052	19
Figure 19. Grain sphericity and Grain angularity. Modified from Powers 1955	20
Figure 20. Example of Grain Angularity data entry in the Additional Properties form.	20
Figure 21: The Stratigraphy Log tab of the Borehole Data Entry form	. Z I
Figure 22. Search and Group by tool locations are highlighted by the thick red box	. 23
Figure 23: Scrolling to the required Borenole	.23
Figure 24: Using the Bang Ten search function to scroll to and then select a borehole	. 24
displayed in the Forms and be available for viewing and editing.	. 24
Figure 26: The Dictionary Control Form showing Stratigraphy Dictionary Tab values	. 25
Figure 27: Current path to the root folder for any documents stored on the server	. 26
Figure 28: Rock Quality Designation data entry example.	. 27
Figure 29: Weathering assessment data entry example.	. 27
Figure 30: Standard Penetration Test data entry example	. 28
Figure 31: Water Levels data entry example.	. 28
Figure 32: The Aquifer Property Log data entry form.	. 28
Figure 33: Data Export Form.	. 29
Figure 34: Borehole Index data entry for H7DA coding example.	. 32
Figure 35: Fully coded Lithology Log example for borehole H7DA, refer to sections 9.1.1 to 9.1.2.10 for more specific details	. 34

PLATES

No table of figures entries found.

TABLES

Fable 1: EPSG defined Min./Max. X/Y coordinates for the most commonly used coordinate systems in Vietnam	. 9
Table 2: Approximate Min. and Max. X/Y coordinates covering the landmass of Vietnam for themost commonly used coordinate systems in Vietnam. For reference of potential incorrectlyassigned coordinate systems only – see Table 1 for official EPSG defined boundaries 1	; 10
Table 3: GDGMV Unlithified Coding Scheme. 1	14
Table 4: Borehole Index and Log data table for H7DA coding example.	30

1 Introduction

This report details how to use the borehole database created by the British Geological Survey (BGS) for the General Department of Geology and Minerals of Vietnam (GDGMV) and forms one of a suite of publications outlining good practice approaches for the implementation of Digital Data Workflows. Activities to increase informatics capacity and adoption of digital workflows within GDGMV have been undertaken as part of a wider, ODA-funded project focused on the sustainable development of Asian cities. Insufficient understanding of ground conditions is widely recognised by the construction industry as one of the main causes of project overspending, project delays, and overly conservative design. Furthermore geoscience information has traditionally been under-utilised in planning and development, as it is difficult to access and its significance is often misunderstood or underappreciated. Digitisation of borehole data and geotechnical information is a vital step in improving the digital workflow between industry, geoscience experts and urban planning professionals. Digital approaches provide rapid, large volumes of data for interrogation and re-use. It improves operational efficiency, increases innovation, and provides a curated dataset to support data-driven decision making for urban development.

The report focuses on how to set up and log in to the interface, followed by how to create a project. Once a project has been selected, the main sections of the Borehole Entry Form are detailed; the Borehole Index data, Lithology Log and Additional Properties; and the Stratigraphic Log. Nuances and caveats for each aspect of the Borehole Entry Form are dealt with in the appropriate sections, acknowledging the specific functionality included for GDGMV data and preferences. Use and tips for using the Dictionary Control is then outlined. Additional sections of the Borehole Entry Form are further explained; the Rock Quality Designation (RQD) Log; the Weathering Log; the Standard Penetration Test (SPT) Log; the Groundwater Level (GWL) Log; the Aquifer Properties (AQP) Log. Finally, the different types of data export types are addressed.

The Appendix contains several worked examples of using the Borehole Entry Form to input real GDGMV borehole data.

Subsequent updates of the GDGMV Borehole Database Application may affect its appearance, so there may be differences between the figures contained within this report and the most recent version of the interface.

2 Interface set up

Once the database has been setup on the server, the client machines need to be setup – more information on how this is done can be found in the additional files and reports supplied as part of this work package.

2.1 PREREQUISITES

2.1.1 Microsoft Access

Microsoft Access 2019 should be installed on each client machine as part of the Microsoft Office 2019 Suite.

Consideration 1 – Ideally the 32-bit version should be used, however the application is 64-bit

compatible and Microsoft Access 2019 64bit may be used.

Consideration 2 – You must install only one version of Microsoft Office on any given client machine. You cannot mix 64-bit and 32-bit Office applications

Consideration 3 – It is important that your client machine is set up correctly for your way of working. Whichever regionalisation you use (Vietnamese or UK) you must continue to be consistent in the way you enter numerical values in the application.

For Vietnamese regionalisation then the decimal separator should be a comma (",") and

any grouping (thousands or millions) used should be a dot (".") e.g. 1.000.000,12

For UK regionalisation then the decimal separator should be a dot (".") and any grouping (thousands or millions) used should be a (",") e.g. 1,000,000.12

How to check / change your region in Windows 10

- 1. Select Start > Settings > Time & Language > Region.
- 2. Under **Country or region**, select your new region.
- 3. You can switch back to your original region at any time.

For further details, follow the instructions in this link:

https://support.microsoft.com/en-us/account-billing/change-your-country-or-region-in-microsoft-store-5895e006-34f4-10f7-16b1-999e40adb048

2.1.2 Open Database Connectivity ODBC

To enable the borehole entry application to communicate with the database, a link has to be made using ODBC – in general the user will not be required to set this up as the application is normally 'pre-linked', however for completeness the process can be found in Figure 1.

<list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item>	SESSION 1 ODBC SETUR	2		
	 Step 1 – make sure that Step 2 – set up ODBC In Windows Enter ODB Provide State Advector 2010 CODD State Advector 2010 Und State State Topic Content State Und State State Topic Content State Und State State Und State State Und State	ti ODBC for PostgreSQL has C in the Windows search and Select Control of the Select Control of the Select Cont	been installed on the client compute d select the ODBC Data Sources (32 I down until you find PostgreSQL to tit and press Add then OK Scroll down until you find Driver(UNICODE), Sele Driver(UNICODE), Sele Data Searce ForgerSQL70// Data Searce ForgerSQL70// State ForgerSQL70// Data Searce ForgerSQL70// State ForgerSQL70// Data Searce ForgerSQL70// State ForgerSQL7	r 2 bit) App _35W_F ad PostgreSQL ODBC ect this and press Finish Enter "GDGMV_BH_DB" in the Description and "gdgmv" in the Database field and the server ip address in the Server field

Figure 1: Steps for creating an ODBC link.

2.1.3 The MS Access Front End

In order to enter, edit and output the data stored in the database you will need to use the Microsoft Access front end. This application is built using MS Access forms, code and features.

The application has to be copied to the computer you will be using to work from – do not work directly from the file on the server. In order to do this you will have to navigate to the folder holding the file (it will be an ['xxxx'.accdb] file where 'xxxx' represents the latest version name of the application) and copy the file onto your local machine (place it in a suitably named folder on your machine). **Do not** attempt to run the master version stored on the server, or make a shortcut to the master copy on your desktop.

2.1.4 How the application works

The application works by making a connection to the tables stored in the PostgreSQL database held on your server.

Figure 2: Linking the application to the database.

2.1.5 How the application forms and sub-forms map to the database tables

The forms and sub-forms in the front-end map to the data held in tables in the PostgreSQL database.

Figure 3: Forms to Database table mapping.

3 Interface log in

Once the Borehole Database has been set up, the log in is a very simple process. The Database Administrator should be able to provide you with a username and password to be able to access the database with both read and write permissions. Once you have this information, open the database and the GDW (Generalised Digital Workflow) Logon form (Figure 4) should appear.

🖃 GDW Logon	×					
Quy trình tổng quát dành cho dữ liệu số (GDW) Hệ thống nhập liệu (Việt Nam) Thoát						
Hiệu chỉnh lần thứ 100 03/11	/2020					
Nhập tên người dùng và mật khẩu của bạn, sau đó nhấn nút Đăng nhập để mở hệ thống.						
NGƯỜI DÙNG Username						
Mật Khầu	Đăng nhập					
Được BGS kigl thiết kế và xây dựng Hiệu chỉnh lần 100 03/11 Hỗ trợ xin liên hệ: kigl@bgs.ac.uk Điện thoại:	/2020 - Thi công hệ thống lỗ khoan +44 0131-650-0314					

Figure 4: GDW Logon form for the Borehole Data Entry System.

If you cannot edit the GDW Logon form, or the form doesn't appear, make sure that the database has been fully enabled by clicking the Enable Content button (Figure 5). You may have to reopen the database once you have enabled all content. You should only need to do this step the first time you use a new version of the database.

File	ち・ ご ・ 🍕 ・ 🝦 Home Create	External Data Database Tools 🛛 Tel	Vietnar me what you want to do	n Borehole Database			2	— 💿 🗙
View	Paste Format Painter	Pitter 2 ↓ Ascending ▼ Selection ~ Filter 2 ↓ Descending ▲ Advanced ~ 2 ↓ Remove Sort ▼ Toggle Filter	Refresh All - X Delete - More -	P ab ac Replace → Go To → Find Select →	Size to Switch	B I U A - 22 - 22 - 2 E = = I = = I = =	M v	
Views	Clipboard	Sort & Filter	Records	Find	Window	Text Formatting	5	^
U SECURITY WARNING Some active content has been disabled. Click for more details. Enable Content								×

Figure 5: Enable Content for the Borehole Data Entry System.

Once the GDW Logon form is open and editable, enter your username and password and click the Log On button. This should automatically open the GDW Switchboard (see Section 0).

4 How to create and select a project

At this stage, you should be able to see the GDW Switchboard form (Figure 6) with one button (bottom left) disabled. In order to progress to borehole data entry, you must select the correct project. The Project Manager should set the project up with the Database Administrator before the coding begins and make sure that each team member knows the right project to use.

-8	frmGDWSwitchboard	×
	ÔNG CỤC ĐỊA CHẤT VÀ KHOÁNG SẢN VIỆT NAM VÀ CỤC ĐỊA CHẤT VƯƠNG QUỐC ANH	
Hệ thống nhập	dữ liệu lỗ khoan trong quy trình số tổng quát do	BGS xây dựng
Bổ sung hoặc lựa c động (Project) để	họn hoạt tiếp tục	Đóng ứng dụng
Nhập mới hoặc sửa Lỗ khoan và Thiết ở	a/xem các lồ đang có	Quản lý từ điển

Figure 6: GDW Switchboard form (initial view) for the Borehole Data Entry System.

To create a project, click on the 'Select an existing project to begin' button. This should open the GDW Activity form (Figure 7). First, check that your project hasn't already been created.

Step 1: Click the 'New Activity/Project' button at the top of the form.

Step 2: Enter a short, unique Project title – preferably no longer than 15 characters.

Step 3: Set the Status to C (current). Note that when the project is complete, this should be changed to N (not current).

Step 4: Write a short description of the project, this may just be the full title – preferably no more than 40 characters.

Step 5: Fill in the planned Start and End dates in the formal DD/MM/YYYY. These can be changed at a later date if the project is delayed.

Step 6: Put any additional important information in the Comments box. This section is optional, but may be used to include details such as the names of the project manager and/or technical lead, the team carrying out the work, the client, the purpose of the work, etc.

-8				fr	mGDW_Activity						_		\times
Nhậ	Nhập, Sửa hoặc chọn một Project Tạo Hoạt động/Project mới Chọn Project và								và nhấn v	ào đây			
Tên Pr	roject	Hiện t	rạng	Mô tả		r	Ngày	bắt đầu	Ngày kết thúc	Ghi chú			
Traini	ng_ROMG	С	\sim	Training	ata		29/10	/2020	03/11/2020	Project f	or train	ing only	
Hanoi	Urban	С	\sim	Hanoi Urb	an Modelling	(04/03	/2019	11/11/2019				
Test p	roject	С	\sim	Testing th	e projects	(09/09	/2020	10/09/2020	Testing	oroject		
*			\sim										
Bản ghi I4	4 2 of 3 🕨 🕨 🎉	No Filte	r S	earch									

Figure 7: GDW Activity form for the Borehole Data Entry System.

Once the above steps have been completed, click on a previous project. This will finalise the creation of your project into the background database. If any errors appear, close the GDW Activity form and reopen it – do not re-enter your project until you have checked this step.

Finally, make sure your new project is selected and click the 'Highlight required project and click here' button. This will take you back to the GDW Switchboard where the button in the bottom right should now be activated.

5 The Borehole Entry Form – Main Sections

To open the Borehole Entry Form, click on the 'Enter new or edit/view existing Boreholes and Logs' button (Figure 6) once it has been enabled by selecting the correct project. The initial view of the form will show data for a previously entered borehole. To start entering data for a new borehole, click the 'New Borehole' button at the top.

🗐 Biểu mẫu biên tập nhập dữ liệu lỗ khoan		– 🗆 X							
DỮ LIỆU CHỈ MỤC LỖ KHOAN Lỗ khoan mới Xóa lỗ khoan hiện tại Sắp xếp the	🔾 🗸 Tìm kiến	n bằng vị trí ID 🗸 bằng tên 🛛 🗸							
Tên lỗ khoan H10BNSL Tọa độ x <mark>586994</mark> Tọa độ y <mark>2326194</mark>	Kiểm tra tọa độ	Hệ tọa độ 3405 - Vietnam - onshore 🗸							
Xây dựng GDGMV_ID GDGMV_ID F4868Dc4-0002 Tọa	a độ Z (m) 7.95 Ki	ểu ? 🗸 Tổng độ sâu (m) 83.50							
Chỉ mục đầy đủ Xem tài liệu lỗ khoan Ghi chú									
Thạch học Địa tầng CLĐ Phong Hóa TN XTC MNN TC TCN Xuất bản ghi									
GHI DỮ LIỆU THẠCH HỌC Làm mới dữ liệu Quản lý từ điển Hanoi Urban 🗸 🛋									
Thạch học Bấm đế hiến thị thêm Ghi chú về thạch học	Đỉnh (m) Đáy (m)	Bề dày Mức độ tỉn cậ Liên hệ cơ bản							
MC - Bùn, Sét 🗸	0.00 3.50	3.50 Chắc chắt 🗸 -							
C-Sét 🗸	3.50 6.20	2.70 Chắc chắt 🗸 - 🗸							
SC - Cát, Sét	6.20 14.50	8.30 Chắc chắr 🗸 -							
1 - Cát mịn 🗸	14.50 28.50	14.00 Chắc chắt 🗸 -							
S5 - Cát, Sạn (cát rất thị 🗸	28.50 36.60	8.10 Chắc chắt 🗸 -							
S - Cát	36.60 45.20	8.60 Chắc chắt 🗸 -							
PG5 - Cuội, Sởi, Sạn (cá 🗸	45.20 57.70	12.50 Chắc chắt 🗸 -							
Bố sung các tính chất trong khoảng độ sâu đang ghi dữ liệu giữa 🛛 🛛 m	i. và 3.5 m.	Bề dày nội tại đơn vị (m) 🔺							
Loại tính chất Giá trị Vòng loạ Giá trị sự miêu tả Bấm để hiến thị thên	Ghi chú về tính chất	Đỉnh Đáy							
COL V dd V V [dd - do] - [6 - Phụ - Hạng 3]									
COL V nh V 4 V [nh - nâu hồng] - [4 - Chủ yếu - Hạng 1]									
Den vi tính M ≤ 9 of 11 → M → S No Filter Search									
Ðdn vi khoan H ≤ 1 of 9 → H H K % No Filter Search									
lð khoan I4 → 1 of 285 → ▶ ▶≅ 🕵 Unfiltered Search									

Figure 8 - Borehole Entry form for the Borehole Data Entry System – opening view.

5.1 BOREHOLE INDEX DATA ENTRY - SIMPLIFIED

Borehole Index data is a term used to describe the metadata related to a borehole, for example its location, important dates, method of drilling, companies/institutions involved, etc. It is important to record as much of this detail as is available, as it can inform certain considerations when using the borehole log data later on.

Before entering data for a new borehole, check that it has not already been entered by using the search functions at the top right of the Borehole Entry form. If there is already a borehole of the same name registered, check the coordinates to make sure it's not a different site, as Borehole Name is not a unique value. Once you are certain that the borehole is not already in the database, you can start data entry. Make sure that you are working with a blank entry – if you are unsure, click the 'New Borehole' button at the top.

The form is arranged in a logical order, so try to fill in every option from top to bottom, left to right. Some options can be left empty (the clear boxes), but some must be filled correctly for the borehole to be created (the yellow boxes). The Borehole Entry form shows a reduced list of what can be included within borehole index data. To see the complete list, click on the green 'Full Index' button and a new simple form will open displaying the complete range of borehole index fields that can be recorded within the database. If any of this data is available for the borehole, best practice dictates that you should ensure that it is entered fully.

5.1.1 Borehole Name

Borehole Name is not a unique value and can therefore be used when there are multiple boreholes of the same name. To mitigate any issues this may cause with data confusion, each Borehole entry is given a unique GDGMV ID (see Section 5.1.5 for more details). The borehole name should be entered as simply as possible. The prefix of 'LK' should not be included within the name. Any symbols should be entered as the documents specify. An additional check on Borehole Name should be carried out to ensure that the borehole name hasn't previously been entered in a different format.

5.1.2 X and Y coordinates

Getting the coordinates correct is one of the most vital parts of the borehole data entry process. Without accurate location data, all other data stored for the borehole will be of limited value. With this in mind, it is important to take the time to ensure that the X and Y coordinates are correct. See Section 5.1.3 for information on the in-built coordinate checking system.

Table 1 contains the main coordinate systems used within Vietnam and their official EPSGdefined bounding coordinates to give a general idea of what formats should be expected. Table 2 provides the minimum and maximum X and Y coordinates of the landmass of Vietnam in each coordinate system, regardless of projected bounds. Use these tables as a guide if you are unsure of the format of your X and Y coordinates.

X and Y coordinates must be entered in decimal format. If the original coordinates are in degrees, minutes and seconds, they must be converted to decimals before entering into the database. If this happens, it can be recorded in the Notes section of the Index data.

EPSG Code	Coordinate System	EPSG Min. X	EPSG Max. X	EPSG Min. Y	EPSG Max. Y
2044	Hanoi 1972 / Gauss-Kruger Zone 18	18553832.12	18783071.04	997561.36	1221072.28
2045	Hanoi 1972 / Gauss-Kruger zone 19	18893213.51	19127106.41	1002110.74	1221972.99
4756	VN-2000	102.14	109.52	8.5	23.33
3405	VN-2000 / UTM zone 48N	184904.04	806590.89	940848.61	2583341.12
4326	WGS 84	-180	180	-90	90

Please ensure that X and Y are entered the correct way around.

Table 1: Official EPSG defined Min./Max. X/Y coordinates for the most commonly used coordinate systems in Vietnam.

EPSG Code	Coordinate System	VN Min. X	VN Max. X	VN Min. Y	VN Max. Y
2044	Hanoi 1972 / Gauss-Kruger Zone 18	18205803.87	19007882.75	904574.2	2588333.89
2045	Hanoi 1962 / Gauss-Kruger zone 19	18541174.69	19393737.16	913968.79	2579997.26
4756	VN-2000	103.1176	109.66785	8.1809	23.39404
3405	VN-2000 / UTM zone 48N	205771.05	1007527.25	904261.24	2587343.71

4326	WGS 84	102.14496	109.66415	8.18125	23.39304

Table 2: Approximate Min. and Max. X/Y coordinates covering the landmass of Vietnam for the most commonly used coordinate systems in Vietnam. This table is for reference of potential incorrectly assigned coordinate systems only – see Table 1 for official EPSG defined boundaries.

5.1.3 'Check coordinates' button

In order to help assign a coordinate system and combat common location data entry issues, coding has been incorporated to identify and fix minor problems. Due to the nature of the different coordinate systems, it has only been possible to check that X and Y are the correct way round and the right coordinate system has been assigned for VN-2000 (EPSG 4756), Hanoi 1972/GK18 (EPSG 2044) and VN-2000/48N (EPSG 3405). If you are confident that your coordinates are registered in one of those three systems, click the 'Check Coordinates' button and the data quality checks will be carried out. After clicking the button, always go back and check that it hasn't made changes that you didn't want. If you think that the coordinate system used is not one of those three, you can skip pressing the 'Check Coordinates' button and manually enter the coordinate system using the drop down box.

5.1.4 Coordinate systems

This is not an optional field and should always be entered correctly. As stated in Section 5.1.2, it is vital to enter accurate location data.

The official bounds for the main coordinate systems used in Vietnam are shown in Table 1. Use this as a guide if you are unsure of the coordinate system used for your location data. Please note that there is overlap between the numbers used in the coordinate systems, so you may still have a few possible options.

5.1.5 'Create GDGMV ID' button

You must click the 'Create GDGMV ID' button in order to finalise the creation of the borehole. By clicking the button, a unique code using one of two different formats will be generated. The first format uses X and Y coordinates to identify the Hanoi grid square that the borehole is located in and generates a unique code based on that, e.g. F4868Dc4-0047. If the borehole is not located within one of the Hanoi grid squares included within the coding (the list is currently restricted to the grids provided to the BGS by GDGMV, however guidance can be provided on how to update this list), then a unique code derived from the date and time to milliseconds will be generated, e.g. 2020091112114524.

The GDGMV ID is used to ensure that every borehole has a unique way of identifying it. It is vital to the file storage workflow. Once it has been generated, you must not edit or change the GDGMV_ID value on the form in any way! Try to make sure that your coordinates are correct before you click on the 'Create GDGMV ID' button. However if for any reason you need to alter the coordinates after creating the GDGMV_ID button be sure to press the 'Create GDGMV ID' button' again the code will change the value if necessary (i.e. if the new coordinates are in a different named grid square or if they move the location to within a named grid square from outside of all the grid squares or the new coordinates move the location to outside the named grid square areas altogether) or keep the existing value if no change is required.

Another feature of the create 'Create GDGMV ID' button is that it will automatically generate a new folder in the correct data storage area for the specific borehole, and name it with the new GDGMV ID that has been generated. This folder can then be opened using the 'Open Current Scans' button (see Section 5.1.9 for more details). The root path for the folder is automatically set to "\\URBAN_SERVER\Data". This can be edited using the 'Edit Scan Path' tab of the Dictionary Control Form (see Section 0 for more detail).

5.1.6 Start height and type

The start height of a borehole is also known as its elevation, or z-value. It should be recorded in metres with up to 2 decimal places. The type of start height should be defined if known, with the most common type being 'ground level', meaning that the borehole start height measurement was measured from the level of the ground, rather than a drilling platform, or rotary table. Be aware that for the centre of Hanoi and downstream on the Red River Delta, the elevation is unlikely to be a large number so if you are finding numbers over 100, you will need to consider the units that you are dealing and potentially convert them to metres. Elsewhere in Vietnam, elevations may be much higher.

5.1.7 Total depth

Total depth, also known as TD, should be recorded in metres with up to 2 decimal places. It includes the entire depth that was drilled, not just the cored interval.

5.1.8 'Full Index' button

The 'Full Index' button opens a separate simple form that contains all the available options for inputting borehole index data. The Full Index form is discussed in more detail in Section 5.2.

5.1.9 'Open Current Scans' button

The 'Open Current Scans' button will open the folder where the data for the borehole is stored. When entering index data initially this folder will be empty. As part of the index data entry process, it is vital that any files referencing the borehole are stored within this folder. This file storage workflow will enable the simple and easy pinpointing of borehole data when coding borehole log data and referring back to specific boreholes.

5.1.10 Notes

This is a free text data option. Store all information that may provide additional understanding of the borehole or the data stored here, e.g. whether you have had to convert the coordinate system to enable entry into the database, or whether the drilling failed partway through, etc. Any information that has been included using other data entry points does not need to be repeated here.

5.2 BOREHOLE INDEX DATA ENTRY - EXTENDED

5.2.1 Purpose

This data type denotes the specific purpose that the borehole drilling was carried out for, e.g. site investigation, groundwater, etc.

5.2.2 Drilling method

This data type describes the method used to drill the borehole, e.g. rotary core, hand auger, etc.

5.2.3 Borehole status

This data type describes the current status of the borehole, e.g. drilling currently in progress, projected, cased, etc. The status of the borehole may change over time and should be reflected in subsequent updates of this value.

5.2.4 Confidentiality

This data type describes how confidential the data attributed to this borehole is, e.g. nonconfidential, restricted, confidential, etc. The confidentiality of borehole date may change over time and should be reflected in subsequent updates of this value. Many Geological Survey Organisations (GSOs) in Europe make their borehole data freely available under the EU INSPIRE Directive which aims to enhance the sharing on environmental spatial information. Maintaining an open borehole dataset, accessible to industry and government, encourages the donation of additional data by e.g. engineering and groundwater companies on a share-and-share alike. This methodology has resulted in a much larger dataset than would otherwise have been achievable. Within this data model, borehole data owners grant the GSO a non-exclusive, in-perpetuity, royalty free licence to hold and disseminate the data. GSOs are still able to hold confidential data where appropriate.

5.2.5 Client organisation

This data type denotes the name of the company/organisation who commissioned the drilling of the borehole. This may be GDGMV itself, another area of the Ministry or government, or a private company, etc.

5.2.6 Driller organisation

This data type denotes the name of the company/organisation that carried out the drilling of the borehole. This may be GDGMV itself, or a separate private drilling company.

5.2.7 Drilling start/end date and precision

Drilling start date is the date that the drilling commenced. Drilling end date is similar, but the day that the drilling processed concluded. Both of these data types should preferably be exact to the day, however that is not always possible. If the available dates are exact to the month, enter the first of that month, e.g. when the date says May 2012, enter 01/05/2012. If the dates are exact to the year, enter the first day of that year, e.g. when the date just says 2012, enter 01/01/2012. The start/end date precision is used to highlight whether the dates are accurate to the day, month, year, etc.

5.2.8 Original start point/length unit

As the majority of Vietnamese data is recorded in metres, the original unit is automatically set to metres. If the data has originally been recorded in feet this should be captured here. All unit tops, bases, and thicknesses are recorded in the database as metres, so will need to be converted before data entry.

5.2.9 Inclination type

This data type is used to describe the inclination of a borehole, e.g. vertical, inclined downwards, etc. As the majority of boreholes in the Hanoi Urban Project are drilled vertically, that option has been automatically selected.

5.2.10 Data source

The Data source data type is used to specify the location from where the data has come from, e.g. the data was supplied directly by GDGMV, or by VIGMR, or HUPI, etc.

5.2.11 User/date entered

As a borehole data entry is made, the username of the person making the data entry and the date when the entry was made are automatically infilled.

5.2.12 User/date updated

Upon initial data entry, this is automatically infilled with the same data as user/date entered (Section 5.2.11). If edits are made after the initial entry, the username of the person making the edits and the date when they were made is automatically captured.

5.3 LITHOLOGY LOG DATA ENTRY

The Lithology Log section (Figure 9) of the Borehole Data Entry form records all the lithological unit information, in conjunction with the Additional Properties (Section 5.4).

LIT	h log	STRAT LOG	RQD LOG	WEATH LOG	SPT LOG	GWL LOG	AQP LOG	EXPORT ALL	LOGS					
	LITHO	DLOGY LOG	ì		Refresh Re	ecord			Dict	ionary con	trol Hanoi	Urba	an 🗸	7 -
	Lithol	ogy		Click for Mo	re Unit De	escription		Top (m)	Base (m)	Thickness	Reliability	у В	ase Be	2d
▶	M - Bù	in	~					0.00	8.40	8.40	Chắc chắn	~	- ``	1
	CSM -	Sét, Cát, Bùn	~					8.40	20.70	12.30	Chắc chắn	~	- ~	~
	SC - Cá	át, Sét	~					20.70	24.00	3.30	Chắc chắn	\sim	- ~	~
	34 - Cá	it trung, Cát th	ô ~					24.00	37.90	13.90	Chắc chắn	~	- ~	~
	S - Cát		~					37.90	47.40	9.50	Chắc chắn	\sim	- ~	~
	G5 - Sc	ỏi, Sạn (cát rất	th 🗸					47.40	50.80	3.40	Chắc chắn	~	- ~	-
	PG - C	uội, Sỏi	~					50.80	83.00	32.20	Chắc chắn	\sim	- ~	/
*			~								Chắc chắn	\sim	- \	1

Figure 9: The Lithology Log tab of the Borehole Data Entry form.

5.3.1 Lithology codes

Lithology data is coded using two systems – one for unlithified or 'superficial' units and one for lithified units. Unlithified units are coded based on all the grainsize components in order of decreasing dominance. The codes for each grainsize are outlined in Table 3 and are based on the Udden & Wentworth scheme (Wentworth, 1922). Only the grainsizes that are observed throughout a unit are defined in the main lithology code; the additional, very minor components are recorded in the Additional Properties form (see Section 5.4). Codes can be up to five characters long to record as much lithological data as possible, however when exporting lithology data you may choose to perform some data querying to reduce the string length to aid in correlation and comparison. See Appendix 1 for worked examples on how to use the coding scheme for unlithified units.

The coding scheme for lithified units is currently limited to a few common lithologies and can be built up as the database is used more widely (contact the Data and Records Manager if it is necessary to add new codes). The current lithology codes should be sufficient for use within the Hanoi Urban Project.

5.3.2 Unit Description

This section should be used to contain a text description of the unit. You may transcribe the text from the original version word-for-word, or provide a summary. With either option, you should ensure that you have included details that are not represented within the coding methodology.

5.3.3 Top, Base and Thickness

These three measurements should always be recorded in metres to two decimal places. Top depth for the first unit of a borehole is automatically set as 0.00 m, but can be changed if this is not appropriate. Once the Base depth for the first unit is entered, it is then automatically infilled as the Top depth for the next unit. The unit Thickness is automatically calculated when Top and Base depths are infilled. If a mistake in the depth entries is noticed, ensure that all affected values are changed/updated, as the auto-infill function for the Top depth and Thickness variables doesn't automatically update retrospectively.

5.3.4 Reliability

The Reliability code, also known as Depth Reliability, describes how trustworthy you find the depth measurement data. This may be based on the measurements being rounded to the nearest metre, or how legible the borehole log details are and whether you're confident that you have read them correctly. It uses a variation on the Kent methodology (Kent, 1964). Note that this is a fully subjective field and percentage certainty within each category is just a guideline.

Code	Grain size	Definition
В	Boulders	Clast size greater than 256 mm.
L	Cobbles	Clast size between 64 mm and 256 mm.
V	Gravel	Clast size between 2 mm and 64 mm; includes the Pebbles and Granules sub-categories.
Р	Pebbles	Clast size between 4 mm and 64 mm; the upper part of the Gravel category.
G	Granules	Clast size between 2 mm and 4 mm; the lower part of the Gravel category.
S	Sand	Clast size between 1/16 mm and 2 mm; contains five sub- categories of sand size.
5	Very coarse sand	Clast size between 1 mm and 2 mm; part of the sand category.
4	Coarse sand	Clast size between 1/2 mm and 1 mm; part of the sand category.
3	Medium sand	Clast size between 1/4 mm and 1/2 mm; part of the sand category.
2	Fine sand	Clast size between 1/8 mm and ¼ mm; part of the sand category.
1	Very fine sand	Clast size between 1/16 mm and 1/8 mm; part of the sand category.
М	Mud	Clast size less than 1/16 mm; includes the Silt and Mud sub-categories.
Z	Silt	Clast size between 1/256 mm and 1/16 mm; the upper part of the Mud category.
С	Clay	Clast size less than 1/256 mm; the lower part of the Mud category.
0	Peat	Although not technically a grainsize, peat is very important when describing lithological units. Not to be confused with organic or carbonaceous material found within the units (see Section 5.4).

Table 3: GDGMV Unlithified Coding Scheme.

5.3.5 Base Bed codes

The Base Bed code describes the nature of the contact of the unit being described with the unit below. This is typically used to assign the position of geological rockhead (RH), or the total depth (TD) of the borehole. Not every unit requires a Base Bed code, so it is not a mandatory field. Rockhead denotes the base of the superficial deposits. Total depth is assigned to the lowest unit recorded in the borehole only if that is where the borehole ends; if the borehole continues beyond the last recorded unit, an additional unit is entered with a Lithology code of either 'NOCO' (No Core) or 'ROCK' (if bedrock) that extends to the base of the borehole, where 'TD' is coded.

5.4 LITHOLOGY LOG ADDITIONAL PROPERTIES DATA ENTRY

The Additional Properties function allows for the organised storage of further detail for each lithological unit that is not covered by the Lithology code. They range from specifics on grain sizes and shapes to mineralogical components and sedimentological features. To use the multiple functions, select the Additional Property that you want to assign from the list under Property Type. This will then adapt the rest of the form to match the Property Type that you are editing. See below for details on each Additional Property Type. If a certain Property value is only noted within one section of the unit, new Top and Base values can be added for that specific property.

5.4.1 Colour

Multiple colours can be recorded within this Additional Property, using the Qualifier option to describe how dominant each one is. There is no limit to the number of colours that can be recorded, however only one colour should be classed as Primary, Secondary, or Tertiary, but multiple colours can be assigned to either Trace, Minor, or Additional. Once a Value is selected, the code and full text is automatically entered into the Value Description. If more details need to be entered, such as the relationship between the multiple colours – laminated, mottled, etc. – these must be written into the Value Description after the automatically entered text.

	Bổ sung các tính	h chất tro	ng khoảng độ sâu đang ghi dữ liệu giữa	0 m. và	8.4 m.	Bề dày nội tạ	i đơn vị (m) 🔺					
	Loại tính chất	Giá trị	Giá trị sự miêu tả 🛛 Bấm để hiển thị thêm	Ghi chú về tính chất	Vòng loại	Đỉnh	Đáy					
Г	COL 🗸	ndd 🗸	- [ndd - nâu đỏ]		Chủ yếu - Hạ 🗸							
	COL 🗸	nd 🗸	- [nd - nâu đen]		Thứ yếu - Hạ 🗸							
Ś	COL 🗸	xs 🗸	- [xs - xám sáng]		bổ sung -Hại 🗸							
Ð	Dơn vị tính 14 4 3 of 3 🕨 H 🛤 🗞 No Filter Search 1											

Figure 10: Example of Colour data entry in the Additional Properties form.

If required, a qualifier can be added for colour. Figure 11 shows the available choices for colour qualifiers.

Г	Bố sung cá	: tín	h chất t	tron	g khoả	ng đ	iộ sâu đang gh	i dữ li	iệu giữa	0 m	ı. và	à <mark>3.5</mark> m.	Bề dày nội tạ	i đơn vị (n	n) 🔺
	Loại tính ci	ıất	Giá tr	i	Vòng	loạ	Giá trị sự miê	u tả	Bấm đế h	niến thị thên	n Ghi	i chú về tính chất	Đỉnh	Đáy	
P	COL	\sim	dd	\sim	6	\sim	[dd - đỏ] - [6	- Phụ	- Hang 3]						
	COL	\sim	dnh	\sim	4	Chủ	yếu - Hạng 1	ạt] -[[5 - Thứ yế	u - Hạng 2]					
	COL	\sim	nh	\sim	5	Thú	'yếu - Hạng 2	g] - [4	4 - Chủ yếu	- Hạng 1]					
E					6	Phụ	- Hạng 3		IGT					<u></u>	
Ð	dn vị tinh 🖪 🖣	9 of	11	1	9	Vết	- Hạng 4								
đn v	i khoan 🛚 → 🕇	of 9		F	7	ít h	7n - Hạng 5				_				
	14 4 4 -4 00T		KI K.***		8	bő :	sung -Hạng 6								

Figure 11: Colour Qualifier drop down demonstrated.

5.4.2 Mineralogical qualifiers

Multiple mineralogical qualifiers can be recorded within this Additional Property. No qualifier is necessary. Once a Value is selected, the code and full text is automatically entered into the Value Description. If more details need to be entered, such as the abundance, or increase/decrease towards the top of the unit, they can be added to the Value Description.

ſ		Bổ sung các tín	h chất tror	g khoảng độ sâu đang ghi dữ liệu giữa 🛛 0 m. và	8.4 m.	Bề dày nội tại đơn vị (m)	
l		Loại tính chất	Giá trị	Giá trị sự miêu tả Bấm để hiển thị thêm Ghi chú về tính chất	Vòng loại	Đỉnh Đáy	
Γ		MIN 🗸	fp 🗸 🗸	- [fp - Felspat (tràng thạch)]	~		
Γ		MIN 🗸	gc 🗸 🗸	- [gc - Glauconit]	~		Ш
Ē	ø	MIN 🗸	qu 🗸	- [qu - Thạch anh]	~		-
Ī	Đơr	n vị tính 🛯 🖣 🛛 of	3 ▶ ₩	No Filter Search			

Figure 12: Example of Mineralogical Qualifier data entry in the Additional Properties form.

5.4.3 Sedimentary Structures

Multiple sedimentary structures can be recorded within this Additional Property. This Additional Property records numerous different types of sedimentary structure, and as such you may enter multiple values for a single lithological unit. Depositional sedimentary structures, as well as bioturbation, and diagenetic structures are included within this Additional Property. Once a Value is selected, the code and full text is automatically entered into the Value Description. If further details need to be added, they can be entered into the Value Description.

Γ	Bổ sung cá	ic tín	h chất t	ror	ng khoảng độ sâu đang ghi dữ liệu giữa 0 m. và	8.4 m.	Bề dày nội tạ	i đơn vị (m) 🔺
L	Loại tính c	hất	Giá tr	I	Giá trị sự miêu tả Bấm để hiến thị thêm Ghi chú về tính chất	Vòng loại	Đỉnh	Đáy
P	SED	\sim	BDT	\sim	- [BDT - Thinly bedded]	~		
Г	SED	\sim	BTL	\sim	- [BTL - Low bioturbation]	~		
Г	SED	\sim	NDE	\sim	- [NDE - Early-stage diagenetic nodules]	~		•
£)ơn vị tính 🛯 ┥	1 of	3	M	No Filter			

Figure 13: Example of Sedimentary Structure data entry in the Additional Properties form.

5.4.4 Grain Sorting

The grain sorting codes are based on the standard five option dictionary used within sedimentological descriptions. It is preferable that only one grain sorting Value is recorded, however it is recognised that there may be some occasions when multiple grain sorting values are required. Currently there is no option to describe a range of grain sorting. Once a Value is selected, the code and full text is automatically entered into the Value Description. If further details need to be added, they can be entered into the Value Description.

Code	Grain sorting	Definition
VWS	Very well sorted	Grains sorted to 0.35 SD
WS	Well sorted	Grains sorted to 0.5 SD
MS	Moderately sorted	Grains sorted to 0.7 SD
PS	Poorly sorted	Grains sorted to 1.0 SD
VPS	Very poorly sorted	Grains sorted to 2.0 SD

	Bổ sung các tín	h chất tror	ng khoảng độ sâu đan	ng ghi dữ liệu giữa	0 m. và	8.4 m.	Bề dày nội tạ	ại đơn vị (m)
	Loại tính chất	Giá trị	Giá trị sự miêu tả	Bấm để hiến thị thêm	Ghi chú về tính chất	Vòng loại	Đỉnh	Đáy
\mathbf{P}	GSORT 🗸 🗸	WS 🗸	- [WS - Well sorted]		~		
*	~	~				~		
Ðơ	n vị tính 🕅 → 🔤 1 of	1►₩	No Filter Sea	rch				

Figure 14: Example of Grain Sorting data entry in the Additional Properties form.

5.4.5 Dominant, Maximum and Minimum Sand Grain Size

The Sand Grain Size Additional Properties use the Udden & Wentworth scheme as their basis, as in the Lithology code (Section 5.3.1). This is only used for adding detail to the definition grains that fall in the 'sand' category. 'Very fine grained sand with medium to very coarse sand' would have a lithology code of '1S', a Maximum Sand Grain Size of '5', a Minimum Sand Grain Size of '1', and a Dominant Sand Grain Size of '1'.

Although the data type can be assigned whenever sand is a component part of the lithology, it is mostly used when the dominance of the different sand grain sizes is not clear. An example is 'coarse and fine sand' would be coded within the Lithology data type as 'S' with the Maximum Sand Grain Size being '4' and the Minimum Sand Grain Size as '2', the Dominant Sand Grain Size would not be used in this example. This would be different to 'coarse sand with fine sand', where the Lithology code would be '42' and the Sand Grain Size Additional Property would not be required. Once a Value is selected, the code and full text is automatically entered into the Value Description. If further details need to be added, they can be added to the Value Description.

Г	Bố sung các	tín	h chất	tron	ıg khoảng	độ sâu đang ghi dữ l	liệu giữa	0 n	n. và	3.5	m.	Bề dày nội t	ại đơn vị (m)	
L	Loại tính ch	ất	Giá t	rį	Vòng loạ	Giá trị sự miêu tả	Bấm đế hi	iến thị thêr	n Ghi cl	hú về tính	chất	Đỉnh	Đáy	
Г	COL	\sim	nh	\sim	4 ~	[nh - nâu hồng] - [4 - Chủ yếu	- Hạng 1]						
	GSHP	\sim	BL	\sim	~	[BL - Bladed]								
P	DGS	\sim	4	~	~	[4 - Cát thô]								Ţ
Ð	dn vị tính 🛯 🖣	13 oʻ	2	2 -	Cát hạt nh	ç					Fine sand			
in v	i khoan 🛯 🗐 🕇	of 9	1	1 -	Cát mịn						Very fine :	sand		
E			5	5 -	Cát rất thờ	j					Very coars	e sand		
an	I → 1 of 285	F 1	4	4 -	Cát thô						Coarse sar	nd		
	3 3 - Cát trur										Medium s	and		

Figure 15: Example of Dominant Grain Size data entry in the Additional Properties form.

Maximum and Minimum Grain Size values are a different type but the entry method is the same as for Dominant Grain Size, and their values are constrained by the same dictionary.

5.4.6 Grain Shape

The dictionary for Grain Shape is based on the standard four category system used when describing the morphological shape of deposited clasts (see Figure 16). It is designed to be used for the description of larger grain sizes, e.g. pebbles to boulders, rather than finer grains. The system is based on a ratio between the triaxial dimensions of the clast. The dictionary contains entries with multiple shape categories within a single value. Once a Value is selected, the code and full text is automatically entered into the Value Description. If further details need to be added, they can be added to the Value Description.

Figure 16: Illustration of grain shape and relationship of triaxial dimensions. Alternative terminology includes: Oblate – Disc; Equant – Spheroid; Prolate – Rod. Modified after Nichols, 1999.

	Bố sung các t	ínt	n chất t	trong khoảng (độ sâu đang ghi dữ li	ệu giữa	0 m	n. và	3.5	m.	Bề dày nội t	ai đơn vị (m) 🔺
	Loại tính chấ	ť	Giá tr	į Vòng loạ	ạ Giá trị sự miêu tả	Bấm đế hiến	thị thên	n Ghi ch	iú về tín	h chất	Đỉnh	Đáy
	COL	\sim	nh	✓ 4	r [nh - nâu hồng] - [4	l - Chủ yếu - Hạ	ng1]					
\$	GSHP	\sim	BL	 ✓ 	/ [BL - Bladed]							
*		\sim	BL	BL - Bladed						Bladed		
Ðđ	avitính M 4 13	2 of	BLPL	BLPL - Bladed	d and prolate					Bladed an	d prolate	
in ui	klasse M. d. T.	4 OI	EQ	EQ - Equant						Equant		
ni vi	kriuan 🖣 👘 🖬	19	EQBL	EQBL - Equant	nt and bladed					Equant an	d bladed	
an M	1 of 285		EQPL	EQPL - Equant	nt and prolate					Equant an	d prolate	
	101205	'	EBP	EBP - Equant,	, bladed and prolate					Equant, bl	aded and pro	late
			ОВ	OB - Oblate						Oblate		
			OBBL	OBBL - Oblate	e and bladed					Oblate an	d bladed	
			OBEC	OBEQ - Oblat	te and equant					Oblate an	d equant	
			OBPL	OBPL - Oblate	e and prolate					Oblate an	d prolate	
			OBP	OBP - Oblate,	e, bladed and prolate					Oblate, bl	aded and pro	late
			OEB	OEB - Oblate,	, equant and bladed					Oblate, ed	, quant and bla	ded
			OEBP	OEBP - Oblate	te, equant, bladed an	d prolate				Oblate, ed	quant, bladed	and prolate
			OEP	OEP - Oblate,	e, equate and prolate					Oblate, ed	uate and pro	late
			PL	PL - Prolate	, ,					Prolate		

Figure 17: Example of Grain Shape Properties data entry in the Additional Properties form.

5.4.7 Grain Sphericity

The Grain Sphericity Additional Property type is used to describe the shape of the larger grains, more specifically how close to a perfect sphere they are. Grains range from high to moderate to low sphericity. The dictionary contains entries with multiple sphericities in a single Value, e.g. 'low to moderate sphericity'. Examples of high and low grain sphericity can be seen in Figure 19. Once a Value is selected, the code and full text is automatically entered into the Value Description. If further details need to be added, they can be entered into the Value Description.

Γ	Bố sung các	tín	h chất t	tron	ıg khoản	ıg d	ộ sâu đang ghi dữ liệu giữa 🛛 0 m. và 3.5	m.	Bề dày nội tạ	i đơn vị (m)	
	Loại tính ch	ất	Giá tr	i	Vòng l	oạ	Giá trị sự miêu tả 🔹 Bấm đế hiến thị thêm <mark>Ghi chú về tính</mark>	chất	Đỉnh	Đáy	
	COL	\sim	nh	\sim	4	\sim	[nh - nâu hồng] - [4 - Chủ yếu - Hạng 1]				-
	GSHP	\sim	BL	\sim		\sim	[BL - Bladed]				
1	GSC	~	HS	~		\sim	[HS - High sphericity]				· •
Ð	in vi tính 🛯 🖣	13 o	HS	HS	- High s	phe	ricity	High spher	ricity		
tn v	ikhoan I∢ → 1	of 9	LS	LS ·	- Low sp	her	icity	Low spher	icity		
			LHS	LHS	6 - Low t	o h	gh sphericity	Low to hig	h sphericity		
an	▲	⊢ 1	LMS	LM	S - Low f	to r	oderate sphericity	Low to mo	derate spheri	city	
			MS	MS	- Mode	rat	e sphericity	Moderate	sphericity		
			MHS	MF	IS - Mod	lera	te to high sphericity	Moderate	to high spheri	city	

Figure 18: Example of Grain Sphericity data entry in the Additional Properties form.

5.4.8 Grain Angularity

The Grain Angularity Additional Property type contains six Values to describe the degree of smoothing on a clast. More angular Values indicate that the clast has lots of sharp corners, whereas more rounded Values indicate that the surface of the clast is much smoother. Like the Grain Sphericity Additional Property type, this is also dominantly applied to larger grain sizes, e.g. pebbles to boulders. The dictionary contains entries with multiple angularity categories within a single Value, e.g. 'subangular to poorly rounded'. Examples of Grain Angularity can be seen in Figure 19. Once a Value is selected, the code and full text is automatically entered into the Value Description. If further details need to be added, they can be entered into the Value Description.

Figure 19: Grain sphericity and Grain angularity. Modified from Powers 1953.

	Bố sung các t	ính	n chất t	ron	g khoả	ng đ	iộ sâu đang ghi dữ l	iệu giữa	0 n	n. và	3.5	m.	Bề dày nội t	ại đơn vị (m) 🔺
	Loại tính chấ	t	Giá tr	i	Vòng	loạ	Giá trị sự miêu tả	Bấm đế hiếr	n thị thêr	m Ghi a	hú về tính	n chất	Đỉnh	Đáy
	COL	~	nh	\sim	4	\sim	[nh - nâu hồng] - [4	4 - Chủ yếu - H	ang 1]					
	GSHP	~	BL	\sim		\sim	[BL - Bladed]							
1	GAG	~	AN	~		\sim	[AN - Angular]							
Ðđ	n vi tính 🛯 🔹 13	l of	AN	AN	- Angu	lar						Angular		
In vị	khoan I	f 9	ANPF	AN	PR - An	gula	ar to poorly rounded	k				Angulart	o poorly round	led
_		-	ANRC	AN	RO - Ar	ngul	ar to rounded					Angulart	o rounded	
an M	← 1 of 285 →	•	ANSA	AN	SA - An	igula	ar to subangular					Angularti	o subangular	
			ANVF	AN	VR - Ar	ngul	ar to very rounded					Angularti	o very rounded	k
			PR	PR	- Poorl	y ro	unded					Poorly ro	unded	
			RO	RO	- Roun	ded						Rounded		
			ROVF	RO	VR - Ro	und	ed to very rounded					Rounded	to very rounde	ed
			SA	SA	- Subar	ngul	ar					Subangul	ar	
			SAPR	SAF	PR - Sub	pang	gular to poorly roun	ded				Subangul	ar to poorly ro	unded
			SARO	SAF	RO - Sul	ban	gular to rounded					Subangul	ar to rounded	
			SAVR	SAV	VR - Sul	ban	gular to very rounde	d				Subangul	ar to very roun	ided
			VA	VA	- Very	ang	ular .					Very angu	lar	
				VA	AN - Ve	ery a	ngular to angular					Very angu	larto angular	
			VAPR	VA	PR - Ve	ry a	ngular to poorly rou	nded				Very angu	lar to poorly r	ounded
			VARC	VA	RO - Ve	ery a	ngular to rounded					Very angu	lar to rounded	k

Figure 20: Example of Grain Angularity data entry in the Additional Properties form.

5.5 STRATIGRAPHIC LOG DATA ENTRY

The Stratigraphy Log section of the Borehole Data Entry form records the stratigraphical unit interpretations and is used in conjunction with the Lexicon Database (see Report OR/21/019). It is important that any stratigraphical unit used within the database has an entry within the Lexicon Database created first, and the necessary details can then be ported from there into the borehole database; this will minimise the risk of errors occurring.

It may be the case that the stratigraphy data is already included within the borehole log or associated documents. As you are entering this data into the database, it is important to do a quick QC to ensure that you are happy with the interpretation. It may be that the data is old and interpretations have changed since it was initially written, or that a typographical error was made during the process. If there is no interpretation available, interpret using your own knowledge and understanding of the stratigraphy. Other data sources, like geological maps, nearby boreholes, and additional reports may help in your interpretation. Within the Hanoi Urban Project, biostratigraphical data has often been used to inform stratigraphical interpretations.

					- 2 44.2	11.0 U.a.a.	i t tak an
Địa tàng					Quản lý từ	r điện Hano	i Urban 🗸
Địa tầng	Bấm đế hiến thị thêm	Ghi chú về địa tầng	Đính m.	Đáy m.	Bề dày	Mức độ tin cậ	base bed
Image: A state of the state			0.00			Chắc chắn 🗸	- ~

Thạch học Địa tầng CLĐ Phong Hóa TN XTC MNN TC TCN Xuất bản ghi

Figure 21: The Stratigraphy Log tab of the Borehole Data Entry form.

5.6 STRATIGRAPHY

Select the interpreted Stratigraphy code at this data entry point. In addition to all the stratigraphic unit codes, there are additional codes that separate naturally deposited units from surface weathering and human activities. The first code entered for a borehole is often likely to be either 'SOIL', or one of the anthropogenically influenced codes such as 'MGR' (Made ground), unless the superficial deposits or bedrock are directly exposed at surface. If core recovery has been poor and there are sections of the core missing, the code 'VOID' can be used to signify no data. If the borehole has drilled deep enough to hit basement, the code 'BMNT' should be used – this will generally be at the base of the borehole and the code should not be used for anything overlying other lithostratigraphical units.

5.7 STRATIGRAPHY NOTES

This section should be used to contain any additional stratigraphical description of the unit, alongside a record of the data used to come to that conclusion if appropriate. You should ensure that you have included details that are not represented elsewhere within the coding methodology.

5.8 TOP / BASE / THICKNESS

These three measurements should always be recorded in metres to two decimal places. Top depth for the first stratigraphic unit of a borehole is automatically set as 0.00 m, but can be changed if this is not appropriate. Once the Base depth for the first stratigraphic unit is entered, it is then automatically infilled as the Top depth for the next unit. The unit Thickness is automatically calculated when Top and Base depths are infilled. If a mistake in the depth entries is noticed, ensure that all affected values are changed/updated, as the auto-infill function for the Top depth and Thickness variables doesn't automatically update retrospectively.

5.9 DEPTH RELIABILITY

Currently, the Reliability code, also known as Depth Reliability, describes how trustworthy the assigned depths for the stratigraphic unit are. This may be based on how confident you are in the stratigraphical interpretation, whether the measurements have been rounded to the nearest

metre, how legible the borehole log details are and whether you're confident that you have read them correctly, etc. It uses a variation on the Kent methodology (Kent, 1964). Note that this is a fully subjective field and percentage certainty within each category is just a guideline.

An alternative use for the Reliability code could be used instead. GDGMV can discuss the use of the Reliability code to refer to the entire unit definition, rather than just the reliability of the depths. If this use is decided upon then this section should be updated to represent that.

5.10 BASE BED

The Base Bed code describes the nature of the contact of the stratigraphical unit being described with the unit below. This is typically used as standard to assign the position of geological rockhead (RH), or the total depth (TD) of the borehole. Rockhead denotes the base of the superficial deposits. Base Bed can also be used to indicate where a contact is unconformable or gradational, etc. Not every unit requires a Base Bed code, so it is not a mandatory field. Total depth is assigned to the lowest unit recorded in the borehole only if that is where the borehole ends; if the borehole continues beyond the last recorded unit, TD is not assigned, or an additional unit is entered with a Lithology code of 'NOCO' (No Core) that extends to the base of the borehole.

6 Borehole search function

Several tools have been designed to aid in the search for specific boreholes. These search tools are located on the top right of the main Borehole Entry Form (Figure 22). In all search tools, all borehole records remain available to scroll through – the search merely navigates through the records until it gets to the required one. All search methods relate to the Borehole Name only.

-8	Bi	ểu mẫu biên tập nhập dữ	liệu lỗ khoan			-	- 🗆	×
DỮ LIỆU CHỈ MỤC LỖ KHOAN	Lỗ khoan mới 🗙	ióa lỗ khoan hiện tại	Sắp xếp theo	🗸 Tìm kiếm	bằng vị trí ID 🗸	bằng tên		~
Tên lỗ khoan H10BNSL	Tọa độ x <mark>586994</mark>	Tọa độ y 2	326194	Kiểm tra tọa độ	Hệ tọa độ	3405 - Vietn	am - onsh	ore 🗸
Xây dựng GDGMV_ID GDGMV	_ID F4868Dc4-00	02	Tọa độ 2	Z (m) 7.95 Kiểu	ı ? 🗸 🗸	Tổng độ sâ	u (m) 83.5	0
Chỉ mục đầy đủ 👘 Xem tài li	ệu lỗ khoan	Ghi chú						

Figure 22: Search and Group By tool locations are highlighted by the thick red box.

Running from left to right as displayed at the top of the Borehole Entry Form, there are 3 drop down list boxes: Order by (Sắp Xếp Theo); Search by location ID (Tìm Kiếm Bằng Vị Trí Id); Search by name (Bằng Tên). Each of these is detailed below.

6.1 ORDER BY

This drop down changes the grouping of ordering of the first search box according to the values selected. All returns are first returned grouped by the value selected and then in alphabetical order within each group. The options available are:

- 1. GDGMV_ID
- 2. Borehole Name
- 3. Coder of the borehole
- 4. Date of Coding
- 5. Project

🗐 Biểu mẫu biên tập nhập dữ liệu lỗ khoan	- 🗆 X
DỮ LIỆU CHỈ MỤC LỖ KHOAN Lỗ khoan mới Xóa lỗ khoan hiện tại Sắp xếp theo GDGMV ID 🗸 Tìm kiếm bằng vị trí lũ	D 🗸 bằng tên 🗸
Tên lỗ khoan CĐ11 Tọa độ x 585292.46 Tọa độ y 2332040.84 Kiểm tra tọa độ Hệ tọa đ	GDGMVID Bore Name Xcoord Ycoord Coder Project Date
Xây dựng GDGMV ID GDGMV ID NOSQNAME-20190816085329 Tọa độ Z (m) 8.36 Kiểu ?	F4868Cd2-0007 G6 577280 2335240 ROMC Hanoi Urban 16/07/2019
Chỉ mục đầy đủ Xem tài liêu lỗ khoan Ghi chú	F4868Cd2-0009 G8 577653 2334967 ROMC Hanol Urban 16/07/2019
Thach học Địa tầng CLĐ Phong Hóa TN XTC MNN TC TCN Xuất bản ghi	F4868Da4-0001 H1DA 589332 2340287 ROMC Hanoi Urban 16/07/2019
	F4868Da4-0002 H2DA 590152 2340449 ROME Handi Urban 16/07/2019 F4868Da4-0003 H3DA 590052 2340260 ROME Handi Urban 16/07/2019
Thạch học Bấm đề hiến thị thêm Ghi chú về thạch học Đỉnh (m) Đáy (m) Bề dày M	F4868Da4-0005 H5DA 589733 2340095 ROMC Hanoi Urban 17/07/2019
▶ SOIL-Đất ∨ 0.00 5.00 C	1500000 0000 HDDA 500000 200000 HOM Hanoi Urban 17/07/2019
1 - Cát min v 5.00 20.00 15.00 C	143650C1-0002 G10 579458 2355776 ROMC Handi Urban 16/07/2019 14 F4686DC1-0003 G12 579142 2355776 ROMC Handi Urban 16/07/2019 ▼

Figure 23: Scrolling to the required Borehole

6.2 SEARCH BY LOCATION ID

This dropdown list box allows the user to scroll through the values returned and on selecting a row will navigate to, and display, the selected borehole on the form.

6.3 SEARCH BY NAME

This option allows the user to start typing characters into the box in order to find any given borehole. This is best utilised by clicking on the dropdown arrow and then typing in characters which will navigate through the displayed list until the user selects one by clicking on it in the list. Note that as you start to type the list will navigate to the first occurrence of each letter in the order in which you enter them (in Figure 24, TD has been entered and the list has navigated to the first occurrence of TD and all other records beginning with TD are below it.

1	-8			Biểu mẫu biên tập nhập	dữ liệu lỗ khoan					- 0	×					
ī	ΟŨΙ	LIỆU CHỈ MỤC LỖ K	HOAN Lễ khoan mớ	i 🛛 Xóa lỗ khoan hiện tạ	Sắp xếp the	GDGM∨ ID	🗸 🗸 Tìm kiếm	bầng vị trí IC) 🗸 bầng tên	TD	~					
Ŀ	Tên l	lő khoan TD.14	Tọa độ x 58	3976.37 Tọa độ y	2332090.11	Kiểm	tra tọa độ	Hệ tọa đ	3405 - Viet	Borehole Nar	GDGMV_ID	XCoord	YCoord	Coder	Project Hanai Urban	^
				1,0001	To	- 46 7 (m) 7 9	991 Kiá	2	Tống độ c	TD.1	F4880Bb1-0019	592651.75	2322048.88	ROMG	Hanoi Urban	
		valy doing opointe_ip	GDGIMV_ID P4060DC	1-0001	100	1 dộ 2 (m) 7.5	NIE NIE	u	i i i i i i i i i i i i i i i i i i i	TD.10	F4880Ba1-0023	579356.99	2318857.04	ROMG	Hanoi Urban	
	С	Chỉ mục đầy đủ 👘 🚿 🔿	Kem tài liệu lỗ khoan	Ghi chú						TD.14	F4868Dc1-0001	583976.37	2332090.11	ROMG	Hanoi Urban	
	_									TD.15	F4868Dc3-0001	576256.57	2322126.00	ROMG	Hanoi Urban	
	Th	ạch học Địa tắng Ci	LÐ PhongHóa TN 3	XTC MNN TCTCN	Xuất bản ghi					TD4	F4868Dc4-0050	585271.99	2326382.97	ROMG	Hanoi Urban	•
		~. 0								TD.6	F4880Bb1-0020	593068.18	2319456.44	ROMG	Hanoi Urban	
		GHI DƯ LIỆU THẠ	VCH HỘC	Làm mới dữ liệu			Q	uán lý từ đi	ến <mark>Hanoi Ur</mark>	DA TD.8	NOSQNAME-20190	585095.42	2331632.83	ROMG	Hanoi Urban	
		Thach hoc	Bấm để hiến thi	thêm Ghi chú về thạch	hoc	Đinh (m)	Đáv (m)	Bề dày Mi	ức độ tin cậ Liên	he TEST KEN 64	NOSQNAME-10950	12345	23456	kigl	Hanoi Urban	
		1		anom anona re argor				,		TMH10	F4880Ba2-0010	588121	2321805	ROMG	Hanoi Urban	
	1	Z - Bột	~			0.00	2.20	2.20 Ch	iắc chắr 🗸 🛛 UC	TMH11	F4880Ba2-0011	588499	2321864	ROMG	Hanoi Urban	
	H									TMH14	F4880Ba2-0012	588562	2322077	ROMG	Hanoi Urban	
		ZC - Bot, Set	~			2.20	3.00	0.80 Cr	iac char 🗸 🕒	TMH15	F4000Bd2-0015	200010	2321734	ROMG	Hanoi Urban	
		1 - Cát mịn	~			3.00	6.30	3.30 Ch	iắc chắt 🗸 🛛 -	~		000200	1021040	1.101.10	Thanks of ball	-
		C - Sét	~			6.30	15.50	9.20 CH	iắc chắr 🗸 🛛 -	~						

Figure 24: Using the Bằng Tên search function to scroll to and then select a borehole.

Selecting the highlighted row (in this case **TĐ3** as shown above) will navigate the form to the selected record as seen in Figure 25.

	Biểu mẫu biên tập nhập dữ liệu lỗ khoan — 🔲 🗙												
DỮ LIỆU CHỈ MỤC LỖ KHOAN 🗔	khoan mới 🛛 Xóa lỗ khoan hiện tại 🗍 Sắp xếp the	o GDGMV ID 🗸 Tìm kiến	n bằng vị trí ID 🗸 bằng tên 📔 🗸										
Tên lỗ khoan 🔀 Tọa	độ x <mark>584412.43</mark> Tọa độ y <mark>2326913.07</mark>	Kiểm tra tọa độ	Hệ tọa độ 🛛 3405 - Vietnam - onshore 🗸										
Xây dựng GDGMV_ID GDGMV_ID	F4868Dc3-0037 To	a độ Z (m) 7.712 Ki	ểu ? 🗸 Tổng độ sâu (m) 60.00										
Chỉ mục đầy đủ 👘 Xem tài liệu là	i khoan Ghi chú												
Thạch học Địa tắng CLĐ Phong H	lóa TN XTC MNN TC TCN Xuất bản ghi												
GHI DỮ LIỆU THẠCH HỌC	Làm mới dữ liệu		Quản lý từ điến 🛛 Hanoi Urban 🗸 🔺										
Thạch học Bấm để	<mark>ế hiến thị thêm</mark> Ghi chú về thạch học	Đỉnh (m) Đáy (m)	Bề dày Mức độ tin cậ Liên hệ cơ bản										
🕨 SOIL - Đất 🔍		0.00 0.30	0.30 Chắc chắt 🗸 -										
C-Sét 🗸		0.30 3.00	2.70 Chắc chắt 🗸 - 🗸										
CS - Sét, Cát 🗸		3.00 3.50	0.50 Chắc chắt 🧹 - 🗸										
C - Sét		2 50 7 00	2 50 Chắc chất vụ Lực										

Figure 25: By selecting the TĐ3 record in Figure 24, the data for the TĐ3 borehole will be displayed in the Forms and be available for viewing and editing.

7 Dictionary Control

7.1 EXAMINING SOME OF THE MORE IMPORTANT AND REGULARLY USED DICTIONARIES

Quản lý từ điển This button appears on several forms in the application and when pressed will take the user to a dictionary control form where examination and (if appropriate permissions are granted) edits and additions may be made.

0		GRAIN SIZE				
Kiếm so	át Từ điển Nhấn vào thẻ để mở từ điển mà ng vào bất cứ từ điển nào, hãy nhớ nh chất thạch học với các thay đổi.	ười dùng muốn xem. Nếu ín nút Cập nhật khi hoàn t	người dùng :hành để làm	sửa chữa hoặc bổ sun mới từ điển trung tâi	ng dữ liệu m về tính	Cập nhật điển
a tắng Thạch học	Hiện Mục đích Nền đá Bản ghi Tính bào trạng lỗ lỗ khoan gốc khác mật NLG/MH Màu sắc khoan	Diểm bắt Kích cỡ Độ mài Độ đầu hạt tròn của cạn hạt hạt	þgóc Hình ih của dạng hạt hat	Độ chọn Cầu trúc Khoán lọc của trắm tích sản hạt	g Mức độ chỉnh sửa phong hằng hóa	
🛛 Mã hiệu 👻	Tên	- Hang -	Hiện trạn 👻	Mã hiện trạng địnl 👻	Tên mã sắp xếp)
тви	Upper Thai Binh - alluvial		С	PNDUPG	INFORMAL	
TBL	Lower Thau Binh		С	PNDUPG	INFORMAL	
TBLA	Lower Thai Binh - alluvial		С	PNDUPG	INFORMAL	
TBLL	Lower Thai Binh - alb		С	PNDUPG	INFORMAL	
НН	Hai Hung		С	PNDUPG	INFORMAL	
HHU	Upper Hai Hung - I		С	PNDUPG	INFORMAL	
ннм	Middle Hai Hung - marine		С	PNDUPG	INFORMAL	
HHL	Lower Hai Hung		С	PNDUPG	INFORMAL	
HHLL	Lower Hai Hung - Ib		С	PNDUPG	INFORMAL	
HHLB	Lower Hai Hung - amb		С	PNDUPG	INFORMAL	
VP	Vinh Phuc		С	PNDUPG	INFORMAL	
VPU	Upper Vinh Phuc - alb		С	PNDUPG	INFORMAL	
VPM	Middle Vinh Phuc - I		С	PNDUPG	INFORMAL	
VPL	Lower Vinh Phuc - alluvial		С	PNDUPG	INFORMAL	
HN	Ha Noi		С	PNDUPG	INFORMAL	
HNA	Ha Noi - alluvial		С	PNDUPG	INFORMAL	
HNP	Ha Noi - ap		С	PNDUPG	INFORMAL	
LC	Le Chi - alluvial		С	PNDUPG	INFORMAL	
QU	Quaternary, unclassified		С	PNDUPG	INFORMAL	
QUA	Quaternary, unclassified - alluvial		С	PNDUPG	INFORMAL	
QUE	Quaternary, unclassified - e		С	PNDUPG	INFORMAL	
QUL	Quaternary, unclassified - hl		С	PNDUPG	INFORMAL	
QUH	Quaternary, unclassified - hm		С	PNDUPG	INFORMAL	
QUM	Quaternary, unclassified - marine		С	PNDUPG	INFORMAL	
NU	Neogene, unclassified		С	PNDUPG	INFORMAL	
SOIL	Top soil		С	PNDUPG	INFORMAL	
lecord: I4 → 1	of 35 FIFE No Filter Search	1	1-	1	1	

Figure 26: The Dictionary Control Form showing Stratigraphy Dictionary Tab values.

Each Tab on the Dictionary Control Form allows access to a different dictionary. Upon pressing a Tab the Form will display the values for the dictionary under it and the tab background will turn pink to show it has been selected (Figure 26). The Dictionary Control Form does not display all the dictionaries available or used within the Application, but does contain those that are most likely to be edited or viewed.

The final tab is not strictly a dictionary, but displays the current filepath to any documents associated with any of the records (Figure 27). The filepath should be set to the GDGMV-approved storage area for any files related to the boreholes and their data. As a result, this filepath should not be edited or changed as the links to all related documents would be lost. However, if an organisational decision has been made to re-locate these documents to a different part of the server or to another server, this filepath will need to be updated.

Figure 27: Current path to the root folder for any documents stored on the server.

8 Borehole Entry Form – Additional sections

For further details on any of the following data types and techniques, please contact the relevant specialist within GDGMV.

8.1 ROCK QUALITY DESIGNATION

Rock-quality designation (RQD) is a rough measure of the degree of jointing or fracture **in a** rock mass, measured as a percentage of the drill core in lengths of 10 cm or more.

Methodology: It is the borehole core recovery percentage incorporating only pieces of solid core that are longer than 100 mm in length measured along the centreline of the core. Typically there will be several such measurements taken along the core from the borehole.

Thạch học Địa tầng CLĐ Phong Hóa TN XTC MNN TC TCN Xuất bản ghi

Γ	RC) D	Log	For a new RQD loge depths as tops are i	enter the first inte nherited from abo	rval top then your ve. Youcan edit to	Quản lý từ điển	Hanoi U	rban 🗸	
	đo	1	Đỉnh m.	Đáy m.	Recovery %	RQD %	Notes		Bề dày	Logger
I	RQ	2D	5.00	10.00	85	69			5.00	KIGL 🗸
Γ	* RQ	QD 🛛								KIGL 🗸

Figure 28: Rock Quality Designation data entry example.

8.2 WEATHERING ASSESSMENT

The weathering assessment log notes the approximate extent and degree of weathering encountered in a borehole.

Methodology: enter the degree of weathering encountered in any interval. The standard convention dictates that the values may be in roman numerals or as text e.g. "II" or "Slightly Weathered" (see Figure 29).

Т	hạch	ı học	Địa tầng	CLÐ	Phong	Hóa	TN XTC	MNN	TC TCM	Xuá	åt bản gh	i					
Γ	Ph	hong	, Hóa		Foranew W the rest of t	VEATHEI the logic	RING logente lepthsastop	er the first i sare inher	interval top ited fromal	then yo tove. Ed	uon <mark>ly need</mark> t lit tops if inter	o enterbase de valsare non cor	pthsfor ntiguous,	Quản lý từ điến	Hanoi U	rban	\sim
	đo	D ł	Đỉnh m.	Đáy	m.	Phor	ng Hóa phá	áp điến		B	lấm đế hiế	ến thị thêm	Phon	g Hóa Phong Hóa	Bề dày	Logg	er
	W	'EA	0.00		1.20	III - I	Moderate	ly weatł	<mark>herec</mark> ~						1.20	KIGL	\sim
	W	'EA	1.20		2.50	11 - S	lightly We	eathere	- <u>-</u>						1.30	KIGL	\sim
I	W	'EA	2.50		4.60	I - Fr II - S	esh lightly We	eathered	4						2.10	KIGL	\sim
	* w	'EA				111 - P	Noderate	ly weath	nered							KIGL	\sim
I						IV - F V - C	Highly we Completel	athered y weath	ered								
						VI - F	Residual s	oil									
						? - N ? - N	ot Availat lot Entere	d d									

Figure 29: Weathering assessment data entry example.

8.3 STANDARD PENETRATION TEST

The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil.

Methodology: Up to six measurements can be taken in any given sample. Enter the depth of the sample and a value for each of the number of blows recorded. Then enter the 'N' value from the log, which is the calculated "standard penetration resistance".

Th	ạch học	Địa tầng 🛛	CLÐPho	ng Hóa	тн хтс	MNN T		Xuất bản	ghi			
	SPT Lo	g									Quản lý từ điến	Hanoi Urban 🔽
	đo	Chiều sâu (m)	Kiếu lấy mẫu	Thứ nhất	Thứ hai	Thứ ba	Thứ tư	Thứ năm	Thứ sáu	"N"Giá trị	Ghi chú	Logger
	SPT	12.30	s v	1	5	2	4	5	7	18		KIGL 🗸
I	SPT	18.45	S ~	9	9	23	22	12	22	81		🗧 KIGL 🗸

Figure 30: Standard Penetration Test data entry example.

8.4 WATER LEVELS

Generally speaking this log records the level at which water was struck in a borehole. Often there is only a reference to a water strike and not what type of measurement has been taken. However, if any further data is available then in should also be recorded here. If available, make sure to enter the date and time that the measurement was taken.

GWL – Bi ket nước is used where there is no explicit water level 'type' value present, e.g. RWL, SWL and PWL are not recorded.

SWL - Strike Water Level is the depth at which water was first struck.

RWL - Rest Water Level is the level measured after a period of time has passed and is measured by dipping the level.

PWL - Pumped Water Level is another dipped measurement taken after a designated amount of pumping out of the water has taken place.

Thạch h	ọc Địa tầng	CLÐ Ph	ong Hóa	тн хтс	MNN	TC TCN	Xuất bản ghi	i							
Mự	c Nước Ngắ	^à m								Quản	lý từ điế	'n	Hanoi (Jrban	~
đo	Cách đo	Cá	íp độ (m)	Ngày		Thời gian	Ghi chú							Log	ger
🕨 🕞	. GWL	~	3.250	22/1	.2/2020	10:20								KIG	L 🗸
* <mark>GWI</mark>		GWL SWL RWL PWL	Bị kệt nư Strike W I Rest W Le Pump W I	ớc Level evel Level										KIGI	L

Figure 31: Water Levels data entry example.

8.5 AQUIFER PROPERTY LOG

The Aquifer Property Log is used to store data on specific aquifers that the well intersects. Enter the AQP Type followed value and measurement units. Then enter the date that the measurements were taken. Any additional details can be recorded in the Notes section.

Thạch học	Địa tầng 🛛	LÐ Phong Hóa	тн хтс	MNN	TC TCN	Xuất bản ghi	
тс тс	N						Quản lý từ điển 🛛 Hanoi Urban 🗸
đo	TCTCN đo	TCTCN Giát	trị Các c	đơn vị	Ngày	Ghi chú	thông dịch
		✓ 0.0	000		~		×

Figure 32: The Aquifer Property Log data entry form.

9 Data Export

9.1 DATA EXPORT FORM

The data export form tab opens shows the three data export options that are currently available within the Borehole Database Application. The system stores these spreadsheets and files to a folder called "Exports" specially created by the system in the directory where you saved your user entry file (*.accdb file) as explained in the red text on the form itself (see Figure 33). The system creates a unique filename for every export you make.

- Export all data to an Excel Comma delimited Spreadsheet.
- Export all data to an external CSV file
- Export all data to a set of CSV files formatted for easy use in Groundhog.

Select the required export format by ticking in the box to the left of your chosen option and press the button above (Xuất bản ghi). You will see a few message boxes detailing the progress of the process and reminding you where the files are saved.

Thạch học	Địa tầng	CLÐ	Phong Hóa	тн хтс	MNN	TC TCN	Xuất bản ghi	
Phần này bảng tính trong fol thời gian	cho phép r i với số lượi der project (đến giây)	gười ng các mà Ph cùng v	dung xuất TOÀ sheet phụ thu lần mềm tạo ra ưới "kiểu" và "l	N BỘ bản ộc vào kiế a. Nếu folc oại gói dữ	ghi đã r lu xuất i ler chư: 'liệu''. \	nhập ở địn mà người a tồn tại, h /í dụ: 2019	nh dạng thích hợp dùng yêu cầu. Fil nệ thống sẽ tạo ch 10417144906-Lith) cho nhiều gói dữ liệu khác nhau. Quá trình này sẽ tạo ra một e này sẽ được lưu trong thư mục "Exports", có thể tìm thấy ở no người dùng, Mỗi một file Excel được đặt tên theo ngày và Gen.xlsx
Tùy chọ Xuất Tùy chọ Xuất	n kiếu xuất bản ghi ơn kiếu xuất : toàn bộ dũ	chuyớ liệu c	ên gia đế hợp nhất					
☐ Xuất ☑ Xuất	tất cả dữ liệu tất cả dữ liệu	sang (sang (CSV Groundhog					
								Quản lý từ điến

Figure 33: Data Export Form.

Appendix 1

Appendix 1 contains a worked example to illustrate the real-world application of the digital borehole coding workflow.

EXAMPLE

This is a simple example extracted from a GDGMV Excel document containing multiple boreholes. Only data pertaining to the Borehole Index and Lithology Log was available within the document. Additional documents elsewhere within GDGMV may contain further data related to this borehole.

Lỗ Khoan		Tọa Độ		Lớp	Từ	Đến	Dày	Mô tả đặc điểm
	Х	Y	Z					
				1	0	1.5	1.5	Đất san nền
				2	1.5	4.5	3.0	Sét pha
				3	4.5	21.0	16.5	Cát hạt mịn
	589816	2330551	9860	4	21.0	22.0	1.0	Sét pha
				5	22.0	28.5	6.5	Cát pha lẫn sạn
	000010	2000001		6	28.5	32.5	4.0	Sét pha lẫn sạn
				7	32.5	34.5	2.0	Cát lẫn sạn
				8	34.5	45.5	11.0	Cát lẫn bột sét
				9	45.5	57.5	12.0	Cuội sỏi lẫn cát
				10	57.5	59.7	2.2	Sét kết

Table 4: Borehole Index and Log data table for H7DA coding example.

9.1.1 Borehole Index Data Workflow

The below data entry process is dealt with in order, with notes on check points and thought processes in between steps. The general workflow is to work through each data entry point in turn, from left to right, top to bottom.

9.1.1.1 BOREHOLE NAME:

This is a simple entry direct from the initial data – H7DA.

9.1.1.2 COORDINATES:

Before entering any coordinate data you, check that each coordinate is in a sensible format whether that format matches any of the typical coordinate systems in Vietnam, outlined in Table 1.

X Coordinate:

Having checked that the X coordinate value is in a sensible format, this is a simple entry direct from the initial data – 589816.

Y Coordinate:

Having checked that the Y coordinate value is in a sensible format, this is a simple entry direct from the initial data – 2339551.

Coordinate System:

In this case, the coordinates within the original data match with the coordinate system EPSG 3405 – VN-2000 / UTM zone 48N. At this point the coordinates for the borehole can be checked in a variety of ways to ensure everything is correctly entered, including a search for the location on the EPSG website to make sure that it is plotting in the correct area. The linked GIS project will not show the borehole at this stage, as a GDGMV ID needs to be generated first.

9.1.1.3 GDGMV ID:

Only click on the 'Create GDGMV ID' button when you are sure that the coordinate data is completely correct. Clicking the button generated the GDGMV ID 'F4868Da4-007'. This translates to grid square F4868Da4, and it is the 7th borehole that has been entered within that grid square. Clicking the button also creates a new folder named with the GDGMV ID that can be opened by clicking the 'Open Current Scans' button. Once you have the correct folder open, copy the document or documents that are associated with the borehole database entry into that folder.

If the data was derived from a spreadsheet with multiple logs entered into it the procedure is as follows.

- 1. Manually create a folder named after the spreadsheet in the
- \\URBAN_SERVER\Data\boreholes\Borehole_scans\spreadsheet1
- 2. Create a shortcut to that folder.
- 3. Rename the shortcut to the name of the spreadsheet e.g. **spreadsheet1**.
- 4. Now copy the shortcut and paste it into the folder created above in the 'Create GDGMV ID button'.
- 5. Repeat action number 4 for every borehole in the spreadsheet.

9.1.1.4 Z VALUE / ELEVATION:

As the location of this borehole is in Hanoi, we know that it is unlikely to have an elevation of 9860 m, or even 98.6 m. We can then conclude that the elevation data has been recorded in millimetres. As the standard data entry unit is metres, we must convert 9860 mm to metres. The resulting data entry is 9.86 m.

9.1.1.5 ELEVATION TYPE:

As there is no data available for this data type within the current document, there are two options. Firstly, assign the value '!', which means 'not available'. The second option is to search for additional data relating to the borehole in the archives. If additional data is found, a digital copy should be saved in the folder previously mentioned (see the GDGMV ID section above). Any additional data should also be checked for more details Borehole Index information (see Section 5.2).

9.1.1.6 TOTAL DEPTH:

As the only depth data available is as part of the lithological log and there is no other data that conflicts, the total depth is recorded as the base depth of the lowest logged unit -59.7 m.

Tê	n lỗ khoan	H7DA		Tọa độ x	589816	Tọa độ y	2339551		Kiểm tra tọa	độ	Hệ tọa độ	3405 - Vietnam	onshore	~
	Xây dựng (GDGMV		/_ID F486	8Da4-0007			Tọa độ	Z (m) 9.86	Kiểu	?	 Tổng độ sâu (m) 	59.70	
	Chỉ mục đầ	y đủ	Xem tài l	iệu lỗ khoa	in G	ihi chú								

Figure 34: Borehole Index data entry for H7DA coding example.

9.1.2 Lithology Log Data Workflow

9.1.2.1 UNIT 1:

'Đất san nền' is interpreted to be manmade levelling of the ground and infilling with soil and therefore, the lithology code is 'SOIL'. The manmade aspect of this unit will be captured within the Stratigraphy Log, as 'MGR' – made ground. The full text has been entered into the Unit Description as 'đất san nền'. The Top depth for the first unit is automatically set to '0.00' m and does not require editing. The Base depth is '1.50' m. The Thickness of '1.50' m is automatically generated and does not require editing. The Depth Reliability is automatically set to 'Certain' and in this case is left without editing. We may want to consider that all depths for this well are generally rounded to the nearest 50 cm, and therefore the depth reliability may be lower. GDGMV should decide on how this should be done and include the final methodology in an update to **Error! Reference source not found.**. Base Bed has not been assigned to this unit a nd has been left as the automatic data entry of '-' (a.k.a. Not applicable), although it may be appropriate to assign 'UC' as could be seen to represent an anthropogenic unconformity – this is a decision for GDGMV to make.

9.1.2.2 UNIT 2:

'Sét pha' is interpreted as unconsolidated clay with a smaller proportion of sand. The sand component is considered substantial enough to be included within the main lithology code, rather than separated using the 'Trace Grains' Additional Property type. The resultant Lithology code is 'CS'. The full text has been entered into the Unit Description as 'sét pha'. The Top depth is automatically set to be the same as the Base depth of the previous unit – '1.50' m and does not require editing. The Base depth is '4.50' m. The Thickness of '3.00' m is automatically generated and does not require editing. If a mistake is made with the Base depth of Unit 2 and only realised once the data entry was complete, the Top and Base depths as well as the Thicknesses of Units 2 and 3 would need to be checked and potentially manually edited.

CS - Sét, Cát 🗸 Sét pha	1.50	4.50	3.00	Chắc chắn 🗸 -	\sim	
-------------------------	------	------	------	---------------	--------	--

9.1.2.3 UNIT 3:

⁶*Cát hạt mịn*' is interpreted as unconsolidated very fine sand and is given the Lithology code of ⁶1'. The full text has been entered into the Unit Description as 'cát hạt mịn'. The Top depth is automatically set to be the same as the Base depth of the previous unit – '4.50' m and does not require editing. The Base depth is '21.00' m. The Thickness of '16.50' m is automatically generated and does not require editing.

1 - Cát mịn	Cát hạt mịn	4.50	21.00	16.50	Chắc chắn 🗸	-	\sim
-------------	-------------	------	-------	-------	-------------	---	--------

9.1.2.4 UNIT 4:

As in 9.1.2.2, '*Sét pha*' is interpreted as unconsolidated clay with a little sand, with the Lithology Code and Unit Description entered accordingly. The full text has been entered into the Unit Description as 'sét pha'. The Top depth is automatically set to be the same as the Base depth of the previous unit – '21.00' m and does not require editing. The Base depth is entered as '22.00' m. The Thickness of '1.00' m is automatically generated and does not require editing.

9.1.2.5 UNIT 5:

'*Cát pha lẫn sạn*' is interpreted as unconsolidated sand with a smaller proportion of clay and trace grains of very coarse sand. The Lithology code is 'SC', with the very coarse sand grains recorded as an Additional Property. Qualifiers are not necessary with the Trace Grains Additional Property Type. The full text has been entered into the Unit Description as 'cát pha lẫn sạn'. The Top depth is automatically set to be the same as the Base depth of the previous unit – '22.00' m and does not require editing. The Base depth is entered as '28.50' m. The Thickness of '6.50' m is automatically generated and does not require editing. The Top and Base depths within the Additional Properties Form do not need to be edited, as they will automatically infill the background database with the same depths as the parent unit. If an Additional Property is only applicable to a specific section of the lithological unit, those depths should be entered; there is no information to state that is the case here, so depths are not entered.

SC - Cát, Sét	 Cát pha lẫn sạn 	22.00	28.50	6.50	Chắc chắn	\sim	-	\sim
TRGR V 5	 V - [Very coarse sand] 			~				

9.1.2.6 UNIT 6:

'Sét pha lẫn sạn' is interpreted as unconsolidated clay with a smaller proportion of sand and trace grains of very coarse sand. Like Unit 2 and Unit 4, the Lithology code is 'CS'. The coarse sand grains are recorded as an Additional Property, similar to in Unit 5. The full text has been entered into the Unit Description as 'sét pha lẫn sạn'. The Top depth is automatically set to be the same as the Base depth of the previous unit – '28.50' m and does not require editing. The Base depth is entered as '32.50' m. The Thickness of '4.00' m is automatically generated and does not require editing.

CS - Sét, Cát	✓ Sét pha lẫn sạn	28.50	32.50	4.00	Chắc chắn 🗸 - 🗸
TRGR V 5	 [Very coarse sand] 			~	

9.1.2.7 UNIT 7:

'*Cát lẫn sạn*' is interpreted as unconsolidated sand with trace grains of very coarse sand. The Lithology code is 'S', with the very coarse sand grains recorded as '5' within the Trace Grain Additional Property Type. The full text has been entered into the Unit Description as 'cát lẫn sạn'. The Top depth is automatically set to be the same as the Base depth of the previous unit – '32.50' m and does not require editing. The Base depth is entered as '34.50' m. The Thickness of '2.00' m is automatically generated and does not require editing.

S - Cát 🗸	Cát lẫn sạn	32.50	34.50	2.00	Chắc chắn	\sim	-	~
TRGR 🗸 5 🔍	- [Very coarse sand]			\sim				

9.1.2.8 UNIT 8:

'*Cát lẫn bột sét*' is interpreted as unconsolidated sand with trace grains of silt and clay. The Lithology code is 'S', with the silt and clay recorded using the Trace Grain Additional Property Type. The full text has been entered into the Unit Description as 'cát lẫn bột sét'. The Top depth is automatically set to be the same as the Base depth of the previous unit – '34.50' m and does not require editing. The Base depth is entered as '45.50' m. The Thickness of '11.00' m is automatically generated and does not require editing.

S - Cát		 Cát lẫn bột sét 	34.50	45.50	11.00 Chắc chắn 🗸 - 🗸
TRGR	∽ <mark>C</mark>	- [Clay Clast size less than 1/256mm lower part of	the mud categ		
TRGR	~ Z	 - [Silt Clast size between 1/256mm and 1/16mm u 	pper part of th	~	

9.1.2.9 UNIT 9:

'*Cuội sỏi lẫn cát*' is interpreted as unconsolidated gravel with trace grains of sand. Depending on punctuation, it could also be interpreted as unconsolidated pebbles and granules with trace grains of sand. In this case, the Lithology code of 'V' is assigned, with the sand recorded using the Trace Grain Additional Property Type. The full text has been entered into the Unit Description as 'cuội sỏi lẫn cát'. The Top depth is automatically set to be the same as the Base depth of the previous unit – '45.50' m and does not require editing. The Base depth is entered as '57.50' m. The Thickness of '12.00' m is automatically generated and does not require editing. As the next unit is interpreted to be bedrock, the Base Bed code of 'RH' is assigned to signify rockhead and the boundary between superficial deposits and bedrock.

9.1.2.10 UNIT 10:

'Sét kết' is interpreted as lithified claystone. The Lithology code is 'CST'. The full text has been entered into the Unit Description as 'sét kết'. The Top depth is automatically set to be the same as the Base depth of the previous unit – '45.50' m and does not require editing. The Base depth is entered as '57.50' m. The Thickness of '12.00' m is automatically generated and does not require editing. As this is the lowest unit logged within the borehole and is assumed to be the base of drilling, the Base Bed code of 'TD' is assigned to signify that the Total Depth is also '59.70' m. By assigning 'TD', the database will automatically enter this in the Borehole Index section (see 9.1.1.6).

CST - Sét kết 🗸 🗸 Sét kết	57.50	59.70	2.20	Chắc chắn	~ 1	TD	\sim
---------------------------	-------	-------	------	-----------	-----	----	--------

lõ	khoan H7DA		Tọa độ x 589816	j Tạ	a độ y 🛛 2	339551		Kiểm	tra tọa đi	ộ l	Hệ tọa đ	ộ <u>3405</u>	Viet	nam -	onsh
Xâ	ây dựng GDGMV_ID	GDG	MV_ID F4868Da4-00	07			Tọa độ	Z (m) 9.	86	Kiểu	?	 ✓ Tốn 	g độ sả	àu (m)	59.7
Ch	ỉ mục đầy đủ	Xem t	ài liệu lỗ khoan	Ghi chú											
ą	ch học Địa tẫng C	LÐ	Phong Hóa TN XTC	MNN TC	TCNX	uất bản	ghi								
	GHI DỮ LIỆU THA	ACH	нос	Làm mới dữ	liệu					Quản	lý từ đi	ến <mark>Tra</mark>	ining_	ROM	~
	Thạch học		Bấm để hiến thị thê	m Ghi chú v	về thạch l	ıọc	£	inh (m)	Đáy (m	n) Bě	è dày	Mức độ t	in cậ Đ	Base b	ed
[SOIL - Đất	~	Đất san nền					0.00	1	.50	1.50	Chắc chả	n ~	-	~
[CS - Sét, Cát 🗸 Sét pha							1.50	4	.50	3.00	Chắc chả	n ~	-	~
Ī	1 - Cát mịn 🗸 Cát hạt mịn							4.50	21	.00	16.50	Chắc chả	n v	-	~
[CS - Sét, Cát	~	Sét pha					21.00	22	.00	1.00	Chắc chả	n ~	-	~
[SC - Cát, Sét	~	Cát pha lẫn sạn					22.00	28	.50	6.50	Chắc chả	n ~	-	~
[CS - Sét, Cát	~	Sét pha lẫn sạn					28.50	32	.50	4.00	Chắc chả	n v	-	~
	S - Cát	~	Cát lẫn sạn					32.50	34	.50	2.00	Chắc chả	n ~	-	\sim
[S - Cát	~	Cát lẫn bột sét					34.50	45	.50	11.00	Chắc chả	n ~	ł	~
	V - Cuội sỏi	~	Cuội sỏi lẫn cát					45.50	57	.50	12.00	Chắc chả	n ~	RH	~
	CST - Sét kết	~	Sét kết					57.50	59	.70	2.20	Chắc chả	n ~	TD	~
	Bổ sung các tính c	hất tr	ong khoảng độ sâu đa	ıng ghi dữ liệ	ệu giữa	34	.5 m. v	/à /	45.5 m.		Bề dà	y nội tại đ	ơn vị	(m)	1
	Loại tính chất G	iá trị	Giá trị sự miêu tả	Bấm để hi	iến thị th	êm Ghi	chú về t	ính chất	Vòng lo	oại	Đỉnh	Đ	áy		
Ľ	TRGR C		 Clay Clast size le 	ess than 1/25	56mm lov	wer part	of the n	nud categ	3	~					
-	TRGR V Z		 - [Silt Clast size be 	etween 1/25	6mm and	1/16mn	n upper	part of th	1	~					
4	Dan vi tính la 1 of 2		No Filter	Parch	4					ľ				•	-
-	vikhozn M 4 9 of 10	L N	No Filler Sea	reh	-									1	

Figure 35: Fully coded Lithology Log example for borehole H7DA, refer to sections 9.1.1 to 9.1.2.10 for more specific details.

9.1.3 Stratigraphy Log Data Workflow

No stratigraphical data is directly available for this borehole in the current documents. There are a few options from this point, dependant on the project manager's, or borehole coder's chosen workflow. The first option is to start interpreting the borehole as stand-alone data. This may include the use of a geological map and a rough idea of the geology in that particular location. As stated in section 9.1.2.1, the first unit to code within the Stratigraphy Log is made ground. The coder may make the decision that this unit is simple 'made ground' ('MGR'), or they may be able to make further observations of interpretations, for example that the type of made ground at this location is 'raised fill' ('MRU'). These additional interpretations will make it simpler to evaluate the differences that may be recorded between borehole heights/depths and any DTM data that will be used in the future modelling process. It may be preferable not to code this top unit until the coder is ready to create a full Stratigraphic Log, as by coding a single unit the Stratigraphy Log will be recorded as 'present' in additional data views, e.g. the linked GIS project.

If the interpreter is not confident in their stratigraphical interpretation within the context of a stand-alone borehole, or the lithological data is not detailed enough to inform a confident interpretation, the interpreter may move on to code additional boreholes that have more confident stratigraphical interpretations. Once an appropriate number of stratigraphical logs have been entered into the borehole database, it is possible to view these using the linked GIS project. It is also possible to export the initial data (see Section 9) and import it into an additional software, such as GroundHog. Using the stratigraphical interpretations that have been made already, a borehole coder may be able to extrapolate these units and use them to inform the stratigraphical interpretation of another borehole. The ideal conclusion is for the majority of boreholes to have fully interpreted Stratigraphy Logs to go alongside the fully coded Lithology Logs. Once an appropriate number of these are available, the first iteration of 3D Modelling workflows can begin. For more details on the 3D modelling workflow using GroundHog software, please contact the BGS team at groundhog@bgs.ac.uk.

References

British Geological Survey holds most of the references listed below, and copies may be obtained via the library service subject to copyright legislation (contact libuser@bgs.ac.uk for details). The library catalogue is available at: https://envirolib.apps.nerc.ac.uk/olibcgi.

- Kent, S. (1964). Words of Estimative Probability. CIA Studies in Intelligence.
- Nichols, G. (1999). Sedimentology and Stratigraphy. Chichester: Blackwell Publishing / John Wiley & Sons.
- Powers, M. (1953). A New Roundness Scale for Sedimentary Particles, vol. 23, no. 2. *Journal of Sedimentary Petrology*, 117-119.
- Wentworth, C. (1922). A Scale of Grade and Class Terms for Clastic Sediments. *The Journal of Geology*.